Search results for: soft soil
875 Prediction Method of Extenics Theory for Assessment of Bearing Capacity of Lateritic Soil Foundation
Authors: Wei Bai, Ling-Wei Kong, Ai-Guo Guo
Abstract:
Base on extenics theory, the statistical physical and mechanical properties from laboratory experiments are used to evaluate the bearing capacity of lateritic soil foundation. The properties include water content, bulk density, liquid limit, cohesion, and so on. The matter-element and the dependent function are defined. Then the synthesis dependent degree and the final grade index are calculated. The results show that predicted outcomes can be matched with the in-situ test data, and a evaluate grade associate with bearing capacity can be deduced. The results provide guidance to assess and determine the bearing capacity grade of lateritic soil foundation.
Keywords: Lateritic soil, bearing capacity, extenics theory, plate loading test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421874 Effect of Nano-SiO2 Solution on the Strength Characteristics of Kaolinite
Authors: Reza Ziaie Moayed, Hamidreza Rahmani
Abstract:
Today, with developments in science and technology, there is an excessive potential for the use of nanomaterials in various fields of geotechnical project such as soil stabilization. This study investigates the effect of Nano-SiO2 solution on the unconfined compression strength and Young's elastic modulus of Kaolinite. For this purpose, nano-SiO2 was mixed with kaolinite in five different contents: 1, 2, 3, 4 and 5% by weight of the dry soil and a series of the unconfined compression test with curing time of one-day was selected as laboratory test. Analyses of the tests results show that stabilization of kaolinite with Nano-SiO2 solution can improve effectively the unconfined compression strength of modified soil up to 1.43 times compared to the pure soil.
Keywords: Kaolinite, nano-SiO2, stabilization, unconfined compression test, Young's modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496873 Method to Improve Channel Coding Using Cryptography
Authors: Ayyaz Mahmood
Abstract:
A new approach for the improvement of coding gain in channel coding using Advanced Encryption Standard (AES) and Maximum A Posteriori (MAP) algorithm is proposed. This new approach uses the avalanche effect of block cipher algorithm AES and soft output values of MAP decoding algorithm. The performance of proposed approach is evaluated in the presence of Additive White Gaussian Noise (AWGN). For the verification of proposed approach, computer simulation results are included.Keywords: Advanced Encryption Standard (AES), Avalanche Effect, Maximum A Posteriori (MAP), Soft Input Decryption (SID).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947872 A Resource Survey of Lateritic Soils and Impact Evaluation toward Community Members Living Nearby the Excavation Pits
Authors: Ratchasak Suvannatsiri
Abstract:
The objectives of the research are to find the basic engineering properties of lateritic soil and to predict the impact on community members who live nearby the excavation pits in the area of Amphur Pak Thor, Ratchaburi Province in the western area of Thailand. The research was conducted by collecting soil samples from four excavation pits for basic engineering properties, testing and collecting questionnaire data from 120 community members who live nearby the excavation pits, and applying statistical analysis. The results found that the basic engineering properties of lateritic soil can be classified into silt soil type which is cohesionless as the loess or collapsible soil which is not suitable to be used for a pavement structure for commuting highway because it could lead to structural and functional failure in the long run. In terms of opinion from community members toward the impact, the highest impact was on the dust from excavation activities. The prediction from the logistic regression in terms of impact on community members was at 84.32 which can be adapted and applied onto other areas with the same context as a guideline for risk prevention and risk communication since it could impact the infrastructures and also impact the health of community members.
Keywords: Lateritic soil, excavation pits, engineering properties, impact on community members
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768871 Weight Loss Degradation of Hybrid Blends LLDPE/Starch/PVA upon Exposure to UV Light and Soil Burial
Authors: M. Rahmah, Noor Zuhaira Abd Aziz, M. Mohd Muizz Fahimi, M. Farhan
Abstract:
Poly bag and mulch films for agricultural field caused pose environmental problem due to the non-degradable plastics wastes upon disposal. Thus, a degradable poly bag was designed with hybrid sago starch (SS) and polyvinyl alcohol (PVA). Two Different blended compositions of SS and PVA hybrid have been compounded. Then, the hybrids blended are mixed with linear line density polyethylene (LLDPE) resin to fabricate poly bag film through conventional film blowing process. Samples of LLDPE, SS and PVA hybrid film were exposed to UV light and soil burial. The weight losses were determined during degradation process. Hybrid film by degradation of starch was found to hydrolyze and hydroxyl groups decrease on esterification upon exposure to soil burial and uv radiation. It was found out that, the hybrid film for 60% of SS composition showed greatest degradation in soil and UV radiation.
Keywords: LLDPE, PVA, sago starch, degradation, soil burial, UV radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352870 Durability of Lime Treated Soil Reinforced by Natural Fiber under Bending Force
Authors: Vivi Anggraini, Afshin Asadi, Bujang B. K. Huat
Abstract:
Earth structures constructed of marine clay soils have tendency to crack. In order to improve the flexural strength and brittleness, a technique of mixing short fibers is introduced to the soil lime mixture. Coir fiber was used in this study as reinforcing elements. An experimental investigation consisting primarily of flexural tensile tests was conducted to examine the influence of coir fibers on the flexural behaviour of the reinforced soils. The test results that the coir fibers were effective in improving the flexural strength and Young’s modulus of all soils examined and ductility after peak strength for reinforced marine clay soil treated by lime. 5% lime treated soil and 1% coir fiber reinforced soil specimens’ demonstrated good strength and durability when submerged in water and retained 45% of their air-cured strengths.Keywords: Flexural strength, Durabilty, Lime, Coir Fibers, Bending force, Ductility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391869 Analysis and Protection of Soil in Controlled Regime Using Techniques Adapted to the Specifics of Precision Agriculture
Authors: Voicu Petre, Oaida Mircea, Surugiu Petru
Abstract:
It is now unanimously accepted that conventional agriculture has led to the emergence and intensification of some forms of soil and environmental degradation, some of which are due to poorly applied or insufficiently substantiated technological measures. For this reason, the elaboration of any agricultural technology requires a deep knowledge of all the factors involved as well as of the interaction relations between them. This is also the way in which the research will be approached in this paper. Despite the fact that at European level the implementation of precision agriculture has a low level compared to some countries located on the American continent, it is emerging not only as an alternative to conventional agriculture but, as a viable way to preserve the quality of the environment in general, and the edaphic environment in particular. This gives an increased importance to the research in this paper through physical, chemical, biological, mineralogical and micromorphological analytical determinations, processing of analytical results, identification of processes, causes, factors, establishment of soil quality indicators and the perspective of measurements from distance by satellite techniques of some of these soil properties (humidity, temperature, pH, N, P, K and so on).
Keywords: Conventional agriculture, environmental degradation, precision agriculture, soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857868 Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other
Abstract:
Excavation of shallow tunnels such as subways in urban areas plays a significant role as a life line and investigation of the soil behavior against tunnel construction is one of the vital subjects studied in the geotechnical scope. Nowadays, urban tunnels are mostly drilled by T.B.Ms and changing the applied forces to tunnel lining is one of the most risky matters while drilling tunnels by these machines. Variation of soil cementation can change the behavior of these forces in the tunnel lining. Therefore, this article is designed to assess the impact of tunnel excavation in different soils and several amounts of cementation on applied loads to tunnel lining under static and dynamic loads. According to the obtained results, changing the cementation of soil will affect the applied loadings to the tunnel envelope significantly. It can be determined that axial force in tunnel lining decreases considerably when soil cementation increases. Also, bending moment and shear force in tunnel lining decreases as the soil cementation increases and causes bending and shear behavior of the segments to improve. Based on the dynamic analyses, as cohesion factor in soil increases, bending moment, axial and shear forces of segments decrease but lining behavior of the tunnel is the same as static state. The results show that decreasing the overburden applied to lining caused by cementation is different in two static and dynamic states.
Keywords: Tunnel, Soil cementation, Static, Dynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224867 Long-term Irrigation with Dairy Factory Wastewater Influences Soil Quality
Authors: Yen-Yiu Liu, Richard J. Haynes
Abstract:
The effects of irrigation with dairy factory wastewater on soil properties were investigated at two sites that had received irrigation for > 60 years. Two adjoining paired sites that had never received DFE were also sampled as well as another seven fields from a wider area around the factory. In comparison with paired sites that had not received effluent, long-term wastewater irrigation resulted in an increase in pH, EC, extractable P, exchangeable Na and K and ESP. These changes were related to the use of phosphoric acid, NaOH and KOH as cleaning agents in the factory. Soil organic C content was unaffected by DFE irrigation but the size (microbial biomass C and N) and activity (basal respiration) of the soil microbial community were increased. These increases were attributed to regular inputs of soluble C (e.g. lactose) present as milk residues in the wastewater. Principal component analysis (PCA) of the soils data from all 11sites confirmed that the main effects of DFE irrigation were an increase in exchangeable Na, extractable P and microbial biomass C, an accumulation of soluble salts and a liming effect. PCA analysis of soil bacterial community structure, using PCR-DGGE of 16S rDNA fragments, generally separated individual sites from one another but did not group them according to irrigation history. Thus, whilst the size and activity of the soil microbial community were increased, the structure and diversity of the bacterial community remained unaffected.Keywords: Dairy factory, wastewater; effluent, irrigation, soil quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577866 Long- term Irrigation with Dairy Factory Wastewater Influences Soil Quality
Authors: Yen-Yiu Liu, Richard J. Haynes
Abstract:
The effects of irrigation with dairy factory wastewater on soil properties were investigated at two sites that had received irrigation for > 60 years. Two adjoining paired sites that had never received DFE were also sampled as well as another seven fields from a wider area around the factory. In comparison with paired sites that had not received effluent, long-term wastewater irrigation resulted in an increase in pH, EC, extractable P, exchangeable Na and K and ESP. These changes were related to the use of phosphoric acid, NaOH and KOH as cleaning agents in the factory. Soil organic C content was unaffected by DFE irrigation but the size (microbial biomass C and N) and activity (basal respiration) of the soil microbial community were increased. These increases were attributed to regular inputs of soluble C (e.g. lactose) present as milk residues in the wastewater. Principal component analysis (PCA) of the soils data from all 11sites confirmed that the main effects of DFE irrigation were an increase in exchangeable Na, extractable P and microbial biomass C, an accumulation of soluble salts and a liming effect. PCA analysis of soil bacterial community structure, using PCR-DGGE of 16S rDNA fragments, generally separated individual sites from one another but did not group them according to irrigation history. Thus, whilst the size and activity of the soil microbial community were increased, the structure and diversity of the bacterial community remained unaffected.
Keywords: Dairy factory, wastewater; effluent, irrigation, soil quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035865 Run-Time Customisation of Soft-Core CPUs on Field Programmable Gate Array
Authors: Rehab Abdullah Shendi
Abstract:
The use of customised soft-core processors in which instructions can be integrated into a system in application hardware is increasing in the Field Programmable Gate Array (FPGA) field. Specifically, the partial run-time reconfiguration of FPGAs in specialised processors for a particular domain can be very beneficial. In this report, the design and implementation for the customisation of a soft-core MIPS processor using an FPGA and partial reconfiguration (PR) of FPGA technology will be addressed to achieve efficient resource use. This can be achieved using a PR design flow that helps the design fit into a smaller device. Moreover, the impact of static power consumption could be reduced due to runtime reconfiguration. This will be done by configurable custom instructions implemented in the hardware as an extension on the MIPS CPU. The aim of this project is to investigate the PR of FPGAs for run-time adaptations of the instruction set of a soft-core CPU, including the integration of custom instructions and the exploration of the potential to use the MultiBoot feature available in Xilinx FPGAs to carry out the PR process. The system will be evaluated and tested on a Nexus 3 development board featuring a Xilinx Spartran-6 FPGA. The system will be able to load reconfigurable custom instructions dynamically into user programs with the help of the trap handler when the custom instruction is called by the MIPS CPU. The results of this experiment demonstrate that custom instructions in hardware can speed up a certain function and many instructions can be saved when compared to a software implementation of the same function. Implementing custom instructions in hardware is perfectly possible and worth exploring.
Keywords: Customisation, FPGA, MIPS, partial reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189864 Contaminant Transport in Soil from a Point Source
Authors: S. A. Nta, M. J. Ayotamuno, A. H. Igoni, R. N. Okparanma
Abstract:
The work sought to understand the pattern of movement of contaminant from a continuous point source through soil. The soil used was sandy-loam in texture. The contaminant used was municipal solid waste landfill leachate, introduced as a point source through an entry point located at the center of top layer of the soil tank. Analyses were conducted after maturity periods of 50 and 80 days. The maximum change in chemical concentration was observed on soil samples at a radial distance of 0.25 m. Finite element approximation based model was used to assess the future prediction, management and remediation in the polluted area. The actual field data collected for the case study were used to calibrate the modeling and thus simulated the flow pattern of the pollutants through soil. MATLAB R2015a was used to visualize the flow of pollutant through the soil. Dispersion coefficient at 0.25 and 0.50 m radial distance from the point of application of leachate shows a measure of the spreading of a flowing leachate due to the nature of the soil medium, with its interconnected channels distributed at random in all directions. Surface plots of metals on soil after maturity period of 80 days shows a functional relationship between a designated dependent variable (Y), and two independent variables (X and Z). Comparison of measured and predicted profile transport along the depth after 50 and 80 days of leachate application and end of the experiment shows that there were no much difference between the predicted and measured concentrations as they were all lying close to each other. For the analysis of contaminant transport, finite difference approximation based model was very effective in assessing the future prediction, management and remediation in the polluted area. The experiment gave insight into the most likely pattern of movement of contaminant as a result of continuous percolations of the leachate on soil. This is important for contaminant movement prediction and subsequent remediation of such soils.
Keywords: Contaminant, dispersion, point or leaky source, surface plot, soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 532863 Development of Corn (Zea mays L.) Stalk Geotextile Net for Soil Erosion Mitigation
Authors: Cristina S. Decano, Vitaliana U. Malamug, Melissa E. Agulto, Helen F. Gavino
Abstract:
This study aimed to introduce new natural fiber to be used in the production of geotextile net for mitigation of soil erosion. Fiber extraction from the stalks was the main challenge faced during the processing of stalks to ropes. Thus, an investigation on the extraction procedures of corn (Zea mays L.) stalk under biological and chemical retting was undertaken. Results indicated significant differences among percent fiber yield as affected by the retting methods used with values of 15.07%, 12.97%, 11.60%, and 9.01%, for dew, water, chemical (1 day after harvest and15 days after harvest), respectively, with the corresponding average extracting duration of 70, 82, 89, and 94 minutes. Physical characterization of the developed corn stalk geotextile net resulted to average mass per unit area of 806.25 g/m2 and 241% water absorbing capacity. The effect of corn stalk geotextile net in mitigating soil erosion was evaluated in a laboratory experiment for 30o and 60o inclinations with three treatments: bare soil (A1), corn stalk geotextile net (A2) and combined cornstalk geotextile net and vegetation cover (A3). Results revealed that treatment A2 and A3 significantly decreased sediment yield and an increase in terms of soil loss reduction efficiency. The cost of corn stalk geotextile net is Php 62.41 per square meter.
Keywords: Corn stalk, natural geotextile, retting, soil erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728862 Remediation of Petroleum Hydrocarbon-contaminated Soil Slurry by Fenton Oxidation
Authors: C. Pongcharoen, K. Kaiyavongand T. Satapanajaru
Abstract:
Theobjective of this study was to evaluate the optimal treatment condition of Fenton oxidation process to removal contaminant in soil slurry contaminated by petroleum hydrocarbons. This research studied somefactors that affect the removal efficiency of petroleum hydrocarbons in soil slurry including molar ratio of hydrogen peroxide (H2O2) to ferrous ion(Fe2+), pH condition and reaction time.The resultsdemonstrated that the optimum condition was that the molar ratio of H2O2:Fe3+ was 200:1,the pHwas 4.0and the rate of reaction was increasing rapidly from starting point to 7th hour and destruction kinetic rate (k) was 0.24 h-1. Approximately 96% of petroleum hydrocarbon was observed(initialtotal petroleum hydrocarbon (TPH) concentration = 70±7gkg-1)Keywords: Contaminated soil, Fenton oxidation, Petroleumhydrocarbon, Remediation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2732861 Influence of OMF Application Rates on Post Field Soil Fertility Status under Pawpaw (Carica papaya L.) Varieties
Authors: O. O. Olubode, I. O. O. Aiyelaagbe, J. G. Bodunde
Abstract:
Field study was conducted to determine the post field soil fertility status responses of pawpaw (Carica papaya L.) var. homestead selection and sunrise-solo orchards to organo-mineral fertilizer (OMF) rates applied at 10, 20 40 t/ha where both the zero t/ha OMF and NPK 15:15:15 at 50 g/plant/month served as control. The result showed that all pawpaw orchards treated with OMF rates recorded significantly (p≤0.01) higher % P, % K, Na and % organic matter in soil compared to applied NPK which recorded lower Na. However, while orchards plated with sole pawpaw were higher in soil bulk density (SBD), orchards with homestead mixture were lower in SBD and significantly lower % organic matter compared to obtainable under sunrise crop mixture which recorded lower Na and Mg. In conclusion, as a result of loosening effect on soil particles, the homestead pawpaw probably due to more rooting activities as well as the addition of organic fertilizer to soils both had significant influence leading to lower SBD.
Keywords: Carica papaya (L), growth and yield, organo-mineral fertilizer, soil fertility status.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050860 Effect of Bamboo Chips in Cemented Sand Soil on Permeability and Mechanical Properties in Triaxial Compression
Authors: Sito Ismanti, Noriyuki Yasufuku
Abstract:
Cement utilization to improve the properties of soil is a well-known method applied in field. However, its addition in large quantity must be controlled. This study presents utilization of natural and environmental-friendly material mixed with small amount of cement content in soil improvement, i.e. bamboo chips. Absorbability, elongation, and flatness ratio of bamboo chips were examined to investigate and understand the influence of its characteristics in the mixture. Improvement of dilation behavior as a problem of loose and poorly graded sand soil is discussed. Bamboo chips are able to improve the permeability value that affects the dilation behavior of cemented sand soil. It is proved by the stress path as the result of triaxial compression test in the undrained condition. The effect of size and content variation of bamboo chips, as well as the curing time variation are presented and discussed.Keywords: Bamboo chips, permeability, mechanical properties, triaxial compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645859 Development of In Situ Permeability Test Using Constant Discharge Method for Sandy Soils
Authors: A. Rifa’i, Y. Takeshita, M. Komatsu
Abstract:
The post-rain puddles problem that occurs in the first yard of Prambanan Temple are often disturbing visitor activity. A poodle layer and a drainage system had ever built to avoid such a problem, but puddles still did not stop appearing after rain. Permeability parameter needs to be determined by using a simpler procedure to find exact method of solution. The instrument modelling was proposed according to the development of field permeability testing instrument. This experiment used a proposed Constant Discharge method. Constant Discharge method used a tube poured with constant water flow from unsaturated until saturated soil condition. Volumetric water content (θ) were monitored by soil moisture measurement device. The results were correlations between k and θ which were drawn by numerical approach from Van Genutchen model. Parameters θr optimum value obtained from the test was at very dry soil. Coefficient of permeability with a density of 19.8 kN/m3 for unsaturated conditions was in range of 3 x 10-6 cm/sec (Sr=68%) until 9.98 x 10-4 cm/sec (Sr=82%). The equipment and testing procedure developed in this research was quite effective, simple and easy to be implemented on determining field soil permeability coefficient value of sandy soil. Using constant discharge method in proposed permeability test, value of permeability coefficient under unsaturated condition can be obtained without establish soil water characteristic curve.
Keywords: Constant discharge method, in situ permeability test, sandy soil, unsaturated conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3459858 Model based Soft-Sensor for Industrial Crystallization: On-line Mass of Crystals and Solubility Measurement
Authors: Cédric Damour, Michel Benne, Brigitte Grondin-Perez, Jean-Pierre Chabriat
Abstract:
Monitoring and control of cane sugar crystallization processes depend on the stability of the supersaturation (σ ) state. The most widely used information to represent σ is the electrical conductivity κ of the solutions. Nevertheless, previous studies point out the shortcomings of this approach: κ may be regarded as inappropriate to guarantee an accurate estimation of σ in impure solutions. To improve the process control efficiency, additional information is necessary. The mass of crystals in the solution ( c m ) and the solubility (mass ratio of sugar to water / s w m m ) are relevant to complete information. Indeed, c m inherently contains information about the mass balance and / s w m m contains information about the supersaturation state of the solution. The main problem is that c m and / s w m m are not available on-line. In this paper, a model based soft-sensor is presented for a final crystallization stage (C sugar). Simulation results obtained on industrial data show the reliability of this approach, c m and the crystal content ( cc ) being estimated with a sufficient accuracy for achieving on-line monitoring in industryKeywords: Soft-sensor, on-line monitoring, cane sugarcrystallization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137857 Investigation of the Effect of Fine-Grained and Its Plastic Properties on Liquefaction Resistance of Sand
Authors: S. A. Naeini, M. Mortezaee
Abstract:
The purpose of this paper is to investigate the effect of fine grain content in soil and its plastic properties on soil liquefaction potential. For this purpose, the conditions for considering the fine grains effect and percentage of plastic fine on the liquefaction resistance of saturated sand presented by researchers has been investigated. Then, some comprehensive results of all the issues raised by some researchers are stated. From these investigations it was observed that by increasing the percentage of cohesive fine grains in the sandy soil (up to 20%), the maximum shear strength decreases and by adding more fine- grained percentage, the maximum shear strength of the resulting soil increases but never reaches the amount of clean sand.Keywords: Fine-grained, liquefaction, plasticity, shear strength, sand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 497856 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band
Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant Kumar Srivastava
Abstract:
An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986 and 0.9214 respectively at HHpolarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373 and 0.9428 respectively.Keywords: Bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3229855 Soil Resistivity Cut off Value and Concrete Pole Deployments in HV Transmission Mains
Authors: M. Nassereddine, J. Rizk, A. Hellany, M. Nagrial
Abstract:
The prologue of new High Voltage (HV) transmission mains into the community necessitates earthing design to ensure safety compliance of the system. Concrete poles are widely used within HV transmission mains; many retired transmission mains with timber poles are being replaced with concrete ones, green transmission mains are deploying concrete poles. The earthing arrangement of the concrete poles could have an impact on the earth grid impedance also on the input impedance of the system from the fault point of view. This paper endeavors to provide information on the soil resistivity of the area and the deployments of concrete poles. It introduce the cut off soil resistivity value ρSC, this value aid in determine the impact of deploying the concrete poles on the earthing system. Multiple cases were discussed in this paper.
Keywords: Soil Resistivity, HV Transmission Mains, Earthing, Safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530854 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is coagulation, which uses alum and poly aluminum chloride (PACL). Therefore, determining the dosage of alum and PACL is the most important factor to be prescribed. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for chemical dose prediction, as used for coagulation, such as alum and PACL, with input data consisting of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of the Bangkhen Water Treatment Plant (BKWTP), under the authority of the Metropolitan Waterworks Authority of Thailand. The data were collected from 1 January 2019 to 31 December 2019 in order to cover the changing seasons of Thailand. The input data of ANN are divided into three groups: training set, test set, and validation set. The coefficient of determination and the mean absolute errors of the alum model are 0.73, 3.18 and the PACL model are 0.59, 3.21, respectively.
Keywords: Soft jar test, jar test, water treatment plant process, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 667853 Leaching of Mineral Nitrogen and Phosphate from Rhizosphere Soil Stressed by Drought and Intensive Rainfall
Authors: J. Elbl, J. K. Friedel, J. Záhora, L. Plošek, A. Kintl, J. Přichystalová, J. Hynšt, L. Dostálová, K. Zákoutská
Abstract:
This work presents the first results from the long-term experiment, which is focused on the impact of intensive rainfall and long period of drought on microbial activities in soil. Fifteen lysimeters were prepared in the area of our interest. This area is a protection zone of underground source of drinking water. These lysimeters were filed with topsoil and subsoil collected in this area and divided into two groups. These groups differ in fertilization and amount of water received during the growing season. Amount of microbial biomass and leaching of mineral nitrogen and phosphates were chosen as main indicators of microbial activities in soil. Content of mineral nitrogen and phosphates was measured in soil solution, which was collected from each lysimeters. Amount of microbial biomass was determined in soil samples that were taken from the lysimeters before and after the long period of drought and intensive rainfall.
Keywords: Mineral nitrogen, Phosphates, Microbial activities, Drought, Precipitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146852 The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils
Authors: A. S. Soğancı
Abstract:
Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipments by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be said that stabilization of expansive soils with polypropylene fiber is an effective method.Keywords: Expansive soils, polypropylene fiber, stabilization, swelling percent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5748851 A Kernel Classifier using Linearised Bregman Iteration
Authors: K. A. D. N. K Wimalawarne
Abstract:
In this paper we introduce a novel kernel classifier based on a iterative shrinkage algorithm developed for compressive sensing. We have adopted Bregman iteration with soft and hard shrinkage functions and generalized hinge loss for solving l1 norm minimization problem for classification. Our experimental results with face recognition and digit classification using SVM as the benchmark have shown that our method has a close error rate compared to SVM but do not perform better than SVM. We have found that the soft shrinkage method give more accuracy and in some situations more sparseness than hard shrinkage methods.Keywords: Compressive sensing, Bregman iteration, Generalisedhinge loss, sparse, kernels, shrinkage functions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379850 Effect of Organic-waste Compost Addition on Leaching of Mineral Nitrogen from Arable Land and Plant Production
Authors: Jakub Elbl, Lukas Plošek, Antonín Kintl, Jaroslav Záhora, Jitka Přichystalová, Jaroslav Hynšt
Abstract:
Application of compost in agriculture is very desirable worldwide. In the Czech Republic, compost is the most often used to improve soil structure and increase the content of soil organic matter, but the effects of compost addition on the fate of mineral nitrogen are only scarcely described. This paper deals with possibility of using combined application of compost, mineral and organic fertilizers to reduce the leaching of mineral nitrogen from arable land. To demonstrate the effect of compost addition on leaching of mineral nitrogen, we performed the pot experiment. As a model crop, Lactuca sativa L. was used and cultivated for 35 days in climate chamber in thoroughly homogenized arable soil. Ten variants of the experiment were prepared; two control variants (pure arable soil and arable soil with added compost), four variants with different doses of mineral and organic fertilizers and four variants of the same doses of mineral and organic fertilizers with the addition of compos. The highest decrease of mineral nitrogen leaching was observed by the simultaneous applications of soluble humic substances and compost to soil samples, about 417% in comparison with the control variant. Application of these organic compounds also supported microbial activity and nitrogen immobilization documented by the highest soil respiration and by the highest value of the index of nitrogen availability. The production of plant biomass after this application was not the highest due to microbial competition for the nutrients in soil, but was 24% higher in comparison with the control variant. To support these promising results the experiment should be repeated in field conditions.
Keywords: Nitrogen, Compost, Salad, Arable land.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071849 Physical Deterioration of Semi-Arid Soils as Affected by Land Use Change in North West of Iran
Authors: Ali Reza Vaezi, Fereshteh Haghshenas
Abstract:
Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Extensive changes to forests and pastures are being driven by the need to provide food, fiber, and shelter for people in recent decades. Land use is an important factor affecting soil organic carbon accumulation and storage in soils which influence directly on other physicochemical soil properties, soil productivity and soil’s susceptibility to water erosion. The change of pastures to the agricultural lands has been increasing rapidly in most semi-arid regions in Iran. Information on the effect of the land use change in these areas on the deterioration of soil physicochemical properties is limited. Therefore, this study was conducted to investigate the physical deterioration of soil as affected by land use change in semi-arid pastures in north west of Iran. Toward this, seven areas covering both pasture and rainfed lands with different soil textures (clay loam, silty clay loam, sandy clay loam, silt loam, loam, sandy loam and sandy loam) were selected in a semi-arid region in Zanjan, NW Iran. Pasture in the area is covered with poor vegetation and mostly grazed in wet seasons (end of winter and early spring and autumn). Rainfed lands resulting land use change are mostly planted for winter wheat production. In each area, soil samples (0-30 cm depth) were collected from the two land uses (pasture and rainfed land) at three replications. A total of 42 soil samples were taken from the study area. Various soil physical properties consisting of bulk density, total porosity, coarse pores volume, aggregate size, aggregate stability, water-holding capacity and saturated hydraulic conductivity were determined in the soil samples using the laboratory conventional methods. The results showed that the change of pastures to rainfeds is severely deteriorated soil physical properties. However, the variation rate of the physical soil properties is different. The loss of soil physical properties as a result of the land use change was in the following order: 61% water-stable aggregates, 60% aggregate size > 41% macroporosity > 28% bulk density > 22% total porosity > 11% water holding capacity > 5% saturated point. This result reveals that the structural characteristics of soils in this area are the most important soil physical characteristics that are affected by land use change. The deterioration of these soil properties influences negatively the pore size distribution and volume percentage of macroporosity. Effects of land use change on deterioration of soil physical properties were different in various soil textures. The highest mean loss of soil physical properties was found in loam (42%), whereas the lowest value was in silty clay loam (23%). As a consequence, loam is the most vulnerable soil to physical degradation caused by land use change in the pastures. This physical loss of soil is associated with its higher percentage of larger aggregates as well as water-stable aggregates.
Keywords: Pasture, soil physical properties, soil structural characteristics, soil texture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 100848 A Study on Leaching Behavior of Na, Ca and K Using Column Leach Test
Authors: Barman P.J, Kartha S A, Gupta S, Pradhan B.
Abstract:
Column leach test has been performed to examine the behavior of leaching of sodium, calcium and potassium in landfills. In the column leach apparatus, two different layers of contaminated and uncontaminated soils of different height ratios (ratio of depth of contaminated soil to the depth of uncontaminated soil) are taken. Water is poured from an overhead tank at a particular flowrate to the inlet of the soil column for a certain ponding depth over the contaminated soil. Subsequent infiltration causes leaching and the leachates are collected from the bottom of the column. The concentrations of Na, Ca and K in the leachate are measured using flame photometry. The experiments are further extended by changing the rates of flow from the overhead tank to the inlet of the column in achieving the same ponding depth. The experiments are performed for different scenarios in which the height ratios are altered and the variations of concentrations of Na, Ca, and K are observed. The study brings an estimation of leaching in landfill sites for different heights and precipitation intensity where a ponding depth is maintained over the landfill. It has been observed that the leaching behavior of Na, Ca, and K are not similar. Calcium exhibits highest amount of leaching compared to Sodium and Potassium under similar experimental conditions.Keywords: Column leaching, flow rate, uncontaminated soil, contaminated soil, concentration, height ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340847 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran
Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad
Abstract:
Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azerbaijan province, NW Iran. Toward this, 222 gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r = -0.26), surface area (r = 0.71), the area of rainfed lands (r = 0.23), and the area of rainfed tilled along the slope (r = 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the USLE. It seems the estimated soil erodibility cannot describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.
Keywords: Agricultural area, gully properties, soil structure, USLE, Universal Soil Loss Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 105846 Using Micropiles to Improve the Anzali's Saturated Loose Silty Sand
Authors: S. A. Naeini, M. Hamidzadeh
Abstract:
Today, with the daily advancement of geotechnical engineering on soil improvement and modification of the physical properties and shear strength of soil, it is now possible to construct structures with high-volume and high service load on loose sandy soils. One of such methods is using micropiles, which are mostly used to control asymmetrical subsidence, increase bearing capacity, and prevent soil liquefaction. This study examined the improvement of Anzali's saturated loose silty sand using 192 micropiles with a length of 8 meters and diameter of 75 mm. Bandar-e Anzali is one of Iran's coastal populated cities which are located in a high-seismicity region. The effects of the insertion of micropiles on prevention of liquefaction and improvement of subsidence were examined through comparison of the results of Standard Penetration Test (SPT) and Plate Load Test (PLT) before and after implementation of the micropiles. The results show that the SPT values and the ultimate bearing capacity of silty sand increased after the implementation of the micropiles. Therefore, the installation of micropiles increases the strength of silty sand improving the resistance of soil against liquefaction.
Keywords: Soil improvement, silty sand, micropiles, SPT, PLT, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330