Search results for: Christer Ahlstrom
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Christer Ahlstrom

2 Distinguishing Innocent Murmurs from Murmurs caused by Aortic Stenosis by Recurrence Quantification Analysis

Authors: Christer Ahlstrom, Katja Höglund, Peter Hult, Jens Häggström, Clarence Kvart, Per Ask

Abstract:

It is sometimes difficult to differentiate between innocent murmurs and pathological murmurs during auscultation. In these difficult cases, an intelligent stethoscope with decision support abilities would be of great value. In this study, using a dog model, phonocardiographic recordings were obtained from 27 boxer dogs with various degrees of aortic stenosis (AS) severity. As a reference for severity assessment, continuous wave Doppler was used. The data were analyzed with recurrence quantification analysis (RQA) with the aim to find features able to distinguish innocent murmurs from murmurs caused by AS. Four out of eight investigated RQA features showed significant differences between innocent murmurs and pathological murmurs. Using a plain linear discriminant analysis classifier, the best pair of features (recurrence rate and entropy) resulted in a sensitivity of 90% and a specificity of 88%. In conclusion, RQA provide valid features which can be used for differentiation between innocent murmurs and murmurs caused by AS.

Keywords: Bioacoustics, murmur, phonocardiographic signal, recurrence quantification analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
1 Method of Estimating Absolute Entropy of Municipal Solid Waste

Authors: Francis Chinweuba Eboh, Peter Ahlström, Tobias Richards

Abstract:

Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3%  C 95.1%, 0.0%  H  14.3%, 0.0%  O  71.1%, 0.0  N  66.7%, 0.0%  S  42.1%, 0.0%  Cl  89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.

Keywords: Absolute entropy, irreversibility, municipal solid waste, waste-to-energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791