Search results for: Markovian Decision Process based Adaptive Scheduling
12915 The Client-Supplier Relationship in Managing Innovation: Delineating Defence Industry First Mover Challenges within the Government Contract Competition
Authors: Edward Pol
Abstract:
All companies are confronted with the need to innovate in order to meet market demands. In so doing they are challenged with the dilemma of whether to aim to be first into the market with a new innovative product, or to deliberately wait and learn from a pioneers’ mistakes; potentially avoiding higher risks. It is therefore important to critically understand from a first mover advantage and disadvantage perspective the decision-making implications of defence industry transformation onset by an innovative paradigm shift. This paper will argue that the type of industry characteristics matter, especially when considering what role the clients play in the innovation process and what their level of influence is. Through investigation of qualitative case study research, this inquiry will focus on first mover advantages and first mover disadvantages with a view to establish practical and value-added academic findings by focusing on specific industries where the clients play an active role in cooperation with the supplier innovation. The resulting findings will help managers to mitigate risk in innovative technology introduction. A selection from several defence industry innovations is specifically chosen because of the client–supplier relationship that typically differs from traditional first mover research. In this instance, case studies will be used referencing vertical-take-off-and-landing defence equipment innovations.
Keywords: innovation, pioneer, first mover advantage, first mover disadvantage, risk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46612914 The Islamic Element of Al-‘Adl in Critical Thinking: the Perception of Muslim Engineering Undergraduates in Malaysia
Authors: Mohd Nuri Al-Amin Endut, Wan Suhaimi Wan Abdullah, Zulqarnain Abu Bakar
Abstract:
The element of justice or al-‘adl in the context of Islamic critical thinking deals with the notion of justice in a thinking process which critically rationalizes the truth in a fair and objective manner with no irrelevant interference that can jeopardize a sound judgment. This Islamic axiological element is vital in technological decision making as it addresses the issues of religious values and ethics that are primarily set to fulfill the purpose of human life on earth. The main objective of this study was to examine and analyze the perception of Muslim engineering students in Malaysian higher education institutions towards the concept of al-‘adl as an essential element of Islamic critical thinking. The study employed mixed methods approach that comprises data collection from the questionnaire survey and the interview responses. A total of 557 Muslim engineering undergraduates from six Malaysian universities participated in the study. The study generally indicated that Muslim engineering undergraduates in the higher institutions have rather good comprehension and consciousness for al-‘adl with a slight awareness on the importance of objective thinking. Nonetheless there were a few items on the concept that have implied a comparatively low perception on the rational justice in Islam as the means to grasp the ultimate truth.Keywords: Engineering education, Islamic critical thinking, rational justice, perception, tertiary education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244012913 Improved MARS Ciphering Using a Metamorphic-Enhanced Function
Authors: Moataz M. Naguib, Hatem Khater, A. Baith Mohamed
Abstract:
MARS is a shared-key (symmetric) block cipher algorithm supporting 128-bit block size and a variable key size of between 128 and 448 bits. MARS has a several rounds of cryptographic core that is designed to take advantage of the powerful results for improving security/performance tradeoff over existing ciphers. In this work, a new function added to improve the ciphering process it is called, Meta-Morphic function. This function use XOR, Rotating, Inverting and No-Operation logical operations before and after encryption process. The aim of these operations is to improve MARS cipher process and makes a high confusion criterion for the Ciphertext.
Keywords: AES, MARS, Metamorphic, Cryptography, Block Cipher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204312912 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System
Authors: Cheima Ben Soltane, Ittansa Yonas Kelbesa
Abstract:
Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.Keywords: Feature Extraction, Speaker Modeling, Feature Matching, Mel Frequency Cepstrum Coefficient (MFCC), Gaussian mixture model (GMM), Vector Quantization (VQ), Linde-Buzo-Gray (LBG), Expectation Maximization (EM), pre-processing, Voice Activity Detection (VAD), Short Time Energy (STE), Background Noise Statistical Modeling, Closed-Set Tex-Independent Speaker Identification System (CISI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188912911 A Neuro-Fuzzy Approach Based Voting Scheme for Fault Tolerant Systems Using Artificial Bee Colony Training
Authors: D. Uma Devi, P. Seetha Ramaiah
Abstract:
Voting algorithms are extensively used to make decisions in fault tolerant systems where each redundant module gives inconsistent outputs. Popular voting algorithms include majority voting, weighted voting, and inexact majority voters. Each of these techniques suffers from scenarios where agreements do not exist for the given voter inputs. This has been successfully overcome in literature using fuzzy theory. Our previous work concentrated on a neuro-fuzzy algorithm where training using the neuro system substantially improved the prediction result of the voting system. Weight training of Neural Network is sub-optimal. This study proposes to optimize the weights of the Neural Network using Artificial Bee Colony algorithm. Experimental results show the proposed system improves the decision making of the voting algorithms.Keywords: Voting algorithms, Fault tolerance, Fault masking, Neuro-Fuzzy System (NFS), Artificial Bee Colony (ABC)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 265512910 Elephant Herding Optimization for Service Selection in QoS-Aware Web Service Composition
Authors: Samia Sadouki Chibani, Abdelkamel Tari
Abstract:
Web service composition combines available services to provide new functionality. Given the number of available services with similar functionalities and different non functional aspects (QoS), the problem of finding a QoS-optimal web service composition is considered as an optimization problem belonging to NP-hard class. Thus, an optimal solution cannot be found by exact algorithms within a reasonable time. In this paper, a meta-heuristic bio-inspired is presented to address the QoS aware web service composition; it is based on Elephant Herding Optimization (EHO) algorithm, which is inspired by the herding behavior of elephant group. EHO is characterized by a process of dividing and combining the population to sub populations (clan); this process allows the exchange of information between local searches to move toward a global optimum. However, with Applying others evolutionary algorithms the problem of early stagnancy in a local optimum cannot be avoided. Compared with PSO, the results of experimental evaluation show that our proposition significantly outperforms the existing algorithm with better performance of the fitness value and a fast convergence.Keywords: Elephant herding optimization, web service composition, bio-inspired algorithms, QoS optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103212909 Enhancing Multi-Frame Images Using Self-Delaying Dynamic Networks
Authors: Lewis E. Hibell, Honghai Liu, David J. Brown
Abstract:
This paper presents the use of a newly created network structure known as a Self-Delaying Dynamic Network (SDN) to create a high resolution image from a set of time stepped input frames. These SDNs are non-recurrent temporal neural networks which can process time sampled data. SDNs can store input data for a lifecycle and feature dynamic logic based connections between layers. Several low resolution images and one high resolution image of a scene were presented to the SDN during training by a Genetic Algorithm. The SDN was trained to process the input frames in order to recreate the high resolution image. The trained SDN was then used to enhance a number of unseen noisy image sets. The quality of high resolution images produced by the SDN is compared to that of high resolution images generated using Bi-Cubic interpolation. The SDN produced images are superior in several ways to the images produced using Bi-Cubic interpolation.Keywords: Image Enhancement, Neural Networks, Multi-Frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119412908 Using FEM for Prediction of Thermal Post-Buckling Behavior of Thin Plates During Welding Process
Authors: Amin Esmaeilzadeh, Mohammad Sadeghi, Farhad Kolahan
Abstract:
Arc welding is an important joining process widely used in many industrial applications including production of automobile, ships structures and metal tanks. In welding process, the moving electrode causes highly non-uniform temperature distribution that leads to residual stresses and different deviations, especially buckling distortions in thin plates. In order to control the deviations and increase the quality of welded plates, a fixture can be used as a practical and low cost method with high efficiency. In this study, a coupled thermo-mechanical finite element model is coded in the software ANSYS to simulate the behavior of thin plates located by a 3-2-1 positioning system during the welding process. Computational results are compared with recent similar works to validate the finite element models. The agreement between the result of proposed model and other reported data proves that finite element modeling can accurately predict the behavior of welded thin plates.
Keywords: Welding, thin plate, buckling distortion, fixture locators, finite element modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 241012907 GA Based Optimal Feature Extraction Method for Functional Data Classification
Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai
Abstract:
Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155512906 An Experimental Study of a Self-Supervised Classifier Ensemble
Authors: Neamat El Gayar
Abstract:
Learning using labeled and unlabelled data has received considerable amount of attention in the machine learning community due its potential in reducing the need for expensive labeled data. In this work we present a new method for combining labeled and unlabeled data based on classifier ensembles. The model we propose assumes each classifier in the ensemble observes the input using different set of features. Classifiers are initially trained using some labeled samples. The trained classifiers learn further through labeling the unknown patterns using a teaching signals that is generated using the decision of the classifier ensemble, i.e. the classifiers self-supervise each other. Experiments on a set of object images are presented. Our experiments investigate different classifier models, different fusing techniques, different training sizes and different input features. Experimental results reveal that the proposed self-supervised ensemble learning approach reduces classification error over the single classifier and the traditional ensemble classifier approachs.Keywords: Multiple Classifier Systems, classifier ensembles, learning using labeled and unlabelled data, K-nearest neighbor classifier, Bayes classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164412905 Marketing Management and Cultural Learning Center: The Case Study of Arts and Cultural Office, Suansunandha Rajabhat University
Authors: Pirada Techaratpong
Abstract:
This qualitative research has 2 objectives: to study marketing management of the cultural learning center in Suansunandha Rajabhat University and to suggest guidelines to improve its marketing management. This research is based on a case study of the Arts and Culture Office in Suansunandha Rajabhat University, Bangkok. This research found the Art and Culture Office has no formal marketing management. However, the marketing management is partly covered in the overall business plan, strategic plan, and action plan. The process can be divided into 5 stages. The marketing concept has long been introduced to its policy but not apparently put into action due to inflexible system. Some gaps are found in the process. The research suggests the Art and Culture Office implement the concept of marketing orientation, meeting the needs and wants of its target customers and adapt to the changing situation. Minor guidelines for improvement are provided.
Keywords: Marketing, management, museum, cultural learning center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157712904 Improved Pattern Matching Applied to Surface Mounting Devices Components Localization on Automated Optical Inspection
Authors: Pedro M. A. Vitoriano, Tito. G. Amaral
Abstract:
Automated Optical Inspection (AOI) Systems are commonly used on Printed Circuit Boards (PCB) manufacturing. The use of this technology has been proven as highly efficient for process improvements and quality achievements. The correct extraction of the component for posterior analysis is a critical step of the AOI process. Nowadays, the Pattern Matching Algorithm is commonly used, although this algorithm requires extensive calculations and is time consuming. This paper will present an improved algorithm for the component localization process, with the capability of implementation in a parallel execution system.
Keywords: AOI, automated optical inspection, SMD, surface mounting devices, pattern matching, parallel execution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108212903 Estimated Human Absorbed Dose of 111In-BPAMD as a New Bone-Seeking SPECT-Imaging Agent
Authors: H. Yousefnia, S. Zolghadri
Abstract:
An early diagnosis of bone metastasis is very important for making a right decision on a subsequent therapy. One of the most important steps to be taken initially, for developing a new radiopharmaceutical is the measurement of organ radiation exposure dose. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In-(4- {[(bis(phosphonomethyl))carbamoyl]methyl}7,10bis(carboxymethyl) -1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) complex, have been carried out to estimate the dose in human organs based on the data derived from mice. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian mice at the selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the mice by the radiation absorbed dose assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total body effective absorbed dose for 111In-BPAMD was 0.205 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In-BPAMD has interesting characteristics and it can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.Keywords: In-111, BPAMD, absorbed dose, RADAR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219812902 PetriNets Manipulation to Reduce Roaming Duration: Criterion to Improve Handoff Management
Authors: Hossam el-ddin Mostafa, Pavel Čičak
Abstract:
IETF RFC 2002 originally introduced the wireless Mobile-IP protocol to support portable IP addresses for mobile devices that often change their network access points to the Internet. The inefficiency of this protocol mainly within the handoff management produces large end-to-end packet delays, during registration process, and further degrades the system efficiency due to packet losses between subnets. The criterion to initiate a simple and fast full-duplex connection between the home agent and foreign agent, to reduce the roaming duration, is a very important issue to be considered by a work in this paper. State-transition Petri-Nets of the modeling scenario-based CIA: communication inter-agents procedure as an extension to the basic Mobile-IP registration process was designed and manipulated. The heuristic of configuration file during practical Setup session for registration parameters, on Cisco platform Router-1760 using IOS 12.3 (15)T is created. Finally, stand-alone performance simulations results from Simulink Matlab, within each subnet and also between subnets, are illustrated for reporting better end-to-end packet delays. Results verified the effectiveness of our Mathcad analytical manipulation and experimental implementation. It showed lower values of end-to-end packet delay for Mobile-IP using CIA procedure. Furthermore, it reported packets flow between subnets to improve packet losses between subnets.Keywords: Cisco configuration, handoff, packet delay, Petri-Nets, registration process, Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131212901 CFD Simulations for Studying Flow Behaviors in Dipping Tank in Continuous Latex Gloves Production Lines
Authors: W. Koranuntachai, T. Chantrasmi, U. Nontakaew
Abstract:
Medical latex gloves are made from the latex compound in production lines. Latex dipping is considered one of the most important processes that directly affect the final product quality. In a continuous production line, a chain conveyor carries the formers through the process and partially submerges them into an open channel flow in a latex dipping tank. In general, the conveyor speed is determined by the desired production capacity, and the latex-dipping tank can then be designed accordingly. It is important to understand the flow behavior in the dipping tank in order to achieve high quality in the process. In this work, Computational Fluid Dynamics (CFD) was used to simulate the flow past an array of formers in a simplified latex dipping process. The computational results showed both the flow structure and the vortex generation between two formers. The maximum shear stress over the surface of the formers was used as the quality metric of the latex-dipping process when adjusting operation parameters.
Keywords: medical latex gloves, latex dipping, dipping tank, computational fluid dynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54012900 A Context-Aware Supplier Selection Model
Authors: Mohammadreza Razzazi, Maryam Bayat
Abstract:
Selection of the best possible set of suppliers has a significant impact on the overall profitability and success of any business. For this reason, it is usually necessary to optimize all business processes and to make use of cost-effective alternatives for additional savings. This paper proposes a new efficient context-aware supplier selection model that takes into account possible changes of the environment while significantly reducing selection costs. The proposed model is based on data clustering techniques while inspiring certain principles of online algorithms for an optimally selection of suppliers. Unlike common selection models which re-run the selection algorithm from the scratch-line for any decision-making sub-period on the whole environment, our model considers the changes only and superimposes it to the previously defined best set of suppliers to obtain a new best set of suppliers. Therefore, any recomputation of unchanged elements of the environment is avoided and selection costs are consequently reduced significantly. A numerical evaluation confirms applicability of this model and proves that it is a more optimal solution compared with common static selection models in this field.Keywords: Supplier Selection, Context-Awareness, OnlineAlgorithms, Data Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181912899 Supervisory Fuzzy Learning Control for Underwater Target Tracking
Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson
Abstract:
This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189812898 Atmospheric Full Scale Testing of a Morphing Trailing Edge Flap System for Wind Turbine Blades
Authors: Thanasis K. Barlas, Helge A. Madsen
Abstract:
A novel Active Flap System (AFS) has been developed at DTU Wind Energy, as a result of a 3-year R&D project following almost 10 years of innovative research in this field. The full scale AFS comprises an active deformable trailing edge has been tested at the unique rotating test facility at the Risø Campus of DTU Wind Energy in Denmark. The design and instrumentation of the wing section and the AFS are described. The general description and objectives of the rotating test rig at the Risø campus of DTU are presented, along with an overview of sensors on the setup and the test cases. The post-processing of data is discussed and results of steady, flap step and azimuth control flap cases are presented.Keywords: morphing, adaptive, flap, smart blade, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170812897 Mining Image Features in an Automatic Two-Dimensional Shape Recognition System
Authors: R. A. Salam, M.A. Rodrigues
Abstract:
The number of features required to represent an image can be very huge. Using all available features to recognize objects can suffer from curse dimensionality. Feature selection and extraction is the pre-processing step of image mining. Main issues in analyzing images is the effective identification of features and another one is extracting them. The mining problem that has been focused is the grouping of features for different shapes. Experiments have been conducted by using shape outline as the features. Shape outline readings are put through normalization and dimensionality reduction process using an eigenvector based method to produce a new set of readings. After this pre-processing step data will be grouped through their shapes. Through statistical analysis, these readings together with peak measures a robust classification and recognition process is achieved. Tests showed that the suggested methods are able to automatically recognize objects through their shapes. Finally, experiments also demonstrate the system invariance to rotation, translation, scale, reflection and to a small degree of distortion.Keywords: Image mining, feature selection, shape recognition, peak measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145812896 Influence of Social-Psychological Training on Selected Features of University Students
Authors: Anežka Hamranová, Blandína Šramová, Katarína Fichnová
Abstract:
We presented results of research aimed on findings influence of social - psychological training (realized with students of Constantine the Philosopher University- future teachers within their undergraduate preparation) on the choice of intrapersonal and interpersonal features. After social- psychological training using Interpersonal Check List (ICL) we found out shift of behavior to more adaptive forms in categories, which are characterized by extroversive friendly behavior, willingness to cooperation, conformity regard to social situation, responsible and regardful behavior. Using State-Trait Anxiety Inventory (STAI) we found out the cut down of state anxiety and of trait anxiety. The report was processed within grants KEGA 3/5269/07 and VEGA 1/3675/06.Keywords: Intrapersonal and interpersonal features, social -psychological training, social competences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157212895 Application of LSB Based Steganographic Technique for 8-bit Color Images
Authors: Mamta Juneja, Parvinder S. Sandhu, Ekta Walia
Abstract:
Steganography is the process of hiding one file inside another such that others can neither identify the meaning of the embedded object, nor even recognize its existence. Current trends favor using digital image files as the cover file to hide another digital file that contains the secret message or information. One of the most common methods of implementation is Least Significant Bit Insertion, in which the least significant bit of every byte is altered to form the bit-string representing the embedded file. Altering the LSB will only cause minor changes in color, and thus is usually not noticeable to the human eye. While this technique works well for 24-bit color image files, steganography has not been as successful when using an 8-bit color image file, due to limitations in color variations and the use of a colormap. This paper presents the results of research investigating the combination of image compression and steganography. The technique developed starts with a 24-bit color bitmap file, then compresses the file by organizing and optimizing an 8-bit colormap. After the process of compression, a text message is hidden in the final, compressed image. Results indicate that the final technique has potential of being useful in the steganographic world.
Keywords: Compression, Colormap, Encryption, Steganographyand LSB Insertion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 300112894 Laser Beam Forming of 3 mm Steel Plate and the Evolving Properties
Authors: Stephen Akinlabi, Mukul Shukla, Esther Akinlabi, Marwala Tshilidzi
Abstract:
This paper reports the evolving properties of a 3 mm low carbon steel plate after Laser Beam Forming achieve this objective, the chemical analyse material and the formed components were carried thereafter both were characterized through microhardness profiling microstructural evaluation and tensile testing. showed an increase in the elemental concentration of the component when compared to the as received attributed to the enhancement property of the LBF process Ultimate Tensile Strength (UTS) and the Vickers the formed component shows an increase when compared to the as received material, this was attributed to strain hardening and grain refinement brought about by the LBF process. The microstructure of the as received steel consists of equiaxed ferrit that of the formed component exhibits elongated orming process (LBF). To es of the as received out and compared; profiling, The chemical analyses formed material; this can be process. The microhardness of ferrite and pearlite while grains.
Keywords: Laser beam forming, deformation , deformation, elongated grains
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189312893 Utilizing Adaptive Software to Enhance Information Management
Authors: J. Soini, P. Sillberg, J. Raitaniemi
Abstract:
The task of strategic information technology management is to focus on adapting technology to ensure competitiveness. A key factor for success in this sector is awareness and readiness to deploy new technologies and exploit the services they offer. Recently, the need for more flexible and dynamic user interfaces (UIs) has been recognized, especially in mobile applications. An ongoing research project (MOP), initiated by TUT in Finland, is looking at how mobile device UIs can be adapted for different needs and contexts. It focuses on examining the possibilities to develop adapter software for solving the challenges related to the UI and its flexibility in mobile devices. This approach has great potential for enhancing information transfer in mobile devices, and consequently for improving information management. The technology presented here could be one of the key emerging technologies in the information technology sector in relation to mobile devices and telecommunications.Keywords: Emerging technologies, Flexible user interfaces, Information management, Information technology, Mobile technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165112892 Ultrasonic Intensification of the Chemical Degradation of Methyl Violet: An Experimental Study
Authors: N. P. Dhanalakshmi, R. Nagarajan
Abstract:
The sonochemical decolorization and degradation of azo dye Methyl violet using Fenton-s reagent in the presence of a high-frequency acoustic field has been investigated. Dyeing and textile effluents are the major sources of azo dyes, and are most troublesome among industrial wastewaters, causing imbalance in the eco-system. The effect of various operating conditions (initial concentration of dye, liquid-phase temperature, ultrasonic power and frequency and process time) on sonochemical degradation was investigated. Conversion was found to increase with increase in initial concentration, temperature, power level and frequency. Both horntype and tank-type sonicators were used, at various power levels (250W, 400W and 500W) for frequencies ranging from 20 kHz - 1000 kHz. A 'Process Intensification' parameter PI, was defined to quantify the enhancement of the degradation reaction by ultrasound when compared to control (i.e., without ultrasound). The present work clearly demonstrates that a high-frequency ultrasonic bath can be used to achieve higher process throughput and energy efficiency at a larger scale of operation.
Keywords: Fenton oxidation, process intensification, sonochemical degradation of MV, ultrasonic frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254912891 A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm
Authors: Ali Nourollah, Mohsen Movahedinejad
Abstract:
In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth.
Keywords: Divide and conquer, genetic algorithm, merge polygons, Random simple polygon generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 329012890 Using Time-Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa
Authors: A. S. Adesuyi, Z. Munch
Abstract:
This study investigates the use of a time-series of MODIS NDVI data to identify agricultural land cover change on an annual time step (2007 - 2012) and characterize the trend. Following an ISODATA classification of the MODIS imagery to selectively mask areas not agriculture or semi-natural, NDVI signatures were created to identify areas cereals and vineyards with the aid of ancillary, pictometry and field sample data for 2010. The NDVI signature curve and training samples were used to create a decision tree model in WEKA 3.6.9 using decision tree classifier (J48) algorithm; Model 1 including ISODATA classification and Model 2 not. These two models were then used to classify all data for the study area for 2010, producing land cover maps with classification accuracies of 77% and 80% for Model 1 and 2 respectively. Model 2 was subsequently used to create land cover classification and change detection maps for all other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices. Over the years as predicted by the land cover classification. Forty one percent of the catchment comprised of cereals with 35% possibly following a crop rotation system. Vineyards largely remained constant with only one percent conversion to vineyard from other land cover classes.Keywords: Change detection, Land cover, NDVI, time-series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229112889 Influence of Deep Cold Rolling and Low Plasticity Burnishing on Surface Hardness and Surface Roughness of AISI 4140 Steel
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma
Abstract:
Deep cold rolling (DCR) and low plasticity burnishing (LPB) process are cold working processes, which easily produce a smooth and work-hardened surface by plastic deformation of surface irregularities. The present study focuses on the surface roughness and surface hardness aspects of AISI 4140 work material, using fractional factorial design of experiments. The assessment of the surface integrity aspects on work material was done, in order to identify the predominant factors amongst the selected parameters. They were then categorized in order of significance followed by setting the levels of the factors for minimizing surface roughness and/or maximizing surface hardness. In the present work, the influence of main process parameters (force, feed rate, number of tool passes/overruns, initial roughness of the work piece, ball material, ball diameter and lubricant used) on the surface roughness and the hardness of AISI 4140 steel were studied for both LPB and DCR process and the results are compared. It was observed that by using LPB process surface hardness has been improved by 167% and in DCR process surface hardness has been improved by 442%. It was also found that the force, ball diameter, number of tool passes and initial roughness of the workpiece are the most pronounced parameters, which has a significant effect on the work piece-s surface during deep cold rolling and low plasticity burnishing process.
Keywords: Deep cold rolling, burnishing, surface roughness, surface hardness, design of experiments, AISI4140 steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 379712888 On the EM Algorithm and Bootstrap Approach Combination for Improving Satellite Image Fusion
Authors: Tijani Delleji, Mourad Zribi, Ahmed Ben Hamida
Abstract:
This paper discusses EM algorithm and Bootstrap approach combination applied for the improvement of the satellite image fusion process. This novel satellite image fusion method based on estimation theory EM algorithm and reinforced by Bootstrap approach was successfully implemented and tested. The sensor images are firstly split by a Bayesian segmentation method to determine a joint region map for the fused image. Then, we use the EM algorithm in conjunction with the Bootstrap approach to develop the bootstrap EM fusion algorithm, hence producing the fused targeted image. We proposed in this research to estimate the statistical parameters from some iterative equations of the EM algorithm relying on a reference of representative Bootstrap samples of images. Sizes of those samples are determined from a new criterion called 'hybrid criterion'. Consequently, the obtained results of our work show that using the Bootstrap EM (BEM) in image fusion improve performances of estimated parameters which involve amelioration of the fused image quality; and reduce the computing time during the fusion process.Keywords: Satellite image fusion, Bayesian segmentation, Bootstrap approach, EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226012887 Effective Teaching Pyramid and Its Impact on Enhancing the Participation of Students in Swimming Classes
Authors: Salam M. H. Kareem
Abstract:
Instructional or teaching procedures and their proper sequence are essential for high-quality learning outcomes. These actions are the path that the teacher takes during the learning process after setting the learning objectives. Teachers and specialists in the education field should include teaching procedures with putting in place an effective mechanism for the procedure’s implementation to achieve a logical sequence with the desired output of overall education process. Determining the sequence of these actions may be a strategic process outlined by a strategic educational plan or drawn by teachers with a high level of experience, enabling them to determine those logical procedures. While specific actions may be necessary for a specific form, many Physical Education (PE) teachers can work out on various sports disciplines. This study was conducted to investigate the impact of using the teaching sequence of the teaching pyramid in raising the level of enjoyment in swimming classes. Four months later of teaching swimming skills to the control and experimental groups of the study, we figured that using the tools shown in the teaching pyramid with the experimental group led to statistically significant differences in the positive tendencies of students to participate in the swimming classes by using the traditional procedures of teaching and using of successive procedures in the teaching pyramid, and in favor of the teaching pyramid, The students are influenced by enhancing their tendency to participate in swimming classes when the teaching procedures followed are sensitive to individual differences and are based on the element of pleasure in learning, and less positive levels of the tendency of students when using traditional teaching procedures, by getting the level of skills' requirements higher and more difficult to perform. The level of positive tendencies of students when using successive procedures in the teaching pyramid was increased, by getting the level of skills' requirements higher and more difficult to perform, because of the high level of motivation and the desire to challenge the self-provided by the teaching pyramid.
Keywords: Physical education, swimming classes, teaching process, teaching pyramid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 110912886 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping
Authors: Delowar Hossain, Genci Capi
Abstract:
This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.
Keywords: Deep learning, genetic algorithm, object recognition, robot grasping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134