Search results for: Sea Water Level
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5469

Search results for: Sea Water Level

5229 Low-Cost Monitoring System for Hydroponic Urban Vertical Farms

Authors: Francesco Ruscio, Paolo Paoletti, Jens Thomas, Paul Myers, Sebastiano Fichera

Abstract:

This paper presents the development of a low-cost monitoring system for a hydroponic urban vertical farm, enabling its automation and a quantitative assessment of the farm performance. Urban farming has seen increasing interest in the last decade thanks to the development of energy efficient and affordable LED lights; however, the optimal configuration of such systems (i.e. amount of nutrients, light-on time, ambient temperature etc.) is mostly based on the farmers’ experience and empirical guidelines. Moreover, even if simple, the maintenance of such systems is labor intensive as it requires water to be topped-up periodically, mixing of the nutrients etc. To unlock the full potential of urban farming, a quantitative understanding of the role that each variable plays in the growth of the plants is needed, together with a higher degree of automation. The low-cost monitoring system proposed in this paper is a step toward filling this knowledge and technological gap, as it enables collection of sensor data related to water and air temperature, water level, humidity, pressure, light intensity, pH and electric conductivity without requiring any human intervention. More sensors and actuators can also easily be added thanks to the modular design of the proposed platform. Data can be accessed remotely via a simple web interface. The proposed platform can be used both for quantitatively optimizing the setup of the farms and for automating some of the most labor-intensive maintenance activities. Moreover, such monitoring system can also potentially be used for high-level decision making, once enough data are collected.

Keywords: Automation, hydroponics, internet of things, monitoring system, urban farming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
5228 Sustainable Use of Laura Lens during Drought

Authors: Kazuhisa Koda, Tsutomu Kobayashi

Abstract:

Laura Island, which is located about 50 km away from downtown, is a source of water supply in Majuro atoll, which is the capital of the Republic of the Marshall Islands. Low and flat Majuro atoll has neither river nor lake. It is very important for Majuro atoll to ensure the conservation of its water resources. However, upconing, which is the process of partial rising of the freshwater-saltwater boundary near the water-supply well, was caused by the excess pumping from it during the severe drought in 1998. Upconing will make the water usage of the freshwater lens difficult. Thus, appropriate water usage is required to prevent up coning in the freshwater lens because there is no other water source during drought. Numerical simulation of water usage applying SEAWAT model was conducted at the central part of Laura Island, including the water supply well, which was affected by upconing. The freshwater lens was created as a result of infiltration of consistent average rainfall. The lens shape was almost the same as the one in 1985. 0 of monthly rainfall and variable daily pump discharge were used to calculate the sustainable pump discharge from the water supply well. Consequently, the total amount of pump discharge was increased as the daily pump discharge was increased, indicating that it needs more time to recover from upconing. Thus, a pump standard to reduce the pump intensity is being proposed, which is based on numerical simulation concerning the occurrence of the up-coning phenomenon in Laura Island during the drought.

Keywords: Freshwater lens, islands, numerical simulation, sustainable water use.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
5227 Modeling of Water Erosion in the M'Goun Watershed Using OpenGIS Software

Authors: M. Khal, Ab. Algouti, A. Algouti

Abstract:

Water erosion is the major cause of the erosion that shapes the earth's surface. Modeling water erosion requires the use of software and GIS programs, commercial or closed source. The very high prices for commercial GIS licenses, motivates users and researchers to find open source software as relevant and applicable as the proprietary GIS. The objective of this study is the modeling of water erosion and the hydrogeological and morphophysical characterization of the Oued M'Goun watershed (southern flank of the Central High Atlas) developed by free programs of GIS. The very pertinent results are obtained by executing tasks and algorithms in a simple and easy way. Thus, the various geoscientific and geostatistical analyzes of a digital elevation model (SRTM 30 m resolution) and their combination with the treatments and interpretation of satellite imagery information allowed us to characterize the region studied and to map the area most vulnerable to water erosion.

Keywords: Central High-Atlas, hydrogeology, M’Goun watershed, OpenGIS, water erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
5226 Investigating the Effect of Using Capacitors in the Pumping Station on the Harmonic Contents (Case Study: Kafr El - Shikh Governorate, Egypt)

Authors: Khaled M. Fetyan

Abstract:

Power Factor (PF) is one of the most important parameters in the electrical systems, especially in the water pumping station. The low power factor value of the water pumping stations causes penalty for the electrical bill. There are many methods use for power factor improvement. Each one of them uses a capacitor on the electrical power network. The position of the capacitors is varied depends on many factors such as; voltage level and capacitors rating. Adding capacitors on the motor terminals increase the supply power factor from 0.8 to more than 0.9 but these capacitors cause some problems for the electrical grid network, such as increasing the harmonic contents of the grid line voltage. In this paper the effects of using capacitors in the water pumping stations to improve the power factor value on the harmonic contents of the electrical grid network are studied. One of large water pumping stations in Kafr El-Shikh Governorate in Egypt was used, as a case study. The effect of capacitors on the line voltage harmonic contents is measured. The station uses capacitors to improve the PF values at the 1 lkv grid network. The power supply harmonics values are measured by a power quality analyzer at different loading conditions. The results showed that; the capacitors improved the power factor value of the feeder and its value increased than 0.9. But the THD values are increased by adding these capacitors. The harmonic analysis showed that; the 13th, 17th, and 19th harmonics orders are increased also by adding the capacitors.

Keywords: Water pumping stations, power factor improvement, total harmonic distortions (THD), power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2738
5225 Effects of Water Content on Dielectric Properties of Mineral Transformer Oil

Authors: Suwarno, M. Helmi Prakoso

Abstract:

Mineral oil is commonly used for high voltage transformer insulation. The insulation quality of mineral oil is affecting the operation process of high voltage transformer. There are many contaminations which could decrease the insulation quality of mineral oil. One of them is water. This research talks about the effect of water content on dielectric properties, physic properties, and partial discharge pattern on mineral oil. Samples were varied with 10 varieties of water content value. And then all samples would be tested to measure the dielectric properties, physic properties, and partial discharge pattern. The result of this research showed that an increment of water content value would decrease the insulation quality of mineral oil.

Keywords: Dielectric properties, high voltage transformer, mineral oil, water content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3628
5224 Water Vapor Plasma Torch: Design, Characteristics and Applications

Authors: A. Tamošiūnas, P. Valatkevičius, V. Grigaitiene, V. Valinčius

Abstract:

The atmospheric pressure plasma torch with a direct current arc discharge stabilized by water vapor vortex was experimentally investigated. Overheated up to 450K water vapor was used as plasma forming gas. Plasma torch design is one of the most important factors leading to a stable operation of the device. The electrical and thermal characteristics of the plasma torch were determined during the experimental investigations. The design and the basic characteristics of the water vapor plasma torch are presented in the paper. Plasma torches with the electric arc stabilized by water vapor vortex provide special performance characteristics in some plasma processing applications such as thermal plasma neutralization and destruction of organic wastes enabling to extract high caloric value synthesis gas as by-product of the process. Syngas could be used as a surrogate fuel partly replacing the dependence on the fossil fuels or used as a feedstock for hydrogen, methanol production.

Keywords: Arc discharge, atmospheric pressure thermal plasma, plasma torch, water vapor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4480
5223 Physicochemical Properties of Microemulsions and their uses in Enhanced Oil Recovery

Authors: T. Kumar, Achinta Bera, Ajay Mandal

Abstract:

Use of microemulsion in enhanced oil recovery has become more attractive in recent years because of its high level of extraction efficiency. Experimental investigations have been made on characterization of microemulsions of oil-brinesurfactant/ cosurfactant system for its use in enhanced oil recovery (EOR). Sodium dodecyl sulfate, propan-1-ol and heptane were selected as surfactant, cosurfactant and oil respectively for preparation of microemulsion. The effects of salinity on the relative phase volumes and solubilization parameters have also been studied. As salinity changes from low to high value, phase transition takes place from Winsor I to Winsor II via Winsor III. Suitable microemulsion composition has been selected based on its stability and ability to reduce interfacial tension. A series of flooding experiments have been performed using the selected microemulsion. The flooding experiments were performed in a core flooding apparatus using uniform sand pack. The core holder was tightly packed with uniform sands (60-100 mesh) and saturated with brines of different salinities. It was flooded with the brine at 25 psig and the absolute permeability was calculated from the flow rate of the through sand pack. The sand pack was then flooded with the crude oil at 800 psig to irreducible water saturation. The initial water saturation was determined on the basis of mass balance. Waterflooding was conducted by placing the coreholder horizontally at a constant injection pressure at 200 pisg. After water flooding, when water-cut reached above 95%, around 0.5 pore volume (PV) of the above microemulsion slug was injected followed by chasing water. The experiments were repeated using different composition of microemulsion slug. The additional recoveries were calculated by material balance. Encouraging results with additional recovery more than 20% of original oil in place above the conventional water flooding have been observed.

Keywords: Microemulsion Flooding, Enhanced Oil Recovery, Phase Behavior, Optimal salinity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3256
5222 Influential Effect of Self-Healing Treatment on Water Absorption and Electrical Resistance of Normal and Light Weight Aggregate Concretes

Authors: B. Tayebani, N. Hosseinibalam, D. Mostofinejad

Abstract:

Interest in using bacteria in cement materials due to its positive influences has been increased. Cement materials such as mortar and concrete basically suffer from higher porosity and water absorption compared to other building materials such as steel materials. Because of the negative side-effects of certain chemical techniques, biological methods have been proposed as a desired and environmentally friendly strategy for reducing concrete porosity and diminishing water absorption. This paper presents the results of an experimental investigation carried out to evaluate the influence of Sporosarcina pasteurii bacteria on the behaviour of two types of concretes (light weight aggregate concrete and normal weight concrete). The resistance of specimens to water penetration by testing water absorption and evaluating the electrical resistance of those concretes was examined and compared. As a conclusion, 20% increase in electrical resistance and 10% reduction in water absorption of lightweight aggregate concrete (LWAC) and for normal concrete the results show 7% decrease in water absorption and almost 10% increase in electrical resistance.

Keywords: Bacteria, biological method, normal weight concrete, lightweight aggregate concrete, water absorption, electrical resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
5221 Maximum Water Hammer Sensitivity Analysis

Authors: Jalil Emadi, Abbas Solemani

Abstract:

Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of each input parameter of the application relative to the maximum amount of water hammer estimated by the software. The study determines estimated maximum water hammer variations due to variations of input parameters including water temperature, pipe type, thickness and diameter, electromotor rpm and power, and moment of inertia of electromotor and pump. In our study, Kuhrang Pumping Station was modeled using WaterGEMS Software. The pumping station is characterized by total discharge of 200 liters per second, dynamic height of 194 meters and 1.5 kilometers of steel conveyance pipeline and transports water to Cheshme Morvarid for farmland irrigation. The model was run in steady hydraulic condition and transferred to Hammer Software. Then, the model was run in several unsteady hydraulic conditions and sensitivity of maximum water hammer to each input parameter was calculated. It is shown that parameters to which maximum water hammer is most sensitive are moment of inertia of pump and electromotor, diameter, type and thickness of pipe and water temperature, respectively.

Keywords: Pressure Wave, Water Hammer, Sensitivity Analysis, Hammer Software, Kuhrang, Cheshme Morvarid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3274
5220 Assessments of Internal Erosion in a Landfill Due to Changes in Groundwater Level

Authors: Siamak Feizi, Gunvor Baardvik

Abstract:

Soil erosion has special consequences for landfills that are more serious than those found at conventional construction sites. Different potential heads between two sides of a landfill and the subsequent movement of water through pores within the soil body could trigger the soil erosion and construction instability. Such condition was encountered in a landfill project in the southern part of Norway. To check the risk of internal erosion due changes in the groundwater level (because of seasonal flooding in the river), a series of numerical simulations by means of Geo-Seep software were conducted. Output of this study provides a total picture of the landfill stability, possibilities of erosions and necessary measures to prevent or reduce the risk for the landfill operator.

Keywords: Erosion, seepage, landfill, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448
5219 Stress versus Strain Behavior of Geopolymer Cement under Triaxial Stress Conditions in Saline and Normal Water

Authors: Haider M. Giasuddin, Jay G. Sanjayan, P. G. Ranjith

Abstract:

Geopolymer cement was evaluated as wellbore sealing material for carbon dioxide geosequestration application. Curing of cement system in saline water and strength testing in triaxial stress state condition under lateral confinement is relevant to primary cementing in CO2 geosequestration wellbore in saline aquifer. Geopolymer cement was cured in saline water (both at ambient conditions for 28 days and heated (60°C) conditions for 12 hours) and tested for triaxial strength at different levels of lateral confinement. Normal water and few other curing techniques were also studied both for geopolymer and API ‘G’ cement. Results reported were compared to evaluate the suitability of saline water for curing of geopolymer cement. Unconfined compression test results showed higher strength for curing in saline water than normal water. Besides, testing strength under lateral confinement demonstrated the material failure behavior from brittle to plastic.

Keywords: Fly ash, Geopolymer, Geosequestration, Saline water, Strength, Traiaxial test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
5218 Interrelationships between Physicochemical Water Pollution Indicators: A Case Study of River Pandu

Authors: Sunita Verma , Divya Tiwari, Ajay Verma

Abstract:

Water samples were collected from river Pandu at six stations where human and animal activities were high. Composite samples were analyzed for dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD) , pH values during dry and wet seasons as well as the harmattan period. The total data points were used to establish relationships between the parameters and data were also subjected to statistical analysis and expressed as mean ± standard error of mean (SEM) at a level of significance of p<0.05. Regression analysis was carried out to establish relationships if any between studied parameters and relationships in form of scatter plots were obtained between DO/BOD, COD/DO, BOD/COD, COD/pH, BOD/pH and DO/pH. The high to moderate correlation coefficient observed, R2 ranged from 0.68 to 0.15 between these parameters.

Keywords: BOD, DO, COD, pH, Regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
5217 Subcritical Water Extraction of Mannitol from Olive Leaves

Authors: S. M. Ghoreishi, R. Gholami Shahrestani, S. H. Ghaziaskar

Abstract:

Subcritical water extraction was investigated as a novel and alternative technology in the food and pharmaceutical industry for the separation of Mannitol from olive leaves and its results was compared with those of Soxhlet extraction. The effects of temperature, pressure, and flow rate of water and also momentum and mass transfer dimensionless variables such as Reynolds and Peclet Numbers on extraction yield and equilibrium partition coefficient were investigated. The 30-110 bars, 60-150°C, and flow rates of 0.2-2 mL/min were the water operating conditions. The results revealed that the highest Mannitol yield was obtained at 100°C and 50 bars. However, extraction of Mannitol was not influenced by the variations of flow rate. The mathematical modeling of experimental measurements was also investigated and the model is capable of predicting the experimental measurements very well. In addition, the results indicated higher extraction yield for the subcritical water extraction in contrast to Soxhlet method.

Keywords: Extraction, Mannitol, Modeling, Olive leaves, Soxhlet extraction, Subcritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3064
5216 The Behavior of Self-Compacting Light Weight Concrete Produced by Magnetic Water

Authors: Moosa Mazloom, Hojjat Hatami

Abstract:

The aim of this article is to access the optimal mix design of self-compacting light weight concrete. The effects of magnetic water, superplasticizer based on polycarboxylic-ether, and silica fume on characteristics of this type of concrete are studied. The workability of fresh concrete and the compressive strength of hardened concrete are considered here. For this purpose, nine mix designs were studied. The percentages of superplasticizer were 0.5, 1, and 2% of the weight of cement, and the percentages of silica fume were 0, 6, and 10% of the weight of cement. The water to cementitious ratios were 0.28, 0.32, and 0.36. The workability of concrete samples was analyzed by the devices such as slump flow, V-funnel, L box, U box, and Urimet with J ring. Then, the compressive strengths of the mixes at the ages of 3, 7, 28, and 90 days were obtained. The results show that by using magnetic water, the compressive strengths are improved at all the ages. In the concrete samples with ordinary water, more superplasticizer dosages were needed. Moreover, the combination of superplasticizer and magnetic water had positive effects on the mixes containing silica fume and they could flow easily.

Keywords: Magnetic water, self-compacting light weight concrete, silica fume, superplasticizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
5215 Experimental Investigation of Gas Bubble Behaviours in a Domestic Heat Pump Water Heating System

Authors: J. B. Qin, X. H. Jiang, Y. T. Ge

Abstract:

The growing awareness of global warming potential has internationally aroused interest and demand in reducing greenhouse gas emissions produced by human activity. Much national energy in the UK had been consumed in the residential sector mainly for space heating and domestic hot water production. Currently, gas boilers are mostly applied in the domestic water heating which contribute significantly to excessive CO2 emissions and consumption of primary energy resources. The issues can be solved by popularizing heat pump systems that are attributable to higher performance efficiency than those of traditional gas boilers. Even so, the heat pump system performance can be further enhanced if the dissolved gases in its hot water circuit can be efficiently discharged.  To achieve this target, the bubble behaviors in the heat pump water heating system need to be extensively investigated. In this paper, by varying different experimental conditions, the effects of various heat pump hot water side parameters on gas microbubble diameters were measured and analyzed. Correspondingly, the effect of each parameter has been investigated. These include varied system pressures, water flow rates, saturation ratios and heat outputs. The results measurement showed that the water flow rate is the most significant parameter to influence on gas microbubble productions. The research outcomes can significantly contribute to the understanding of gas bubble behaviors at domestic heat pump water heating systems and thus the efficient way for the discharging of the associated dissolved gases.  

Keywords: Dissolved gases in water, heat pump, domestic water heating system, microbubble formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
5214 Water Quality and Freshwater Fish Diversity at Khao Luang National Park, Thailand

Authors: S. Sutin, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

Water quality and freshwater fish diversity from nine waterfalls at Khao Luang National Park, Thailand was examined. Streams were shallow, fast flowing with clear water and rocky and sandy substrate. The mean water quality of waterfalls at Khao Luang National Park were as following pH 7.50, air temperature 24.27 °C, water temperature 26.37 °C, dissolved oxygen 7.88 mg/l, hardness 4.44-21.33 mg/l, alkalinity 3.55-11.88 mg/(as CaCO3). Twenty fish species were found at Khao Luang National Park belonging to nine families. A cluster analysis of water quality at Khao Luang National Park revealed that waterfalls at Khao Luang National Park were divided into two groups: A and B. Group A composed of two waterfalls (i.e. Aie Kaew and Wangmaipak) that flew to the Gulf of Thailand side. Group B composed of seven waterfalls (i.e. Promlok, Kalom, Nuafa, Suankun, Soidaw, Suanhai, and Thapae) that flew to the Andaman Sea side (Fig. 2) .The Cyprinids represented the major species in all the waterfalls comprising of 45%.

Keywords: Water quality, Freshwater fishes, National Park, Khao Luang, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
5213 Soil-Cement Floor Produced with Alum Water Treatment Residues

Authors: Flavio Araujo, Paulo Scalize, Julio Lima, Natalia Vieira, Antonio Albuquerque, Isabela Santos

Abstract:

From a concern regarding the environmental impacts caused by the disposal of residues generated in Water Treatment Plants (WTP's), alternatives ways have been studied to use these residues as raw material for manufacture of building materials, avoiding their discharge on water streams, disposal on sanitary landfills or incineration. This paper aims to present the results of a research work, which is using WTR for replacing the soil content in the manufacturing of soil-cement floor with proportions of 0, 5, 10 and 15%. The samples tests showed a reduction mechanical strength in so far as has increased the amount of waste. The water absorption was below the maximum of 6% required by the standard. The application of WTR contributes to the reduction of the environmental damage in the water treatment industry.

Keywords: Residue, soil-cement floor, sustainable, WTP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
5212 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes

Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi

Abstract:

One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.

Keywords: Burn-up, heavy water reactor, minor actinides, Monte Carlo, proliferation resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004
5211 Development of Total Maximum Daily Load Using Water Quality Modelling as an Approach for Watershed Management in Malaysia

Authors: S. A. Che Osmi, W. M. F. Wan Ishak, H. Kim, M. A. Azman, M. A. Ramli

Abstract:

River is one of important water sources for many activities including industrial and domestic usage such as daily usage, transportation, power supply and recreational activities. However, increasing activities in a river has grown the sources of pollutant enters the water bodies, and degraded the water quality of the river. It becomes a challenge to develop an effective river management to ensure the water sources of the river are well managed and regulated. In Malaysia, several approaches for river management have been implemented such as Integrated River Basin Management (IRBM) program for coordinating the management of resources in a natural environment based on river basin to ensure their sustainability lead by Department of Drainage and Irrigation (DID), Malaysia. Nowadays, Total Maximum Daily Load (TMDL) is one of the best approaches for river management in Malaysia. TMDL implementation is regulated and implemented in the United States. A study on the development of TMDL in Malacca River has been carried out by doing water quality monitoring, the development of water quality model by using Environmental Fluid Dynamic Codes (EFDC), and TMDL implementation plan. The implementation of TMDL will help the stakeholders and regulators to control and improve the water quality of the river. It is one of the good approaches for river management in Malaysia.

Keywords: EFDC, river management, TMDL, water quality modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
5210 Evaluation of Produced Water Treatment Using Advanced Oxidation Processes and Sodium Ferrate(VI)

Authors: Erica T. R. Mendonça, Caroline M. B. de Araujo, Filho, Osvaldo Chiavone, Sobrinho, Maurício A. da Motta

Abstract:

Oil and gas exploration is an essential activity for modern society, although the supply of its global demand has caused enough damage to the environment, mainly due to produced water generation, which is an effluent associated with the oil and gas produced during oil extraction. It is the aim of this study to evaluate the treatment of produced water, in order to reduce its oils and greases content (OG), by using flotation as a pre-treatment, combined with oxidation for the remaining organic load degradation. Thus, there has been tested Advanced Oxidation Process (AOP) using both Fenton and photo-Fenton reactions, as well as a chemical oxidation treatment using sodium ferrate(VI), Na2[FeO4], as a strong oxidant. All the studies were carried out using real samples of produced water from petroleum industry. The oxidation process using ferrate(VI) ion was studied based on factorial experimental designs. The factorial design was used in order to study how the variables pH, temperature and concentration of Na2[FeO4] influences the O&G levels. For the treatment using ferrate(VI) ion, the results showed that the best operating point is obtained when the temperature is 28 °C, pH 3, and a 2000 mg.L-1 solution of Na2[FeO4] is used. This experiment has achieved a final O&G level of 4.7 mg.L-1, which means 94% percentage removal efficiency of oils and greases. Comparing Fenton and photo-Fenton processes, it was observed that the Fenton reaction did not provide good reduction of O&G (around 20% only). On the other hand, a degradation of approximately 80.5% of oil and grease was obtained after a period of seven hours of treatment using photo-Fenton process, which indicates that the best process combination has occurred between the flotation and the photo-Fenton reaction using solar radiation, with an overall removal efficiency of O&G of approximately 89%.

Keywords: Advanced oxidation process, ferrate(VI) ion, oils and greases removal, produced water treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
5209 Removal of Heavy Metals from Water in the Presence of Organic Wastes: Fruit Peels

Authors: Berk Kılıç, Derin Dalgıç, Ela Mia Sevilla Levi, Ömer Aydın

Abstract:

In this experiment our goal was to remove heavy metals from water. Generally, removing toxic heavy elements: Cu+2, Cr+6 and Fe+3, ions from their aqueous solutions has been determined with different kinds of plants’ peels. However, this study focuses on banana, peach, orange, and potato peels. The first step of the experiment was to wash the peels with distilled water and then dry the peels in an oven for 80 h at 80 °C. The peels were washed with NaOH and dried again at 80 °C for 2 days. Once the peels were washed and dried, 0.4 grams were weighed and added to a 200 mL sample of 0.1% heavy metal solution by mass. The mixing process was done via a magnetic stirrer. A sample of each was taken at 15-minute intervals and the level of absorbance change of the solutions was detected using a UV-Vis Spectrophotometer. Among the used waste products, orange showed the best results, followed by banana peel as the most efficient for our purposes. Moreover, the amount of fruit peel, pH values of the initial heavy metal solution, and initial concentration of heavy metal solutions were investigated to determine the effectiveness of fruit peels for absorbency.

Keywords: Absorbance, heavy metal, removal of heavy metals, fruit peels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161
5208 Physicochemical Parameters of Tap Water in Dhahran, Saudi Arabia: An Empirical Assessment

Authors: Ahmed A. Hassan, Bassam Tawabini

Abstract:

In this study, the physicochemical parameters of Dhahran tap water were assessed to determine its suitability for drinking purposes. A total of 45 water samples were collected from different locations. The results indicate temperature ranges of 19.76 to 22.86 °C, pH (6.5 to 8.23), dissolved oxygen (4.21 to 8.32 mg/L), conductivity (232 to 2586 uS/cm), turbidity (0.17 to 0.37 Nephelometric Turbidity unit (NTU)), total dissolved solids (93 to 1671 mg/L), total alkalinity (4.11 to 24.04 mg/L), calcium (0.02 to 164 mg/L), magnesium (0 .6 to 77.9 mg/L), chloride (32.7 to 568.7 mg/L), nitrate (0.02 to 3 mg/L), fluoride (0.001 to 0.591 mg/L), sodium (18.4 to 232 mg/L), potassium (0.5 to 26.4 mg/L), and sulphate (2.39 to 258 mg/L). The results were compared with the drinking water standards recommended by the World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA). The study determined that though the levels of most of the physicochemical parameters comply with the standards, however, slight deviations exist. This is evident in the values of the physical parameters (conductivity and total dissolved solids), and the chemical parameters (sulphate, chloride, and sodium) recorded at a few sample sites.

Keywords: Physicochemical parameters, tap water, water quality, Dhahran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
5207 Temperature Control of Industrial Water Cooler using Hot-gas Bypass

Authors: Jung-in Yoon, Seung-taek Oh, Seung-moon Baek, Jun-hyuk Choi, Jong-yeong Byun, Seok-kwon Jeong, Choon-guen Moon

Abstract:

In this study, we experiment on precise control outlet temperature of water from the water cooler with hot-gas bypass method based on PI control logic for machine tool. Recently, technical trend for machine tools is focused on enhancement of speed and accuracy. High speedy processing causes thermal and structural deformation of objects from the machine tools. Water cooler has to be applied to machine tools to reduce the thermal negative influence with accurate temperature controlling system. The goal of this study is to minimize temperature error in steady state. In addition, control period of an electronic expansion valve were considered to increment of lifetime of the machine tools and quality of product with a water cooler.

Keywords: Hot-gas bypass, Water cooler, PI control, Electronic Expansion Valve, Gain tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3159
5206 Secondary Effects on Water Vapor Transport Properties Measured by Cup Method

Authors: Z. Pavlík, J. Fořt, J. Žumár, M. Pavlíková, R. Černý

Abstract:

The cup method is applied for the measurement of water vapor transport properties of porous materials worldwide. However, in practical applications the experimental results are often used without taking into account some secondary effects which can play an important role under specific conditions. In this paper, the effect of temperature on water vapor transport properties of cellular concrete is studied, together with the influence of sample thickness. At first, the bulk density, matrix density, total open porosity and sorption and desorption isotherms are measured for material characterization purposes. Then, the steady state cup method is used for determination of water vapor transport properties, whereas the measurements are performed at several temperatures and for three different sample thicknesses.

Keywords: Water vapor transport, cellular concrete, cup method, temperature, sample thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
5205 Sweet Corn Water Productivity under Several Deficit Irrigation Regimes Applied during Vegetative Growth Stage using Treated Wastewater as Water Irrigation Source

Authors: Hirich A., Rami A., Laajaj K., Choukr-Allah R., Jacobsen S-E., El youssfi L., El Omari H.

Abstract:

Yield and Crop Water Productivity are crucial issues in sustainable agriculture, especially in high-demand resource crops such as sweet corn. This study was conducted to investigate agronomic responses such as plant growth, yield and soil parameters (EC and Nitrate accumulation) to several deficit irrigation treatments (100, 75, 50, 25 and 0% of ETm) applied during vegetative growth stage, rainfed treatment was also tested. The finding of this research indicates that under deficit irrigation during vegetative growth stage applying 75% of ETm lead to increasing of 19.4% in terms of fresh ear yield, 9.4% in terms of dry grain yield, 10.5% in terms of number of ears per plant, 11.5% for the 1000 grains weight and 19% in terms of crop water productivity compared with fully irrigated treatment. While those parameters in addition to root, shoot and plant height has been affected by deficit irrigation during vegetative growth stage when increasing water stress degree more than 50% of ETm.

Keywords: Leaf area, yield, crop water productivity, water saving

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
5204 Impacts of Climate Change on Water Resources of Greater Zab and Lesser Zab Basins, Iraq, Using Soil and Water Assessment Tool Model

Authors: Nahlah Abbas, Saleh A. Wasimi, Nadhir Al-Ansari

Abstract:

The Greater Zab and Lesser Zab are the major tributaries of Tigris River contributing the largest flow volumes into the river. The impacts of climate change on water resources in these basins have not been well addressed. To gain a better understanding of the effects of climate change on water resources of the study area in near future (2049-2069) as well as in distant future (2080-2099), Soil and Water Assessment Tool (SWAT) was applied. The model was first calibrated for the period from 1979 to 2004 to test its suitability in describing the hydrological processes in the basins. The SWAT model showed a good performance in simulating streamflow. The calibrated model was then used to evaluate the impacts of climate change on water resources. Six general circulation models (GCMs) from phase five of the Coupled Model Intercomparison Project (CMIP5) under three Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5, and RCP 8.5 for periods of 2049-2069 and 2080-2099 were used to project the climate change impacts on these basins. The results demonstrated a significant decline in water resources availability in the future.

Keywords: Tigris River, climate change, water resources, SWAT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
5203 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions

Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers

Abstract:

Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.

Keywords: Carbon capture and storage, water solubility, equation of states.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2912
5202 Deterioration Assessment Models for Water Pipelines

Authors: L. Parvizsedghy, I. Gkountis, A. Senouci, T. Zayed, M. Alsharqawi, H. El Chanati, M. El-Abbasy, F. Mosleh

Abstract:

The aging and deterioration of water pipelines in cities worldwide result in more frequent water main breaks, water service disruptions, and flooding damage. Therefore, there is an urgent need for undertaking proper maintenance procedures to avoid breaks and disastrous failures. However, due to budget limitations, the maintenance of water pipeline networks needs to be prioritized through efficient deterioration assessment models. Previous studies focused on the development of structural or physical deterioration assessment models, which require expensive inspection data. But, this paper aims at developing deterioration assessment models for water pipelines using statistical techniques. Several deterioration models were developed based on pipeline size, material type, and soil type using linear regression analysis. The categorical nature of some variables affecting pipeline deterioration was considered through developing several categorical models. The developed models were validated with an average validity percentage greater than 95%. Moreover, sensitivity analysis was carried out against different classifications and it displayed higher importance of age of pipes compared to other factors. The developed models will be helpful for the water municipalities and asset managers to assess the condition of their pipes and prioritize them for maintenance and inspection purposes.

Keywords: Water pipelines, deterioration assessment models, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
5201 Multi-Objective Planning and Operation of Water Supply Systems Subject to Climate Change

Authors: B. J. C. Perera, D. A. Sachindra, W. Godoy., A.F. Barton, F. Huang

Abstract:

Many water supply systems in Australia are currently undergoing significant reconfiguration due to reductions in long term average rainfall and resulting low inflows to water supply reservoirs since the second half of the 20th century. When water supply systems undergo change, it is necessary to develop new operating rules, which should consider climate, because the climate change is likely to further reduce inflows. In addition, water resource systems are increasingly intended to be operated to meet complex and multiple objectives representing social, economic, environmental and sustainability criteria. This is further complicated by conflicting preferences on these objectives from diverse stakeholders. This paper describes a methodology to develop optimum operating rules for complex multi-reservoir systems undergoing significant change, considering all of the above issues. The methodology is demonstrated using the Grampians water supply system in northwest Victoria, Australia. Initial work conducted on the project is also presented in this paper.

Keywords: Climate change, Multi-objective planning, Pareto optimal; Stakeholder preference, Statistical downscaling, Water supply systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
5200 The Gasification of Acetone via Partial Oxidation in Supercritical Water

Authors: Shyh-Ming Chern, Kai-Ting Hsieh

Abstract:

Organic solvents find various applications in many industrial sectors and laboratories as dilution solvents, dispersion solvents, cleaners and even lubricants. Millions of tons of spent organic solvents (SOS) are generated each year worldwide, prompting the need for more efficient, cleaner and safer methods for the treatment and resource recovery of SOS. As a result, acetone, selected as a model compound for SOS, was gasified in supercritical water to assess the feasibility of resource recovery of SOS by means of supercritical water processes. Experiments were conducted with an autoclave reactor. Gaseous product is mainly consists of H2, CO, CO2 and CH4. The effects of three major operating parameters, the reaction temperature, from 673 to 773K, the dosage of oxidizing agent, from 0.3 to 0.5 stoichiometric oxygen, and the concentration of acetone in the feed, 0.1 and 0.2M, on the product gas composition, yield and heating value were evaluated with the water density fixed at about 0.188g/ml.

Keywords: Acetone, gasification, SCW, supercritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140