Effect of Calcination Temperature and MgO Crystallite Size on MgO/TiO2 Catalyst System for Soybean Transesterification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Effect of Calcination Temperature and MgO Crystallite Size on MgO/TiO2 Catalyst System for Soybean Transesterification

Authors: Liberty L Mguni, Reinout Meijboom, Kalala Jalama

Abstract:

The effect of calcination temperature and MgO crystallite sizes on the structure and catalytic performance of TiO2 supported nano-MgO catalyst for the trans-esterification of soybean oil has been studied. The catalyst has been prepared by deposition precipitation method, characterised by XRD and FTIR and tested in an autoclave at 225oC. The soybean oil conversion after 15 minutes of the trans-esterification reaction increased when the calcination temperature was increased from 500 to 600oC and decreased with further increase in calcination temperature. Some glycerolysis activity was also detected on catalysts calcined at 600 and 700oC after 45 minutes of reaction. The trans-esterification reaction rate increased with the decrease in MgO crystallite size for the first 30 min.

Keywords: Calcination temperature, crystallite size, MgO/TiO2, transesterification

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1077825

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637

References:


[1] A. R. Yacob, M. K. A. A. Mustajab and N. S. Samadi, "Calcination Temperature of Nano MgO Effect on Base Transesterification of Palm Oil," World Academy of Science, Engineering and Technology., vol. 56, pp. 408-412, 2009.
[2] J.-P. Rodrigue, C. Comtois, and B. Slack, The geography of transport systems. New York: Routledge, 2009, ch 1.
[3] D. j. Vujicic, D. Comic, A. Zarubica, R. Micic and G. Boskovic, "Kinetics of biodiesel synthesis from sunflower oil over CaO heterogeneous catalyst," Fuel., vol. 89, no. 8, pp. 2054-2061, August 2010.
[4] B. Yoosuk, P. Krasae, B. Puttasawat, P. Udomsap, N. Viriya-empikul, and K. Faungnawakij, "Magnesia modified with strontium as a solid base catalyst for transesterification of palm olein," Chem. Eng. J., vol. 162, no. 1, pp. 58-66, August 2010.
[5] S. Semwal, A. K. Arora, R. P. Badoni, and D. K. Tuli, "Biodiesel production using heterogeneous catalysts," Biores. Technol., vol. 102, no. 1, pp. 2155-2161, Dec 2011.
[6] V. K. Díez, C. A. Ferretti, P. A. Torresi, C. R. Apesteguía and J. I. Di Cosimo, "Effect of the MgO Activation Conditions on its Basicity and Catalytic Properties," in 22nd North America Catalysis Society, Detriot, 2011, pp 1.
[7] J. M. Montero, P. Gai, K. Wilson and A. F. Lee, "Structure-sensitive biodiesel synthesis over MgO nanocrystals," Green chemistry., vol. 11, pp. 265-268, Jan 2009.
[8] J. M. Montero, D. R. Brown, P. L. Gai, A. F. Lee and K. Wilsonc, "In situ studies of structure-reactivity relations in biodiesel synthesis over nanocrystalline MgO," Chem. Eng. J., vol. 161, pp. 332-339, Dec 2008.
[9] P. L. Gai, J. M. Montero, A. F. Lee, K. Wilson and E. D. Boyes, "In situ Aberration Corrected-Transmission Electron Microscopy of Magnesium Oxide Nanocatalysts for Biodiesels," Catal. Lett., vol. 132, pp. 182-188. July 2009.
[10] D. A. S. Razo, L. Pallavidino, E. Garrone, F. Geobaldo, E. Descrovi, A. Chiodoni, and F. Giorgis, "A version of Stober synthesis enabling the facile prediction of silica nanospheres size for the fabrication of opal photonic crystals," J. Nanopart. Res., vol. 10, pp. 1225-1229, March 2008
[11] K. Jalama, N. J. Coville, D. Hildebrandt, L. L. Jewell, D. Glasser, "Fischer-Tropsch synthesis over Co/TiO2: Effect of ethanol addition," Fuel., vol. 86, no. 1-2, pp. 73-80, Jan 2007.
[12] R. Zennaro, M. Tagliabue and C. H. Bartholomew, "Kinetics of fischer- Tropsch synthesis on titania-supported cobalt," Catal. Today., vol. 58, no. 4, pp. 309-319, May 2000.
[13] B. Jongsomjit, T. Wongsalee and P. Praserthdam, "Study of Cobalt dispersion on titania consisting various rutile; anatase ratios," Mat. Chem. Phys., vol 92, no. 2-3, pp. 572-578, August 2005.
[14] G. Gelbard, O. Bres, R. M. Vargas, F. Vielfaure and U. F. Schuchardt, "1H nuclear magnetic resonance determination of the yield of the transesterification of rapeseed oil with methanol," J. Am. Ceram. Soc., vol. 72, no. 10, pp. 1239-1241, 1995.
[15] T. Lopez, E. Sanchez, P. Bosch, Y. Meas and R. Gomez, "FTIR and UV-Vis (diffuse reflectance) characterization of TiO, sol-gel spectroscopic characterisation of TiO2 Sol-gel," Mat. Chem. Phys., vol. 32, pp. 141-152, April 1992.
[16] C. Li, G. Li and Q. Xin, "FT-IR Spectroscopic Studies of Methane Adsorption on Magnesium Oxide," J. Phys. Chem., vol. 98, no. 7, pp. 1933-1938, Feb 1994.
[17] N. Nolan, S. Pillai and M. Seery, "Spectroscopic Investigation of the Anatase-to-Rutile transformation of sol-gel Synthesised TiO2 Photocatalyst," J. Cryst. Phys. Chem., vol. 113, no. 36, pp. 16151- 16157, August 2009.
[18] T. Lopez, J. Hernandez, R. Gomez, X. Bokhimi, J. L. Boldu, E. Munoz, O. Novaro and A. Garcia-Ruiz, "Synthesis and Characterization of TiO2 - MgO Mixed oxides prepared by the Sol-Gel method," Langmuir., vol. 15, pp. 5689-5693, May 1999.
[19] Z. Wen, X. Yu, S-T. Tu, J. Yan and E. Dahlquist, "Biodiesel production from waste cooking oil catalyzed by TiO2 -MgO mixed oxides," Biores. Techn., vol. 101, no. 24, pp. 9570-9576, Dec 2010.
[20] Y.-F. Chena, C.-Y. Lee, M.-Y. Yeng and H.-T. Chiu, "The effect of calcination temperature on the crystallinity of TiO2 nanopowders," J. Cryst. Growth, vol. 247, no. 3-4, pp. 363-370, Jan 2003.
[21] K. J. A. Raj and B. Viswanathan., "Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile," Ind. J. Chem., vol 48A, 2009, pp.1378-1382, Oct 2009.
[22] K. C. Chan, J. F.P., Yu-Guang Li, Wei Guo, Chi-Ming Chan, "Effects of Calcination on the Microstructures and Photocatalytic Properties of Nanosized Titanium Dioxide Powders Prepared by Vapor Hydrolysis," J. Am. Ceram. Soc., vol. 82, no. 3, pp. 566-572, Dec 2004.
[23] C. A. Ferretti, S. Fuente, N. Castellani, C. R. Apesteguia and J. I. Di Cosimo, “Monoglyceride synthesis by glycerolysis of methly oleate on MgO: Catalytic and DFT study of the active site,” Appl. Catal. A: General., vol. 413-414, pp. 331-322, Jan 2012.
[24] L. Wang and J. Yang, “Transesterification of soybean oil with nano- MgO or not in supercritical and subcritical methanol,” Fuel., vol. 86, no. 3, pp. 328-333, Feb 2007.
[25] A. Corma, S. Iborra, S. Miquel, and J. Primo, “Catalysts for the Production of Fine Chemicals,” J. Catal., vol. 173, no. 2, pp. 315-321, Jan 1998.
[26] A. Corma, S. B. Hamid, S. Iborra, and A. Velty, “Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides,” J. Catal., vol. 234, no. 2, pp. 340-347, Sept 2005.