
 

 

 
Abstract—Our goal is development of an algorithm capable of 

predicting the directional trend of the Standard and Poor’s 500 index 
(S&P 500). Extensive research has been published attempting to 
predict different financial markets using historical data testing on an 
in-sample and trend basis, with many authors employing excessively 
complex mathematical techniques. In reviewing and evaluating these 
in-sample methodologies, it became evident that this approach was 
unable to achieve sufficiently reliable prediction performance for 
commercial exploitation. For these reasons, we moved to an out-of-
sample strategy based on linear regression analysis of an extensive 
set of financial data correlated with historical closing prices of the 
S&P 500. We are pleased to report a directional trend accuracy of 
greater than 55% for tomorrow (t+1) in predicting the S&P 500. 
 

Keywords—Financial algorithm, GPU, S&P 500, stock market 
prediction. 

I. INTRODUCTION 
URRENT methods of forecasting financial markets 
require computationally intense algorithms because the 

parameter inputs needed to create a meaningful prediction are 
extremely large. Two of the most popular methods used are 
Artificial Neural Networks (ANNs) [1] and Support Vector 
Machines (SVMs) [2], which are able to predict financial 
markets with some success. Both approaches have inherent 
advantages and disadvantages. An ANN involves a network of 
processing artificial neurons that can exhibit complex global 
behavior, determined by the connections between the 
processing elements and element parameters [3]. The 
disadvantage of the ANN approach lies in scalability; whilst 
an ANN is possible to implement in hardware, it is 
computationally inefficient and power hungry.  

The standard SVM takes a set of input data and predicts, for 
each given input, which of two possible classes forms the 
input, making the SVM a non-probabilistic binary linear 
classifier [4]. SVMs are not readily scalable and cannot be 
easily implemented onto a dedicated hardware [5], and hence 
we believe are unsuitable for predicting the directional trend 
of the S&P 500. 

The aim of this work is to develop a forecasting algorithm 
for financial markets, which overcomes the scalability 
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limitations inherent in both ANNs and SVMs. The expectation 
is that this should be able to process extremely efficiently in 
parallel, and at great speed, to obtain meaningful out-of-
sample results. The S&P 500, which comprises the 500 largest 
US companies based on market capitalisation, was chosen as 
the test index. The scale and complexity of the hugely liquid 
S&P 500 creates an incredibly difficult entity to predict.  

The implementation is capable of significant gains when 
choosing optimal parameters for forecasting future financial 
data. We have adopted a radically different approach in our 
work, namely to predict tomorrow’s value of the index by 
looking closely at a wide range of financial factors that 
influence the financial performance of the member companies 
within the index, and link the predicted values back to the past 
values of the index. The values of these financial market data 
(FMD inputs) are readily available and include items such as 
currency pairs, key commodity indices and other financial 
indices. These FMD inputs are then used in a linear regression 
algorithm to compute tomorrow’s (t+1) value of the S&P 500 
index. Changing the number of FMD inputs affects the 
directional accuracy of the prediction result; increasing the 
number of FMD inputs significantly increases the 
computational complexity and hence the time taken to 
compute a daily result. Another key aspect of our algorithm is 
that its architecture is intended for commercial application. 
Therefore, it is imperative that each prediction result must be 
computed in less than 24 hours. This is so a result can be 
obtained today (t) for tomorrows (t+1) US market open. 

II. ARCHITECTURE OF THE ALGORITHM 

Development of financial forecasting algorithms that 
depend entirely on historical data are referred to as in-sample 
modeling [6]. Algorithms that rely entirely on in-sample 
modeling are effectively trend based. However, as Granger [7] 
stated, “one of the main worries about the present methods of 
model formulation is that the specification search procedure 
produces models that fit the data spuriously well, and also 
makes standard techniques of inference unreliable”. Out of 
sample testing is essential to guard against curve fitting [8]. 
Many authors have attempted to use an in-sample approach 
with moderate success. However, the fundamental assumption 
that the future is entirely determined by the past misses the 
facts that an index such as the S&P 500 is an aggregation of 
the performance of 500 individual companies. In recognizing 
this limitation, we have decided to develop an algorithm based 
on an alternative methodology. 

The key elements that underpin our system are: 
1. Identification of 51 financial market data (FMD) inputs, 
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including other indexes, currency pairs, swap rates, etc., 
that we have proved influence the movement of the S&P 
500. 

2. The use of an extensive historical data set (actual daily 
closing prices of the chosen 51 FMD inputs and S&P 
500). 

3. The ability to compute this large data set (comprising 
more than 12.7 billion combinations) in a time frame of 
less than 24 hours. 

The data set is fed into a linear regression algorithm to 
determine the predicted value of tomorrow’s (t+1) S&P 500 
closing price.  

III. DISTRIBUTED ALGORITHM 

What we require is to rapidly compute the best results of a 
given subset of parameters. In order to reduce the complexity 
of the algorithms architecture, the available data was inspected 
and reduced down to 51 key FMD inputs. Having identified 
these 51 significant market parameters for forecasting the 
directional trend of the S&P 500, the result is a mathematical 
function that is computationally intense. Fig. 1 displays the 
number of possible combinations increasing as each FMD 
input is added. Increasing the number of FMD inputs above 10 
produces an unmanageably large data set for even the fastest 
computational technology to process within our stringent 24-
hour time limit. 

 

 

Fig. 1 Possible number of RPA combinations vs. FMD inputs 
 

 
Fig. 2 Distributed architecture for forecasting the S&P 500 for 3 

FMD inputs. (left) Regression core, (right) data bus for comparison 
 
The requirements for a distributed implementation of the 

S&P 500 consist of two key components, a regression core, 

which forecasts using a given set of parameters, and a data 
bus, which is used to shift information in a daisy chain fashion 
to compare all the results. This architecture can be seen in Fig. 
2. 

The regression core computes a simple linear regression 
based on the parameters described by (1): 

 

       (1) 
 

where yt is our forecast, xn is the input data and an are the 
weights which are optimized by computing the minimum 
mean squared error (MSE) of yt with yt-1. 

The aim is then to select the ‘best’ FMD input parameters 
x1, x2, x3 (in this case) from a given subset of FMD input 
parameters, 51, which affect S&P 500. The algorithm works 
on the basis that it can compute the best MSE for that given 
set. To select the best parameters, a data bus is used which 
shifts the input parameters such that a regression is computed 
for all possible combinations.  

As is shown in Fig. 1, the initial architecture will compute 
in parallel 10 possible combinations at a time, and then 
sequentially cycle through the FMD input parameters until all 
possible combinations are evaluated. Throughout this process 
the optimum set of parameters yielding the minimum MSE is 
constantly saved. These are then used to conduct the forecast.  

IV. PROOF OF CONCEPT 

In order to test the feasibility of the algorithm, initially it 
was programmed in MATLAB and demonstrated on a 12-core 
Central Processing Unit (CPU). Results shown in Table I 
confirm the functionality of the algorithm achieving a 
directional efficiency of greater than 50% for a minimum of 
six inputs. However, the time to find the best six inputs was 
extremely long given the limitations of processing in 
MATLAB. In order to fully exploit the potential of the 
algorithm and to conduct a more exhaustive study of the 
optimum number of input parameters in less than our 24-hour 
time constraint, a more computationally powerful hardware 
platform was needed. 

 
TABLE I   

DIRECTIONAL RESULTS, ACCURACY AND SPEED OF ALGORITHM ON A PC 

BASED SYSTEM 
51 FMD Inputs data 1 2 4 6 

Directional Result 11/30 14/30 15/30 17/30 

RMSE 28.57 33.02 24.784 19.446 

Ave. Time Elapsed 0.02760 .66196 16.3922 36096.65 

V. GPU BASED COMPUTATIONAL ENGINE 

In order to successfully meet the requirement of handling 
such a large data set to complete the prediction target on time, 
we decided to adopt a novel Graphics Processing Unit (GPU) 
based computational engine which we anticipated would 
overcome the limitations of using MatLab on a conventional 
CPU system. 

To support this, we decided to build a bespoke hardware 
unit, which consisted of a 6-core CPU (i73930K) and 3 GPU 
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changing economic conditions, this weighted total will 
change; different inputs representing different weightings will 
emerge as the economic climate alters. This dynamic and 
automatic feature of our algorithm is imperative and ensures 
that the algorithm is constantly adapting to the ever-changing 
economic environment by producing an entirely different 
weighting of FMD inputs each day (cycle). This approach is 
particularly important when predicting the complex 
aggregated S&P 500 index.  

As a result of establishing the optimum parameters for the 
algorithm, we can confirm that we have obtained a directional 
trend of greater than 55% in predicting the S&P 500 at (t+1). 

VII. CONCLUSION AND FUTURE WORK 

A novel architecture algorithm for predicting S&P 500 has 
been designed and implemented. The data that needs to be 
processed within a 24-hour period demands a very high speed 
and highly parallel computation engine which was realized 
using an advanced GPU design, optimised to meet our 
particular requirements. The work we have presented here is 
on-going. The authors plan to refine the design further to 
improve accuracy and also and adapt it for other financial 
market prediction tasks, such as movement of currencies and 
other key stock indices. 
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