Search results for: sample entropy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1465

Search results for: sample entropy

1225 Sport and Exercise Behavior of Students in Suan Sunandha Rajabhat University

Authors: Pimporn Thongmuang

Abstract:

The purpose of this research is to study sport and exercise behavior of students in Suan Sunandha Rajabhat University in September of 2012. The sample group used in this research was a group of regular students in undergraduate school enrolled in faculty of science and technology. This sample group consisted of 1,858 students. The research tool used to collect result was the checklist. The data was calculated by statistical percentage. From the research, it was discovered that most students did exercise in previous month. 71.6% of students exercised by running. 61.1% of students exercised in their neighborhood. 60.4% of students exercised in order to keep fit. 60.2% of students agreed that the result from this research can be educational and inspirational for students in campus in terms of living healthily by exercise.

Keywords: Exercise behavior, sport behavior, students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865
1224 The Development of Online Lessons in Integration Model

Authors: Chalermpol Tapsai

Abstract:

The objectives of this research were to develop and find the efficiency of integrated online lessons by investigating the usage of online lessons, the relationship between learners’ background knowledge, and the achievement after learning with online lessons. The sample group in this study consisted of 97 students randomly selected from 121 students registering in 1/2012 at Trimitwittayaram Learning Center. The sample technique employed stratified sample technique of 4 groups according to their proficiency, i.e. high, moderate, low, and non-knowledge. The research instrument included online lessons in integration model on the topic of Java Programming, test after each lesson, the achievement test at the end of the course, and the questionnaires to find learners’ satisfaction. The results showed that the efficiency of online lessons was 90.20/89.18 with the achievement of after learning with the lessons higher than that before the lessons at the statistically significant level of 0.05. Moreover, the background knowledge of the learners on the programming showed the positive relationship with the achievement learning at the statistically significant level at 0.05. Learners with high background knowledge employed less exercises and samples than those with lower background knowledge. While learners with different background in the group of moderate and low did not show the significant difference in employing samples and exercises.

Keywords: Integration model, Online lessons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
1223 Why do Clawback Provisions Affect Financial Reporting Quality? - An Analysis of Trigger Effects

Authors: Yu-Chun Lin

Abstract:

We identify clawback triggers from firms- proxy statements (Form DEF 14A) and use the likelihood of restatements to proxy for financial reporting quality. Based on a sample of 578 U.S. firms that voluntarily adopt clawback provisions during 2003-2009, when restatement-based triggers could be decomposed into two types: fraud and unintentional error, and we do observe the evidence that using fraud triggers is associated with high financial reporting quality. The findings support that fraud triggers can enhance deterrent effect of clawback provision by establishing a viable disincentive against fraud, misconduct, and otherwise harmful acts. These results are robust to controlling for the compensation components, to different sample specifications and to a number of sensitivity.

Keywords: Accruals quality, Clawback provisions, Compensation, Restatements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592
1222 Fusion of ETM+ Multispectral and Panchromatic Texture for Remote Sensing Classification

Authors: Mahesh Pal

Abstract:

This paper proposes to use ETM+ multispectral data and panchromatic band as well as texture features derived from the panchromatic band for land cover classification. Four texture features including one 'internal texture' and three GLCM based textures namely correlation, entropy, and inverse different moment were used in combination with ETM+ multispectral data. Two data sets involving combination of multispectral, panchromatic band and its texture were used and results were compared with those obtained by using multispectral data alone. A decision tree classifier with and without boosting were used to classify different datasets. Results from this study suggest that the dataset consisting of panchromatic band, four of its texture features and multispectral data was able to increase the classification accuracy by about 2%. In comparison, a boosted decision tree was able to increase the classification accuracy by about 3% with the same dataset.

Keywords: Internal texture; GLCM; decision tree; boosting; classification accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
1221 Novel GPU Approach in Predicting the Directional Trend of the S&P 500

Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble

Abstract:

Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-ofsample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.

Keywords: Financial algorithm, GPU, S&P 500, stock market prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
1220 Optimum Stratification of a Skewed Population

Authors: D.K. Rao, M.G.M. Khan, K.G. Reddy

Abstract:

The focus of this paper is to develop a technique of solving a combined problem of determining Optimum Strata Boundaries(OSB) and Optimum Sample Size (OSS) of each stratum, when the population understudy isskewed and the study variable has a Pareto frequency distribution. The problem of determining the OSB isformulated as a Mathematical Programming Problem (MPP) which is then solved by dynamic programming technique. A numerical example is presented to illustrate the computational details of the proposed method. The proposed technique is useful to obtain OSB and OSS for a Pareto type skewed population, which minimizes the variance of the estimate of population mean.

Keywords: Stratified sampling, Optimum strata boundaries, Optimum sample size, Pareto distribution, Mathematical programming problem, Dynamic programming technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4059
1219 A Novel Microarray Biclustering Algorithm

Authors: Chieh-Yuan Tsai, Chuang-Cheng Chiu

Abstract:

Biclustering aims at identifying several biclusters that reveal potential local patterns from a microarray matrix. A bicluster is a sub-matrix of the microarray consisting of only a subset of genes co-regulates in a subset of conditions. In this study, we extend the motif of subspace clustering to present a K-biclusters clustering (KBC) algorithm for the microarray biclustering issue. Besides minimizing the dissimilarities between genes and bicluster centers within all biclusters, the objective function of the KBC algorithm additionally takes into account how to minimize the residues within all biclusters based on the mean square residue model. In addition, the objective function also maximizes the entropy of conditions to stimulate more conditions to contribute the identification of biclusters. The KBC algorithm adopts the K-means type clustering process to efficiently make the partition of K biclusters be optimized. A set of experiments on a practical microarray dataset are demonstrated to show the performance of the proposed KBC algorithm.

Keywords: Microarray, Biclustering, Subspace clustering, Meansquare residue model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
1218 Relationship between Financial Reporting Transparency and Investment Efficiency: Evidence from Iran

Authors: Bita Mashayekhi, Hamid Kalhornia

Abstract:

One of the most important roles of financial reporting is improving the firms’ investment decisions; however, there is not much supporting evidence for this claim in emerging markets like Iran. In this study, the effect of financial reporting transparency in investment efficiency of Iranian firms has been investigated. In order to do this, 336 listed companies on Tehran Stock Exchange (TSE) has been selected for time period 2012 to 2015 as research sample. For testing our main hypothesis, we classified sample firms into two groups based on their deviation from expected investment: under-investment and over-investment cases. The results indicate that there is positive significant relationship between financial transparency and investment efficiency. In the other words, transparency can mitigate both underinvestment and overinvestment situations.

Keywords: Corporate governance, disclosure, investment decisions, investment efficiency, transparency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
1217 Distinguishing Innocent Murmurs from Murmurs caused by Aortic Stenosis by Recurrence Quantification Analysis

Authors: Christer Ahlstrom, Katja Höglund, Peter Hult, Jens Häggström, Clarence Kvart, Per Ask

Abstract:

It is sometimes difficult to differentiate between innocent murmurs and pathological murmurs during auscultation. In these difficult cases, an intelligent stethoscope with decision support abilities would be of great value. In this study, using a dog model, phonocardiographic recordings were obtained from 27 boxer dogs with various degrees of aortic stenosis (AS) severity. As a reference for severity assessment, continuous wave Doppler was used. The data were analyzed with recurrence quantification analysis (RQA) with the aim to find features able to distinguish innocent murmurs from murmurs caused by AS. Four out of eight investigated RQA features showed significant differences between innocent murmurs and pathological murmurs. Using a plain linear discriminant analysis classifier, the best pair of features (recurrence rate and entropy) resulted in a sensitivity of 90% and a specificity of 88%. In conclusion, RQA provide valid features which can be used for differentiation between innocent murmurs and murmurs caused by AS.

Keywords: Bioacoustics, murmur, phonocardiographic signal, recurrence quantification analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
1216 Characterization and Predictors of Community Integration of People with Psychiatric Problems: Comparisons with the General Population

Authors: J. Cabral, C. Barreto Carvalho, C. da Motta, M. Sousa

Abstract:

Community integration is a construct that an increasing body of research has shown to have a significant impact on the wellbeing and recovery of people with psychiatric problems. However, there are few studies that explore which factors can be associated and predict community integration. Moreover, community integration has been mostly studied in minority groups, and current literature on the definition and manifestation of community integration in the general population is scarcer. Thus, the current study aims to characterize community integration and explore possible predictor variables in a sample of participants with psychiatric problems (PP, N=183) and a sample of participants from the general population (GP, N=211). Results show that people with psychiatric problems present above average values of community integration, but are significantly lower than their healthy counterparts. It was also possible to observe that community integration does not vary in terms of the sociodemographic characteristics of both groups in this study. Correlation and multiple regression showed that, among several variables that literature present as relevant in the community integration process, only three variables emerged as having the most explanatory value in community integration of both groups: sense of community, basic needs satisfaction and submission. These results also shown that those variables have increased explanatory power in the PP sample, which leads us to emphasize the need to address this issue in future studies and increase the understanding of the factors that can be involved in the promotion of community integration, in order to devise more effective interventions in this field.

Keywords: Community integration, mental illness, predictors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
1215 The Influence of Surface Potential on the Kinetics of Bovine Serum Albumin Adsorption on a Biomedical Grade 316LVM Stainless Steel Surface

Authors: Khawtar Hasan Ahmed, Sasha Omanovic

Abstract:

Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) in combination with electrochemistry, was employed to study the influence of surface charge (potential) on the kinetics of bovine serum albumin (BSA) adsorption on a biomedical-grade 316LVM stainless steel surface is discussed. The BSA adsorption kinetics was found to greatly depend on the surface potential. With an increase in surface potential towards more negative values, both the BSA initial adsorption rate and the equilibrium (saturated) surface concentration also increased. Both effects were explained on the basis of replacement of well-ordered water molecules at the 316LVM / solution interface, i.e. by the increase in entropy of the system.

Keywords: adsorption, biomedical grade stainless steel, bovine serum albumin (BSA), electrode surface potential / charge, kinetics, PM-IRRAS, protein/surface interactions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1214 Performance Study of Cascade Refrigeration System Using Alternative Refrigerants

Authors: Gulshan Sachdeva, Vaibhav Jain, S. S. Kachhwaha

Abstract:

Cascade refrigeration systems employ series of single stage vapor compression units which are thermally coupled with evaporator/condenser cascades. Different refrigerants are used in each of the circuit depending on the optimum characteristics shown by the refrigerant for a particular application. In the present research study, a steady state thermodynamic model is developed which simulates the working of an actual cascade system. The model provides COP and all other system parameters e.g. total compressor work, temperature, pressure, enthalpy and entropy at different state points. The working fluid in low temperature circuit (LTC) is CO2 (R744) while Ammonia (R717), Propane (R290), Propylene (R1270), R404A and R12 are the refrigerants in high temperature circuit (HTC). The performance curves of Ammonia, Propane, Propylene, and R404A are compared with R12 to find its nearest substitute. Results show that Ammonia is the best substitute of R12.

Keywords: Cascade system, Refrigerants, Thermodynamic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5748
1213 Tuning Cubic Equations of State for Supercritical Water Applications

Authors: Shyh-Ming Chern

Abstract:

Cubic equations of state (EoS), popular due to their simple mathematical form, ease of use, semi-theoretical nature and reasonable accuracy, are normally fitted to vapor-liquid equilibrium P-v-T data. As a result, they often show poor accuracy in the region near and above the critical point. In this study, the performance of the renowned Peng-Robinson (PR) and Patel-Teja (PT) EoS’s around the critical area has been examined against the P-v-T data of water. Both of them display large deviations at critical point. For instance, PR-EoS exhibits discrepancies as high as 47% for the specific volume, 28% for the enthalpy departure and 43% for the entropy departure at critical point. It is shown that incorporating P-v-T data of the supercritical region into the retuning of a cubic EoS can improve its performance at and above the critical point dramatically. Adopting a retuned acentric factor of 0.5491 instead of its genuine value of 0.344 for water in PR-EoS and a new F of 0.8854 instead of its original value of 0.6898 for water in PT-EoS reduces the discrepancies to about one third or less.

Keywords: Equation of state, EoS, supercritical water, SCW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
1212 The Effects of Roots Action of Tropical Green Roofs–Replication of German FLL in Singapore

Authors: Kian. Kai. Tan, Michael. Yit. Lin. Chew, Nyuk. Hien. Wong

Abstract:

Green Roofs offers numerous advantages, including lowering ambient temperature, which is of increasing interest due to global warming concerns. However, there are technical problems pertaining to waterproofing to be resolved. Currently, the only recognized green roof waterproofing test is the German standard FLL. This paper examines the potential of replicating the test in tropical climate and reducing the test duration by using pre-grown plants. A three year old sample and a new setup were used for this experimental study. The new setup was prepared with close reference to the FLL standards and was compared against the three year old sample. Results showed that the waterproofing membrane was damaged by plant roots in both setups. Joints integrity was also challenged.

Keywords: Building plants, green roof, sustainability, waterproofing membrane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
1211 A Study on Physicochemical Analysis of Road and Railway Track Side Soil Samples of Amritsar (Punjab) and Their Genotoxic Effects

Authors: R. Kaur, Y. B. Pakade, J. K. Katnoria

Abstract:

Considering the serious health hazards of air pollutants from automobiles, the present study was aimed to estimate the genotoxic/tumor inducing potential of three soil samples collected from junctions of Bus stand (BS), Crystal (CT) and Railway station (RS) of Amritsar, Punjab (India) using Allium cepa root chromosomal aberration assay (AlRCAA) and potato disc tumor assay (PDTA). The genotoxic potential in AlRCAA was 41.27% and 41.26% for BS; 37.89% and 43.38% for RS and 33.76% and 37.83% for CT during in situ and root dip treatments, respectively. The maximum number of tumors were induced in RS sample (64) followed by BS (21) and CT (9) during PDTA. The physicochemical parameters of soil sample were also studied and the concentration of lead was found to be 95.21 mg/Kg in RS, 35.30 mg/Kg in BS and 24.59 mg/Kg in CT samples.

Keywords: Automobiles, genotoxicity, Physicochemical parameters, pollutants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
1210 A Hypercube Social Feature Extraction and Multipath Routing in Delay Tolerant Networks

Authors: S. Balaji, M. Rajaram, Y. Harold Robinson, E. Golden Julie

Abstract:

Delay Tolerant Networks (DTN) which have sufficient state information include trajectory and contact information, to protect routing efficiency. However, state information is dynamic and hard to obtain without a global and/or long-term collection process. To deal with these problems, the internal social features of each node are introduced in the network to perform the routing process. This type of application is motivated from several human contact networks where people contact each other more frequently if they have more social features in common. Two unique processes were developed for this process; social feature extraction and multipath routing. The routing method then becomes a hypercube–based feature matching process. Furthermore, the effectiveness of multipath routing is evaluated and compared to that of single-path routing.

Keywords: Delay tolerant networks, entropy, human contact networks, hyper cubes, multipath Routing, social features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
1209 Effects of TiO2 and Nb2O5 on Hydrogen Desorption of Mg(BH4)2

Authors: Wipada Ploysuksai, Pramoch Rangsunvigit, Santi Kulprathipanja

Abstract:

In this work, effects of catalysts (TiO2, and Nb2O5) were investigated on the hydrogen desorption of Mg(BH4)2. LiBH4 and MgCl2 with 2:1 molar ratio were mixed by using ball milling to prepare Mg(BH4)2. The desorption behaviors were measured by thermo-volumetric apparatus. The hydrogen desorption capacity of the mixed sample milled for 2 h was 4.78 wt% with a 2-step released. The first step occurred at 214 °C and the second step appeared at 374 °C. The addition of 16 wt% Nb2O5 decreased the desorption temperature in the second step about 66 °C and increased the hydrogen desorption capacity to 4.86 wt% hydrogen. The addition of TiO2 also improved the desorption temperature in the second step and the hydrogen desorption capacity. It decreased the desorption temperature about 71°C and showed a high amount of hydrogen, 5.27 wt%, released from the mixed sample. The hydrogen absorption after desorption of Mg(BH4)2 was also studied under 9.5 MPa and 350 °C for 12 h.

Keywords: hydrogen storage, LiBH4, metal hydride, Mg(BH4)2

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
1208 Modeling of Normal and Atherosclerotic Blood Vessels using Finite Element Methods and Artificial Neural Networks

Authors: K. Kamalanand, S. Srinivasan

Abstract:

Analysis of blood vessel mechanics in normal and diseased conditions is essential for disease research, medical device design and treatment planning. In this work, 3D finite element models of normal vessel and atherosclerotic vessel with 50% plaque deposition were developed. The developed models were meshed using finite number of tetrahedral elements. The developed models were simulated using actual blood pressure signals. Based on the transient analysis performed on the developed models, the parameters such as total displacement, strain energy density and entropy per unit volume were obtained. Further, the obtained parameters were used to develop artificial neural network models for analyzing normal and atherosclerotic blood vessels. In this paper, the objectives of the study, methodology and significant observations are presented.

Keywords: Blood vessel, atherosclerosis, finite element model, artificial neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
1207 Thermodynamic, Structural and Transport Properties of Molten Copper-Thallium Alloys

Authors: D. Adhikari, R. P. Koirala, B.P. Singh

Abstract:

A self-association model has been used to understand the concentration dependence of free energy of mixing (GM), heat of mixing (HM), entropy of mixing (SM), activity (a) and microscopic structures, such as concentration fluctuation in long wavelength limit (Scc(0)) and Warren-Cowley short range order parameter ( 1 α )for Cu- Tl molten alloys at 1573K. A comparative study of surface tension of the alloys in the liquid state at that temperature has also been carried out theoretically as function of composition in the light of Butler-s model, Prasad-s model and quasi-chemical approach. Most of the computed thermodynamic properties have been found in agreement with the experimental values. The analysis reveals that the Cu-Tl molten alloys at 1573K represent a segregating system at all concentrations with moderate interaction. Surface tensions computed from different approaches have been found to be comparable to each other showing increment with the composition of copper.

Keywords: Concentration fluctuations, surface tension, thermodynamic properties, Quasi-chemical approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
1206 Nutritional Composition of Crackers Produced from Blend of Sprouted Pigeon Pea (Cajanus cajan), Unripe Plantain (Musa parasidiaca) and Brewers’ Spent Grain Flour and Blood Glucose Level of Diabetic Rats Fed the Biscuit

Authors: Nneka N. Uchegbu, Charles N. Ishiwu

Abstract:

The nutritional composition and hypoglycaemic effect of crackers produced from blend of sprouted pigeon pea, unripe plantain and brewers’ spent grain and fed to Alloxan induced diabetic rat was investigated. Crackers were produced from different blends of sprouted pigeon pea, unripe plantain and brewers’ spent grain. The crackers were evaluated for proximate composition, amino acid profile and antinutritional factors. Blood glucose levels of normal and diabetic rats fed with the control sample and different formulations of cracker were measured. The protein content of the samples were significantly different (p<0.05) from each other with sample A having the lowest value and sample B with the highest value. The values obtained showed that the samples contained most of the amino acids that are found in plant proteins. The levels of antinutritional factor determined were generally low. Administration of the formulated cracker meals led to a significant reduction in the fasting blood glucose level in the diabetic rats. The present study concluded that consumption of crackers produced from this composite flour could be recommended for the diabetics and those who are sceptical about the disease.

Keywords: Crackers, diabetics rat, sprouted pigeon pea, unripe plantain and brewers’ spent grain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
1205 A Survey on Lossless Compression of Bayer Color Filter Array Images

Authors: Alina Trifan, António J. R. Neves

Abstract:

Although most digital cameras acquire images in a raw format, based on a Color Filter Array that arranges RGB color filters on a square grid of photosensors, most image compression techniques do not use the raw data; instead, they use the rgb result of an interpolation algorithm of the raw data. This approach is inefficient and by performing a lossless compression of the raw data, followed by pixel interpolation, digital cameras could be more power efficient and provide images with increased resolution given that the interpolation step could be shifted to an external processing unit. In this paper, we conduct a survey on the use of lossless compression algorithms with raw Bayer images. Moreover, in order to reduce the effect of the transition between colors that increase the entropy of the raw Bayer image, we split the image into three new images corresponding to each channel (red, green and blue) and we study the same compression algorithms applied to each one individually. This simple pre-processing stage allows an improvement of more than 15% in predictive based methods.

Keywords: Bayer images, CFA, losseless compression, image coding standards.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
1204 Computational Evaluation of a C-A Heat Pump

Authors: Young-Jin Baik, Minsung Kim, Young-Soo Lee, Ki-Chang Chang, Seong-Ryong Park

Abstract:

The compression-absorption heat pump (C-A HP), one of the promising heat recovery equipments that make process hot water using low temperature heat of wastewater, was evaluated by computer simulation. A simulation program was developed based on the continuity and the first and second laws of thermodynamics. Both the absorber and desorber were modeled using UA-LMTD method. In order to prevent an unfeasible temperature profile and to reduce calculation errors from the curved temperature profile of a mixture, heat loads were divided into lots of segments. A single-stage compressor was considered. A compressor cooling load was also taken into account. An isentropic efficiency was computed from the map data. Simulation conditions were given based on the system consisting of ordinarily designed components. The simulation results show that most of the total entropy generation occurs during the compression and cooling process, thus suggesting the possibility that system performance can be enhanced if a rectifier is introduced.

Keywords: Waste heat recovery, Heat Pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
1203 Analysis of Phosphate in Wastewater Using an Autonomous Microfluidics-Based Analyser

Authors: John Cleary, Conor Slater, Dermot Diamond

Abstract:

A portable sensor for the analysis of phosphate in aqueous samples has been developed. The sensor incorporates microfluidic technology, colorimetric detection, and wireless communications into a compact and rugged portable device. The detection method used is the molybdenum yellow method, in which a phosphate-containing sample is mixed with a reagent containing ammonium metavanadate and ammonium molybdate in an acidic medium. A yellow-coloured compound is generated and the absorption of this compound is measured using a light emitting diode (LED) light source and a photodiode detector. The absorption is directly proportional to the phosphate concentration in the original sample. In this paper we describe the application of this phosphate sensor to the analysis of wastewater at a municipal wastewater treatment plant in Co. Kildare, Ireland.

Keywords: Microfluidic, phosphate, sensor, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
1202 Rigorous Electromagnetic Model of Fourier Transform Infrared (FT-IR) Spectroscopic Imaging Applied to Automated Histology of Prostate Tissue Specimens

Authors: Rohith K Reddy, David Mayerich, Michael Walsh, P Scott Carney, Rohit Bhargava

Abstract:

Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that provides both chemically and spatially resolved information. The rich chemical content of data may be utilized for computer-aided determinations of structure and pathologic state (cancer diagnosis) in histological tissue sections for prostate cancer. FT-IR spectroscopic imaging of prostate tissue has shown that tissue type (histological) classification can be performed to a high degree of accuracy [1] and cancer diagnosis can be performed with an accuracy of about 80% [2] on a microscopic (≈ 6μm) length scale. In performing these analyses, it has been observed that there is large variability (more than 60%) between spectra from different points on tissue that is expected to consist of the same essential chemical constituents. Spectra at the edges of tissues are characteristically and consistently different from chemically similar tissue in the middle of the same sample. Here, we explain these differences using a rigorous electromagnetic model for light-sample interaction. Spectra from FT-IR spectroscopic imaging of chemically heterogeneous samples are different from bulk spectra of individual chemical constituents of the sample. This is because spectra not only depend on chemistry, but also on the shape of the sample. Using coupled wave analysis, we characterize and quantify the nature of spectral distortions at the edges of tissues. Furthermore, we present a method of performing histological classification of tissue samples. Since the mid-infrared spectrum is typically assumed to be a quantitative measure of chemical composition, classification results can vary widely due to spectral distortions. However, we demonstrate that the selection of localized metrics based on chemical information can make our data robust to the spectral distortions caused by scattering at the tissue boundary.

Keywords: Infrared, Spectroscopy, Imaging, Tissue classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
1201 Twitter Sentiment Analysis during the Lockdown on New Zealand

Authors: Smah Doeban Almotiri

Abstract:

One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2021, until April 4, 2021. Natural language processing (NLP), which is a form of Artificial intelligent was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applied machine learning sentimental method such as Crystal Feel and extended the size of the sample tweet by using multiple tweets over a longer period of time.

Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585
1200 Cloud Computing Support for Diagnosing Researches

Authors: A. Amirov, O. Gerget, V. Kochegurov

Abstract:

One of the main biomedical problem lies in detecting dependencies in semi structured data. Solution includes biomedical portal and algorithms (integral rating health criteria, multidimensional data visualization methods). Biomedical portal allows to process diagnostic and research data in parallel mode using Microsoft System Center 2012, Windows HPC Server cloud technologies. Service does not allow user to see internal calculations instead it provides practical interface. When data is sent for processing user may track status of task and will achieve results as soon as computation is completed. Service includes own algorithms and allows diagnosing and predicating medical cases. Approved methods are based on complex system entropy methods, algorithms for determining the energy patterns of development and trajectory models of biological systems and logical–probabilistic approach with the blurring of images.

Keywords: Biomedical portal, cloud computing, diagnostic and prognostic research, mathematical data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
1199 Investigating the Efficiency of Stratified Double Median Ranked Set Sample for Estimating the Population Mean

Authors: Mahmoud I. Syam

Abstract:

Stratified double median ranked set sampling (SDMRSS) method is suggested for estimating the population mean. The SDMRSS is compared with the simple random sampling (SRS), stratified simple random sampling (SSRS), and stratified ranked set sampling (SRSS). It is shown that SDMRSS estimator is an unbiased of the population mean and more efficient than SRS, SSRS, and SRSS. Also, by SDMRSS, we can increase the efficiency of mean estimator for specific value of the sample size. SDMRSS is applied on real life examples, and the results of the example agreed the theoretical results.

Keywords: Efficiency, double ranked set sampling, median ranked set sampling, ranked set sampling, stratified.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
1198 Graphical Password Security Evaluation by Fuzzy AHP

Authors: Arash Habibi Lashkari, Azizah Abdul Manaf, Maslin Masrom

Abstract:

In today's day and age, one of the important topics in information security is authentication. There are several alternatives to text-based authentication of which includes Graphical Password (GP) or Graphical User Authentication (GUA). These methods stems from the fact that humans recognized and remembers images better than alphanumerical text characters. This paper will focus on the security aspect of GP algorithms and what most researchers have been working on trying to define these security features and attributes. The goal of this study is to develop a fuzzy decision model that allows automatic selection of available GP algorithms by taking into considerations the subjective judgments of the decision makers who are more than 50 postgraduate students of computer science. The approach that is being proposed is based on the Fuzzy Analytic Hierarchy Process (FAHP) which determines the criteria weight as a linear formula.

Keywords: Graphical Password, Authentication Security, Attack Patterns, Brute force attack, Dictionary attack, Guessing Attack, Spyware attack, Shoulder surfing attack, Social engineering Attack, Password Entropy, Password Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
1197 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: Computational social science, movie preference, machine learning, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
1196 Automatic Authentication of Handwritten Documents via Low Density Pixel Measurements

Authors: Abhijit Mitra, Pranab Kumar Banerjee, C. Ardil

Abstract:

We introduce an effective approach for automatic offline au- thentication of handwritten samples where the forgeries are skillfully done, i.e., the true and forgery sample appearances are almost alike. Subtle details of temporal information used in online verification are not available offline and are also hard to recover robustly. Thus the spatial dynamic information like the pen-tip pressure characteristics are considered, emphasizing on the extraction of low density pixels. The points result from the ballistic rhythm of a genuine signature which a forgery, however skillful that may be, always lacks. Ten effective features, including these low density points and den- sity ratio, are proposed to make the distinction between a true and a forgery sample. An adaptive decision criteria is also derived for better verification judgements.

Keywords: Handwritten document verification, Skilled forgeries, Low density pixels, Adaptive decision boundary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716