Search results for: forecast accuracy unemployment rate.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4499

Search results for: forecast accuracy unemployment rate.

1559 Performance Analysis of IDMA Scheme Using Quasi-Cyclic Low Density Parity Check Codes

Authors: Anurag Saxena, Alkesh Agrawal, Dinesh Kumar

Abstract:

The next generation mobile communication systems i.e. fourth generation (4G) was developed to accommodate the quality of service and required data rate. This project focuses on multiple access technique proposed in 4G communication systems. It is attempted to demonstrate the IDMA (Interleave Division Multiple Access) technology. The basic principle of IDMA is that interleaver is different for each user whereas CDMA employs different signatures. IDMA inherits many advantages of CDMA such as robust against fading, easy cell planning; dynamic channel sharing and IDMA increase the spectral efficiency and reduce the receiver complexity. In this, performance of IDMA is analyzed using QC-LDPC coding scheme further it is compared with LDPC coding and at last BER is calculated and plotted in MATLAB.

Keywords: 4G, QC-LDPC, CDMA, IDMA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
1558 BeamGA Median: A Hybrid Heuristic Search Approach

Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte

Abstract:

The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.

Keywords: Median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
1557 Multistage Data Envelopment Analysis Model for Malmquist Productivity Index Using Grey's System Theory to Evaluate Performance of Electric Power Supply Chain in Iran

Authors: Mesbaholdin Salami, Farzad Movahedi Sobhani, Mohammad Sadegh Ghazizadeh

Abstract:

Evaluation of organizational performance is among the most important measures that help organizations and entities continuously improve their efficiency. Organizations can use the existing data and results from the comparison of units under investigation to obtain an estimation of their performance. The Malmquist Productivity Index (MPI) is an important index in the evaluation of overall productivity, which considers technological developments and technical efficiency at the same time. This article proposed a model based on the multistage MPI, considering limited data (Grey’s theory). This model can evaluate the performance of units using limited and uncertain data in a multistage process. It was applied by the electricity market manager to Iran’s electric power supply chain (EPSC), which contains uncertain data, to evaluate the performance of its actors. Results from solving the model showed an improvement in the accuracy of future performance of the units under investigation, using the Grey’s system theory. This model can be used in all case studies, in which MPI is used and there are limited or uncertain data.

Keywords: Malmquist Index, Grey's Theory, Charnes Cooper & Rhodes (CCR) Model, network data envelopment analysis, Iran electricity power chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
1556 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321
1555 Resilience Assessment for Power Distribution Systems

Authors: Berna Eren Tokgoz, Mahdi Safa, Seokyon Hwang

Abstract:

Power distribution systems are essential and crucial infrastructures for the development and maintenance of a sustainable society. These systems are extremely vulnerable to various types of natural and man-made disasters. The assessment of resilience focuses on preparedness and mitigation actions under pre-disaster conditions. It also concentrates on response and recovery actions under post-disaster situations. The aim of this study is to present a methodology to assess the resilience of electric power distribution poles against wind-related events. The proposed methodology can improve the accuracy and rapidity of the evaluation of the conditions and the assessment of the resilience of poles. The methodology provides a metric for the evaluation of the resilience of poles under pre-disaster and post-disaster conditions. The metric was developed using mathematical expressions for physical forces that involve various variables, such as physical dimensions of the pole, the inclination of the pole, and wind speed. A three-dimensional imaging technology (photogrammetry) was used to determine the inclination of poles. Based on expert opinion, the proposed metric was used to define zones to visualize resilience. Visual representation of resilience is helpful for decision makers to prioritize their resources before and after experiencing a wind-related disaster. Multiple electric poles in the City of Beaumont, TX were used in a case study to evaluate the proposed methodology.  

Keywords: Photogrammetry, power distribution systems, resilience metric, system resilience, wind-related disasters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
1554 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
1553 Artificial Neural Networks for Cognitive Radio Network: A Survey

Authors: Vishnu Pratap Singh Kirar

Abstract:

The main aim of a communication system is to achieve maximum performance. In Cognitive Radio any user or transceiver has ability to sense best suitable channel, while channel is not in use. It means an unlicensed user can share the spectrum of a licensed user without any interference. Though, the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision making capacity of CRN without affecting bandwidth, cost and signal rate.

Keywords: Artificial Neural Network, Cognitive Radio, Cognitive Radio Networks, Back Propagation, Spectrum Sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4106
1552 Coproduction of Fructose and Ethanol from Dates by S. cerevisiae ATCC 36859

Authors: M. A. Zeinelabdeen, A. E. Abasaeed, M. H. Gaily, A. K. Sulieman, M. D. Putra

Abstract:

Coproduction of fructose and ethanol from dates extract by a glucose-selective S. cerevisiae ATCC 36859 strain has been studied. Various initial sugar concentrations (i.e., 131.4, 315.3, 408.2, and 500.0 g/l) have been tested. The fermentation experiments were performed in a water shaker bath at 30°C and 120 rpm. The results showed that highest yields of fructose (95.0%) and ethanol (72.8%) were achieved for the 131.4 g/l concentration. Increasing the initial concentration to 315.3 g/l resulted in lower yields of fructose (82.2%) and ethanol (61.0%). However, further increase to 408.2 g/l increased the fructose yield (97.5%) at the expense of ethanol yield (42.0%) due to probable substrate inhibitions that resulted in lower glucose conversion. At 500 g initial sugar/l the growth rate of ATCC 36859 was highly inhibited. 

Keywords: Dates, ethanol, fructose, fermentation, S. cerevisiae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
1551 Study on Bending Characteristics of Square Tube Using Energy Absorption Part

Authors: Shigeyuki Haruyama, Zefry Darmawan, Ken Kaminishi

Abstract:

In the square tube subjected to the bending load, the rigidity of the entire square tube is reduced when a collapse occurs due to local stress concentration. Therefore, in this research, the influence of bending load on the square tube with attached energy absorbing part was examined and reported. The analysis was conducted by using Finite Element Method (FEM) to produced bending deflection and buckling points. Energy absorption was compared from rigidity of attached part and square tube body. Buckling point was influenced by the rigidity of attached part and the thickness rate of square tube.

Keywords: Square tube, bending stress, energy absorption, finite element analysis, rigidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
1550 The Impact of Self-Phase Modulation on Dispersion Compensated Mapping Multiplexing Technique (MMT)

Authors: Mohamed A. Elsherif, A. Malekmohammadi

Abstract:

An exploration in the competency of the optical multilevel Mapping Multiplexing Technique (MMT) system in tolerating to the impact of nonlinearities as Self Phase Modulation (SPM) during the presence of dispersion compensation methods. The existence of high energy pulses stimulates deterioration in the chirp compression process attained by SPM which introduces an upper power boundary limit. An evaluation of the post and asymmetric prepost fiber compensation methods have been deployed on the MMT system compared with others of the same bit rate modulation formats. The MMT 40 Gb/s post compensation system has 1.4 dB enhancements to the 40 Gb/s 4-Arysystem and less than 3.9 dB penalty compared to the 40 Gb/s OOK-RZsystem. However, the optimized Pre-Post asymmetric compensation has an enhancement of 4.6 dB compared to the Post compensation MMT configuration for a 30% pre compensation dispersion.

Keywords: Dispersion compensation, mapping multiplexing technique, self-phase modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
1549 Finite Volume Method for Flow Prediction Using Unstructured Meshes

Authors: Juhee Lee, Yongjun Lee

Abstract:

In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.

Keywords: Finite volume method, fluid flow, laminar flow, unstructured grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
1548 Do Cultural Differences in Successful ERP Implementations Exist?

Authors: Jaideep Motwani, Asli Yagmur Akbulut

Abstract:

Using a methodology grounded in business process change theory, we investigate the critical success factors that affect ERP implementation success in United States and India. Specifically, we examine the ERP implementation at two case study companies, one in each country. Our findings suggest that certain factors that affect the success of ERP implementations are not culturally bound, whereas some critical success factors depend on the national culture of the country in which the system is being implemented. We believe that the understanding of these critical success factors will deepen the understanding of ERP implementations and will help avoid implementation mistakes, thereby increasing the rate of success in culturally different contexts. Implications of the findings and future research directions for both academicians and practitioners are also discussed.

Keywords: Critical Success Factors, Culture, Enterprise Resource Planning Systems, India, United States

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
1547 Analysis of Advanced Modulation Format Using Gain and Loss Spectrum for Long Range Radio over Fiber System

Authors: Shaina Nagpal, Amit Gupta

Abstract:

In this work, all optical Stimulated Brillouin Scattering (SBS) generated single sideband with suppressed carrier is presented to provide better efficiency. The generation of single sideband and enhanced carrier power signal using the SBS technique is further used to strengthen the low shifted sideband and to suppress the upshifted sideband. These generated single sideband signals are able to work at high frequency ranges. Also, generated single sideband is validated over 90 km transmission using single mode fiber with acceptable bit error rate. The results for an equivalent are then compared so that the acceptable technique is chosen and also the required quality for the optimum performance of the system is reported.

Keywords: Stimulated Brillouin scattering, radio over fiber, upper side band, quality factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 944
1546 Comparing the Performance of the Particle Swarm Optimization and the Genetic Algorithm on the Geometry Design of Longitudinal Fin

Authors: Hassan Azarkish, Said Farahat, S.Masoud H. Sarvari

Abstract:

In the present work, the performance of the particle swarm optimization and the genetic algorithm compared as a typical geometry design problem. The design maximizes the heat transfer rate from a given fin volume. The analysis presumes that a linear temperature distribution along the fin. The fin profile generated using the B-spline curves and controlled by the change of control point coordinates. An inverse method applied to find the appropriate fin geometry yield the linear temperature distribution along the fin corresponds to optimum design. The numbers of the populations, the count of iterations and time to convergence measure efficiency. Results show that the particle swarm optimization is most efficient for geometry optimization.

Keywords: Genetic Algorithm, Geometry Optimization, longitudinal Fin, Particle Swarm Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
1545 Research and Design on a Portable Intravehicular Ultrasonic Leak Detector for Manned Spacecraft

Authors: Yan Rongxin, Sun Wei, Li Weidan

Abstract:

Based on the acoustics cascade sound theory, the mechanism of air leak sound producing, transmitting and signal detecting has been analyzed. A formula of the sound power, leak size and air pressure in the spacecraft has been built, and the relationship between leak sound pressure and receiving direction and distance has been studied. The center frequency in millimeter diameter leak is more than 20 kHz. The situation of air leaking from spacecraft to space has been simulated and an experiment of different leak size and testing distance and direction has been done. The sound pressure is in direct proportion to the cosine of the angle of leak to sensor. The portable ultrasonic leak detector has been developed, whose minimal leak rate is 10-1 Pa·m3/s, the testing radius is longer than 20 mm, the mass is less than 1.0 kg, and the electric power is less than 2.2 W.

Keywords: Leak detection, manned spacecraft, ultrasonic, sound transmitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
1544 Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB

Authors: Tapano Kumar Hotta, S P Venkateshan

Abstract:

Steady state experiments have been conducted for natural and mixed convection heat transfer, from five different sized protruding discrete heat sources, placed at the bottom position on a PCB and mounted on a vertical channel. The characteristic length ( Lh ) of heat sources vary from 0.005 to 0.011 m. The study has been done for different range of Reynolds number and modified Grashof number. From the experiment, the surface temperature distribution and the Nusselt number of discrete heat sources have been obtained and the effects of Reynold number and Richardson number on them have been discussed. The objective is to find the rate of heat dissipation from heat sources, by placing them at the bottom position on a PCB and to compare both modes of cooling of heat sources.

Keywords: Discrete heat source, mixed convection, natural convection, vertical channel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
1543 Flow Discharge Determination in Straight Compound Channels Using ANNs

Authors: A. Zahiri, A. A. Dehghani

Abstract:

Although many researchers have studied the flow hydraulics in compound channels, there are still many complicated problems in determination of their flow rating curves. Many different methods have been presented for these channels but extending them for all types of compound channels with different geometrical and hydraulic conditions is certainly difficult. In this study, by aid of nearly 400 laboratory and field data sets of geometry and flow rating curves from 30 different straight compound sections and using artificial neural networks (ANNs), flow discharge in compound channels was estimated. 13 dimensionless input variables including relative depth, relative roughness, relative width, aspect ratio, bed slope, main channel side slopes, flood plains side slopes and berm inclination and one output variable (flow discharge), have been used in ANNs. Comparison of ANNs model and traditional method (divided channel method-DCM) shows high accuracy of ANNs model results. The results of Sensitivity analysis showed that the relative depth with 47.6 percent contribution, is the most effective input parameter for flow discharge prediction. Relative width and relative roughness have 19.3 and 12.2 percent of importance, respectively. On the other hand, shape parameter, main channel and flood plains side slopes with 2.1, 3.8 and 3.8 percent of contribution, have the least importance.

Keywords: ANN model, compound channels, divided channel method (DCM), flow rating curve

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558
1542 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore

Authors: Ronal Muresano, Andrea Pagano

Abstract:

Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.

Keywords: Algorithm optimization, Bank Failures, OpenMP, Parallel Techniques, Statistical tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
1541 Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks

Authors: Tadashi Watanabe, Jinya Katsuyama, Akihiro Mano

Abstract:

The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.

Keywords: Crack, critical flow, leak, roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
1540 Pre-Operative Tool for Facial-Post-Surgical Estimation and Detection

Authors: Ayat E. Ali, Christeen R. Aziz, Merna A. Helmy, Mohammed M. Malek, Sherif H. El-Gohary

Abstract:

Goal: Purpose of the project was to make a plastic surgery prediction by using pre-operative images for the plastic surgeries’ patients and to show this prediction on a screen to compare between the current case and the appearance after the surgery. Methods: To this aim, we implemented a software which used data from the internet for facial skin diseases, skin burns, pre-and post-images for plastic surgeries then the post- surgical prediction is done by using K-nearest neighbor (KNN). So we designed and fabricated a smart mirror divided into two parts a screen and a reflective mirror so patient's pre- and post-appearance will be showed at the same time. Results: We worked on some skin diseases like vitiligo, skin burns and wrinkles. We classified the three degrees of burns using KNN classifier with accuracy 60%. We also succeeded in segmenting the area of vitiligo. Our future work will include working on more skin diseases, classify them and give a prediction for the look after the surgery. Also we will go deeper into facial deformities and plastic surgeries like nose reshaping and face slim down. Conclusion: Our project will give a prediction relates strongly to the real look after surgery and decrease different diagnoses among doctors. Significance: The mirror may have broad societal appeal as it will make the distance between patient's satisfaction and the medical standards smaller.

Keywords: K-nearest neighbor, face detection, vitiligo, bone deformity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
1539 Approximated Solutions of Two-Point Nonlinear Boundary Problem by a Combination of Taylor Series Expansion and Newton Raphson Method

Authors: Chinwendu. B. Eleje, Udechukwu P. Egbuhuzor

Abstract:

One of the difficulties encountered in solving nonlinear Boundary Value Problems (BVP) by many researchers is finding approximated solutions with minimum deviations from the exact solutions without so much rigor and complications. In this paper, we propose an approach to solve a two point BVP which involves a combination of Taylor series expansion method and Newton Raphson method. Furthermore, the fourth and sixth order approximated solutions are obtained and we compare their relative error and rate of convergence to the exact solution. Finally, some numerical simulations are presented to show the behavior of the solution and its derivatives.

Keywords: Newton Raphson method, non-linear boundary value problem, Taylor series approximation, Michaelis-Menten equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 326
1538 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques

Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan

Abstract:

Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.

Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
1537 MEGSOR Iterative Scheme for the Solution of 2D Elliptic PDE's

Authors: J. Sulaiman, M. Othman, M. K. Hasan

Abstract:

Recently, the findings on the MEG iterative scheme has demonstrated to accelerate the convergence rate in solving any system of linear equations generated by using approximation equations of boundary value problems. Based on the same scheme, the aim of this paper is to investigate the capability of a family of four-point block iterative methods with a weighted parameter, ω such as the 4 Point-EGSOR, 4 Point-EDGSOR, and 4 Point-MEGSOR in solving two-dimensional elliptic partial differential equations by using the second-order finite difference approximation. In fact, the formulation and implementation of three four-point block iterative methods are also presented. Finally, the experimental results show that the Four Point MEGSOR iterative scheme is superior as compared with the existing four point block schemes.

Keywords: MEG iteration, second-order finite difference, weighted parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
1536 Effect of Calcination Temperature and MgO Crystallite Size on MgO/TiO2 Catalyst System for Soybean Transesterification

Authors: Liberty L Mguni, Reinout Meijboom, Kalala Jalama

Abstract:

The effect of calcination temperature and MgO crystallite sizes on the structure and catalytic performance of TiO2 supported nano-MgO catalyst for the trans-esterification of soybean oil has been studied. The catalyst has been prepared by deposition precipitation method, characterised by XRD and FTIR and tested in an autoclave at 225oC. The soybean oil conversion after 15 minutes of the trans-esterification reaction increased when the calcination temperature was increased from 500 to 600oC and decreased with further increase in calcination temperature. Some glycerolysis activity was also detected on catalysts calcined at 600 and 700oC after 45 minutes of reaction. The trans-esterification reaction rate increased with the decrease in MgO crystallite size for the first 30 min.

Keywords: Calcination temperature, crystallite size, MgO/TiO2, transesterification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
1535 Using Finite Element Analysis on Dynamic Characteristics in a Micro Stepping Mill

Authors: Bo Wun Huang, Pu Ping Yu, Jao-Hwa Kuang

Abstract:

For smaller mechatronic device, especially for micro Electronic system, a micro machining is a must. However, most investigations on vibration of a mill have been limited to the traditional type mill. In this article, vibration and dynamic characteristics of a micro mill were investigated in this study. The trend towards higher precision manufacturing technology requires producing miniaturized components. To improve micro-milled product quality, obtain a higher production rate and avoid milling breakage, the dynamic characteristics of micro milling must be studied. A stepped pre-twisted mill is used to simulate the micro mill. The finite element analysis is employed in this work. The flute length and diameter effects of the micro mill are considered. It is clear that the effects of micro mill shape parameters on vibration in a micro mill are significant.

Keywords: micro system, micro mill, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
1534 Investigating the Demand for Short-shelf Life Food Products for SME Wholesalers

Authors: Yamini Raju, Parminder S. Kang, Adam Moroz, Ross Clement, Ashley Hopwell, Alistair Duffy

Abstract:

Accurate forecasting of fresh produce demand is one the challenges faced by Small Medium Enterprise (SME) wholesalers. This paper is an attempt to understand the cause for the high level of variability such as weather, holidays etc., in demand of SME wholesalers. Therefore, understanding the significance of unidentified factors may improve the forecasting accuracy. This paper presents the current literature on the factors used to predict demand and the existing forecasting techniques of short shelf life products. It then investigates a variety of internal and external possible factors, some of which is not used by other researchers in the demand prediction process. The results presented in this paper are further analysed using a number of techniques to minimize noise in the data. For the analysis past sales data (January 2009 to May 2014) from a UK based SME wholesaler is used and the results presented are limited to product ‘Milk’ focused on café’s in derby. The correlation analysis is done to check the dependencies of variability factor on the actual demand. Further PCA analysis is done to understand the significance of factors identified using correlation. The PCA results suggest that the cloud cover, weather summary and temperature are the most significant factors that can be used in forecasting the demand. The correlation of the above three factors increased relative to monthly and becomes more stable compared to the weekly and daily demand.

Keywords: Demand Forecasting, Deteriorating Products, Food Wholesalers, Principal Component Analysis and Variability Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3368
1533 Empirical Roughness Progression Models of Heavy Duty Rural Pavements

Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed

Abstract:

Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.

Keywords: Roughness progression, empirical model, pavement performance, heavy duty pavement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
1532 Numerical Study on the Response of Reinforced Concrete Wall Resisting the Impact Loading

Authors: DucKien Thai, Seung EockKim

Abstract:

A numerical analysis of a reinforced concrete (RC) wall under missile impact loading is presented in this study. The model created by Technical Research Center of Finland was used. The commercial finite element code, LS-DYNA was used to analyze. The structural components of the reinforced concrete wall, missile and their contacts are fully modeled. The material nonlinearity with strain rate effects considering damage and failure is included in the analysis. The results of analysis were verified with other research results. The case-studies with different reinforcement ratios were conducted to investigate the influence of reinforcement on the punching behavior of walls under missile impact.

Keywords: Missile Impact, Reinforced Concrete Walls, LSDYNA, Dynamic Analysis, Punching Behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
1531 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: Daily activity recognition, healthcare, IoT sensors, transfer learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
1530 Controlling of Multi-Level Inverter under Shading Conditions Using Artificial Neural Network

Authors: Abed Sami Qawasme, Sameer Khader

Abstract:

This paper describes the effects of photovoltaic voltage changes on Multi-level inverter (MLI) due to solar irradiation variations, and methods to overcome these changes. The irradiation variation affects the generated voltage, which in turn varies the switching angles required to turn-on the inverter power switches in order to obtain minimum harmonic content in the output voltage profile. Genetic Algorithm (GA) is used to solve harmonics elimination equations of eleven level inverters with equal and non-equal dc sources. After that artificial neural network (ANN) algorithm is proposed to generate appropriate set of switching angles for MLI at any level of input dc sources voltage causing minimization of the total harmonic distortion (THD) to an acceptable limit. MATLAB/Simulink platform is used as a simulation tool and Fast Fourier Transform (FFT) analyses are carried out for output voltage profile to verify the reliability and accuracy of the applied technique for controlling the MLI harmonic distortion. According to the simulation results, the obtained THD for equal dc source is 9.38%, while for variable or unequal dc sources it varies between 10.26% and 12.93% as the input dc voltage varies between 4.47V nd 11.43V respectively. The proposed ANN algorithm provides satisfied simulation results that match with results obtained by alternative algorithms.

Keywords: Multi level inverter, genetic algorithm, artificial neural network, total harmonic distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617