
 

 

  
Abstract—This paper proposes to use ETM+ multispectral data 

and panchromatic band as well as texture features derived from the 
panchromatic band for land cover classification. Four texture features 
including one ‘internal texture’ and three GLCM based textures 
namely correlation, entropy, and inverse different moment were used 
in combination with ETM+ multispectral data. Two data sets 
involving combination of multispectral, panchromatic band and its 
texture were used and results were compared with those obtained by 
using multispectral data alone. A decision tree classifier with and 
without boosting were used to classify different datasets. Results 
from this study suggest that the dataset consisting of panchromatic 
band, four of its texture features and multispectral data was able to 
increase the classification accuracy by about 2%. In comparison, a 
boosted decision tree was able to increase the classification accuracy 
by about 3% with the same dataset. 
 

Keywords—Internal texture; GLCM; decision tree; boosting; 
classification accuracy.  

I. INTRODUCTION 
CCURATE classification of terrain from remotely sensed 
data is essential, especially for agricultural and forest 

monitoring, ecological monitoring of vegetation communities, 
land cover mapping and monitoring, and many other similar 
applications. Much work related to the classification of land 
use/land cover categories using satellite data is reported in the 
literature. To achieve an accurate classification of terrain, an 
image at a suitable resolution for the terrain needs to be 
acquired first, and then the characteristics of each small 
segment of the image must be classified accurately.  

Several types of remote sensing data are being used in land 
cover classification. Data used can be obtained by using 
optical or microwave regions of the spectrum, and can be 
hyperspectral or multispectral in nature, depending on their 
availability and quality for a particular region. Usually 
medium spatial resolution satellite sensor data, such as 
Landsat ETM+ have been used in several researches. Data 
acquired by this sensor operate in the visible and near-infrared 
part of the electromagnetic spectrum. The availability of a 
panchromatic band of 15 m spatial resolution not only reduces 
mixed pixels, but also provides a rich texture and contextual 

 
Mahesh Pal is with National Institute of Technology Kurukshetra, 

Kurukshetra, Haryana, 136119, India (e-mail:mpce_pal@yahoo.co.uk). 

information than multispectral bands with 30 m spatial 
resolution [1]. 

This paper will examine the potential of high spatial 
resolution panchromatic band and some of its texture features 
in combination with multispectral data for land cover 
classification. A univariate decision tree with and without 
boosting will be used to classify different datasets. 

II. DATASET 
The study area used in this paper is an agricultural area 

located near the town of Littleport in Cambridgeshire, in the 
eastern part of England. ETM+ data acquired on 19 June 2000 
are used. The classification problem involved in identification 
of seven land cover types, namely, wheat, potato, sugar beet, 
onion, peas, lettuce and beans that cover the bulk of the area 
of interest. Ground resolution for ETM+ data is 30 m, except 
for the thermal band in which the resolution is 60 m. A 
panchromatic band with 15 meter resolution is also added for 
rectification and image sharpening. Landsat 7 provides data 
with a swath width of 185 km and a repeat coverage interval 
of 16 days.  

A sub-image consisting of 307-pixel (columns) by 330-
pixel (rows) covering the area of interest was used from both 
multispectral and panchromatic bands for subsequent analysis 
and classification. As the resolution of the ETM+ 
panchromatic data is 15m, bilinear resampling was used to 
reduce the resolution to 30m (i.e. the resolution of ETM+ 
multispectral data). Three GLCM texture features used for this 
study were extracted from the 30m resolution resampled 
panchromatic image. For this study, field data printouts for the 
relevant crop season were collected from farmers and their 
representative agencies, and other areas were surveyed on the 
ground to prepare the ground reference images.  

III. DECISION TREE CLASSIFIER 
In the usual approach to classification, a common set of 

features is used jointly in a single decision step. An alternative 
approach is to use a multistage or sequential hierarchical 
decision scheme. The basic idea involved in any multistage 
approach is to break up a complex decision into a union of 
several simpler decisions, hoping the final solution obtained in 
this way would resemble the intended desired solution. 
Hierarchical classifiers are a special type of multistage 
classifier that allows rejection of class labels at intermediate 
stages. Classification trees offer an effective implementation 
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of such hierarchical classifiers. Indeed, classification trees 
have become increasingly important due to their conceptual 
simplicity and computational efficiency. A decision tree 
classifier has a simple form which can be compactly stored 
and that efficiently classifies new data. Decision tree 
classifiers can perform automatic feature selection and 
complexity reduction, and their tree structure provides easily 
understandable and interpretable information regarding the 
predictive or generalisation ability of the classification. To 
construct a classification tree by heuristic approach, it is 
assumed that a data set consisting of feature vectors and their 
corresponding class labels are available. The decision tree is 
then constructed by recursively partitioning a data set into 
purer, more homogenous subsets on the basis of a set of tests 
applied to one or more attribute values at each branch or node 
in the tree. A number of approaches have been developed to 
split the training data at each internal node of a decision tree 
into regions that contain examples from just one class, and 
this is the most important element of a decision tree classifier. 
These algorithms either minimise the impurity of the training 
data or maximise the goodness of split. There are many 
approaches to the selection of attributes used for decision tree 
induction, and these approaches have been studied in detail by 
researchers in machine learning [2,3,4,5,6]. The procedure of 
creating a tree classifier involves three steps: splitting nodes, 
determining which nodes are terminal nodes, and assigning 
class label to terminal nodes. The assignment of class labels to 
terminal nodes is straightforward: labels are assigned based on 
a majority vote or a weighted vote when it is assumed that 
certain classes are more likely than others. A tree is composed 
of a root node (containing all the data), a set of internal nodes 
(splits), and a set of terminal nodes (leaves). Each node in a 
decision tree has only one parent node and two or more 
descendent nodes. A data set is classified by moving down the 
tree and sequentially subdividing it according to the decision 
framework defined by the tree until a leaf is reached. Decision 
tree classifiers divide the training data into subsets, which 
contain only a single class. The result of this procedure is 
often a very large and complex tree. In most cases, fitting a 
decision tree until all leaves contain data for a single class 
may overfit to the noise in the training data, as the training 
samples may not be representative of the population they are 
intended to represent. If the training data contain errors, then 
overfitting the tree to the data in this manner can lead to poor 
performance on unseen cases. To reduce this problem, the 
original tree can be pruned to reduce classification errors 
when data outside of the training set are to be classified.  

A.  Boosting 
Boosting is a method used to improve the accuracy of any 

classifier by producing a series of classifiers. The training set 
chosen for a classifier depends on the performance of it earlier 
classifier. Sample, which is incorrectly classified by an earlier 
classifier, is selected more often than a correctly classified. 
Thus, boosting produce a new classifier, which is able to 
perform well on the new data set. In this study, a boosting 
algorithm called AdaBoost M1 [7]. Boosting assigns a weight 
to each observation - the higher the weight; the more that 

observation influences the classifier. At each trial, the vector 
of weights is adjusted to reflect the performance of the 
corresponding classifier, with the result that the weight of 
misclassified observations is increased. The final classifier 
aggregates the classifiers generated after each iteration by 
voting and each classifier’s vote is a function of its accuracy. 
Studies carried out using boosting with a univariate decision 
tree classifier suggest that the resulting classifier perform 
quite well in comparison with individual classifier [8,9,10]. In 
order to evaluate the effects of boosting a total of 50 iterations 
were carried out with all three datasets with univariate 
decision tree as base classifier. 

IV. TEXTURE FEATURE EXTRACTION  
Methods to generate features based on combinations or 

transformations of primary features are called feature 
extraction. Image derived features, such as measures of spatial 
and spectral features may provide useful information for 
classification. Some features obtained by transforming 
primary features tend to suppress undesirable variability in 
remote sensing signatures, such as noise, so it is wise to use 
such features in classification because they allow the classifier 
to better distinguish spectral classes. A number of methods 
have been developed to deal with spectral and spatial 
information, in order to achieve improved classification 
performance. In comparison with tonal measures, the 
definition of texture features appears more difficult. The main 
difficulty faced by the researcher is to define a set of 
meaningful features to characterize the texture properties. 

The extraction of texture features from high resolution 
remote sensing imagery provides a complementary source of 
data for some applications and found to be working well in 
improving the classification accuracy [1]. Based on the texture 
descriptors available in the literature, this study uses 
correlation, entropy, and inverse different moment texture 
features derived using grey level co-occurrence matrix [11] as 
well as a texture measure called internal texture. Internal 
texture was extracted from the panchromatic band in a way to 
reduce the image to 30m resolution. A program  to  calculate  
the  difference  between   the  maximum and minimum  value  
in  a  2×2 window  was  used for this purpose. The texture 
feature derived this way was able to reduce the image size 
from 15m to 30m resolution while simultaneously generating 
the internal texture image. The image generated by this 
procedure is georeferenced to the multispectral image and an 
area of 307 column and 330 rows was extracted for further 
study in combination with multispectral data. 

V. RESULTS 
The aim of the present study is to evaluate the effect of the 

texture features obtained from the panchromatic data on the 
level of overall classification. The results obtained from two 
data sets were compared with ETM+ multispectral data. Two 
datasets used for the classification consists of the following 
combinations: 
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1. Combination of multispectral, panchromatic band and 
internal texture of panchromatic band referred to as data 
set 1. 

2. Combination of data set 1 and three GLCM based texture 
features (correlation, entropy, and inverse different 
moment) of panchromatic band, referred to as data set 2. 

Equalized random sampling plan was used to collect the 
training and test pixels from the ETM+ multispectral data as 
well as from datasets 1 and 2. The program used for this 
purpose uses ground reference image to collect the required 
pixels from different datasets. Selected pixels were divided in 
two parts in order to remove any bias in using same pixels for 
training and testing. Table I provides number of training and 
test pixels used in classification with different datasets.  

Classifications were performed in order to evaluate the 
effects of various texture features on the level of classification 
accuracy achieved by the boosted and unboosted decision tree 
classifier. While using a decision tree classifier gain ratio as 
attribute selection measures and error-based pruning approach 
was used to prune overgrown decision tree [9].  

Tables II and III provide the results obtained using different 
datasets with unboosted and boosted decision tree classifier 
respectively. Results suggests that dataset 2 perform well with 
or without boosting the decision tree classifier and an increase 
of about 2 to 3% in classification accuracy is achieved in 
comparison to the accuracy achieved with ETM+ 
multispectral data. Results from Table II suggest that the 
inclusion of the panchromatic band and internal texture 
feature with multispectral data does not increase classification 
accuracy by a large amount. Further, results with the data set 2 
(Tables II and III) suggests that classification accuracies with 
this dataset improve by about 2 to 3%,  thus suggesting the 
utility of panchromatic data and its texture for land cover 
classification.  

 
TABLE I 

TRAINING AND TEST DATA SET USED WITH DIFFERENT DATASETS 

Dataset Training pixels Test pixels 

ETM+ 2700 2037 

Dataset 1 2700 2034 

Dataset 2 2700 2043 

 
TABLE II 

CLASSIFICATION ACCURACY AND KAPPA VALUES WITH DIFFERENT 
DATASETS USING A UNIVARIATE DECISION TREE CLASSIFIER 

Dataset Classification 
accuracy (%) 

Kappa value 

ETM+ 83.55 0.810 

Dataset 1 84.76 0.820 

Dataset 2 85.76 0.834 

TABLE III 
CLASSIFICATION ACCURACY AND KAPPA VALUES WITH DIFFERENT 

DATASETS USING BOOSTING WITH A UNIVARIATE DECISION TREE CLASSIFIER 

Dataset Classification 
accuracy (%) 

Kappa value 

ETM+ 87.78 0.857 

Dataset 1 88.89 0.870 

Dataset 2 90.75 0.892 

 

VI. CONCLUSION 
This paper was aimed at assessing the usefulness of fused 

multispectral, panchromatic data and its texture features for 
land cover classification. A major conclusion of this study is 
that the dataset consisting of multispectral, panchromatic and 
four tsture features derived from panchromatic data works 
well with or without boosting the decision tree classifier. 
Although 2% to 3% increase in classification accuracy may 
appear to be a small increase, it should be borne in mind that 
even small percentage increases are difficult to generate when 
the overall classification accuracy level exceeds 80%. Thus it 
can be concluded that the texture features derived from ETM+ 
panchromatic data can be used to improve the classification 
accuracy with decision tree classifier.  
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