Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31742
On the EM Algorithm and Bootstrap Approach Combination for Improving Satellite Image Fusion

Authors: Tijani Delleji, Mourad Zribi, Ahmed Ben Hamida


This paper discusses EM algorithm and Bootstrap approach combination applied for the improvement of the satellite image fusion process. This novel satellite image fusion method based on estimation theory EM algorithm and reinforced by Bootstrap approach was successfully implemented and tested. The sensor images are firstly split by a Bayesian segmentation method to determine a joint region map for the fused image. Then, we use the EM algorithm in conjunction with the Bootstrap approach to develop the bootstrap EM fusion algorithm, hence producing the fused targeted image. We proposed in this research to estimate the statistical parameters from some iterative equations of the EM algorithm relying on a reference of representative Bootstrap samples of images. Sizes of those samples are determined from a new criterion called 'hybrid criterion'. Consequently, the obtained results of our work show that using the Bootstrap EM (BEM) in image fusion improve performances of estimated parameters which involve amelioration of the fused image quality; and reduce the computing time during the fusion process.

Keywords: Satellite image fusion, Bayesian segmentation, Bootstrap approach, EM algorithm.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005


[1] Z. Zhang and R. S. Blum, "A categorization of multiscale decomposition based image fusion scheme with a performance study for a digital camera application" Proceedings of the IEEE, Vol. 87, no.8, pp.1315- 1326, August 1999.
[2] G. Lui, Z. L. Jing, J. X. Li, S. Y. Sun Z. H . Li and H. Leung, "image fusion based on estimation theory", Proceedings of the third international conference on machine learning and cybernetics, Shanghai, pp. 26-29, August 2004.
[3] J. Yang and R. S. Blum, " a statistical signal processing approach to image fusion for concealed weapon detection", Proceedings of the IEEE international conference on image processing, Rochester, NY, pp. 513-516, 2002.
[4] G. Simone, A. Farina, L. Morabito, S. Serpico, and L. Bruzzon, "image fusion techniques for remote sensing applications", information fusion, Vol. 3, no.1, pp. 3-15, 2002.
[5] R. K. Sharma, "probabilistic model-based multisensor image fusion", PHD dissertation, Oregon graduate institute, Portland, OR, October 1999.
[6] R. K. Sharma, T. K. Leen and M. Pavel, "probabilistic image sensor fusion", advances in neural information processing systems, Vol.11, the MIT Press, 1999.
[7] L. Bin and P. Jiaxiong, "image fusion method based on short support symmetric non-separable wavelet", international journal on wavelets, multiresolution and information processing, Vol.2, no.1, pp.87-98, 2004.
[8] Z. Zhang and R. S. Blum, "region-based image fusion scheme for concealed weapon detection", proceedings of the 31st annual conference on information sciences and systems, march 1997.
[9] J. J. Lewis, R. J. O-callaghan , S. G. Nikolov, D. R. Bull and C. N. Canagarajah", region based image fusion using complex wavelats ", in 7 th international conference on information fusion , Stockholm, Sweden, 28 June, 2004.
[10] A. Akerman, "pyramidal techniques for multisensor fusion", Proceedings of SPIE; Volume 1828 Sensor Fusion V, pp.124-131, USA November 1992.
[11] J. Yang and R. S. Blum, "A Region based Image Fusion Method using the Expectation-Maximization Algorithm", Information Sciences and Systems, 40th annual conference on, pp. 468-473, 2006.
[12] S. G.Nikolov, J. J. Lews, R. G. O-Callaghan, D. R. Bull and C. N. Canagarajah, "Hybrid Fused Displas: Between Pixel-and Region-Based Image Fusion", the 7th International conference on information fusion, Stokholm, Sweden, 2004.
[13] A. Toet and E. M. Franken, "Perceptual of different image fusion schmes", Displays, Vol. 24, no. 1, pp. 15-37, February 2003.
[14] Z. Wang and A. C. Bovik, "A universal image quality index", IEEE signal processing letters, Vol. 9, no.3, pp. 81-84, march 2002.
[15] G. Piella and H. Heijmans, "A new quality metric for image fusion", Image processing Proceedings, Vol. 3, pp. 173-6, 2003.
[16] M. Zribi, "Non parametric and unsupervised Bayesia classification with Bootstrap sampling", Image and Vision Computing, 22, pp.1-8, 2004.
[17] M. Zribi, F. Ghorbal, "An unsupervised and nonparametric Bayesian classifier", Pattern Recognition Letters, Vol. 24 pp. 97-112, 2003.
[18] B. Efron, "Bootstrap methods: another look at the Jackknife", Ann. Stat. 7 (1), 1979.
[19] B. Efron, R. J. Tibshirani, "An introduction to the bootstrap", Monographs on Statistics and Applied Probability, 57, 1993.
[20] I. Buvat, "Introduction à l-approche Bootstrap", U494 INSERM, 25 septembre, 2005.
[21] C. Banga, "L-approche Bootstrap en analyse des images : Application ├á la restitution de la cinétique de la fuite en choriorétinopathie Séreuse Centrale", Thèse de doctorat, université de Rennes I, 1995.
[22] R. Veysseyre, Statistique et probabilité pour l-ingénieur, Dunod, Paris 2001.
[23] C. Ambois, "Introduction a la reconnaissance statistique des formes", Centre de Géostatique, Ecole des mines de Paris, mars1997.
[24] G. J. McLachlan, T. Krishnan, The EM Algorithm and Extensions, John Wiley and Son-s Inc., New York, 1997.
[25] N. Kehtarnavaz, E. Nakamura, "Generalization of the EM algorithm for mixture density estimation", Pattern Recognition Letters 19, pp. 133- 140, 1998.
[26] A. German, M. R. Jenkin, and Y. Lesperance, " Entropy-Based Image Merging", The 2nd Canadian Conference on Computer and Robot Vision (CRV'05) Toronto, Ontario, Canada, pp. 81-86, 2005.
[27] T. Delleji, Mourad Zribi and Ahmed ben Hamida, "Application of bootstrap approach Unsupervised Statistical Segmentation of Satellite Images", 4th International Multi-Conference on Systems, Signals & Devices; SSD-2007 March 19-22, Hammamet (Tunisia), 2007.