Search results for: Magnesium matrix composite
1430 Thermomechanical Coupled Analysis of Fiber Reinforced Polymer Composite Square Tube: A Finite Element Study
Authors: M. Ali, K. Alam, E. Ohioma
Abstract:
This paper presents a numerical investigation on the behavior of fiber reinforced polymer composite tubes (FRP) under thermomechanical coupled loading using finite element software ABAQUS and a special add-on subroutine, CZone. Three cases were explored; pure mechanical loading, pure thermal loading, and coupled thermomechanical loading. The failure index (Tsai-Wu) under all three loading cases was assessed for all plies in the tube walls. The simulation results under pure mechanical loading showed that composite tube failed at a tensile load of 3.1 kN. However, with the superposition of thermal load on mechanical load on the composite tube, the failure index of the previously failed plies in tube walls reduced significantly causing the tube to fail at 6 kN. This showed 93% improvement in the load carrying capacity of the composite tube in present study. The increase in load carrying capacity was attributed to the stress effects of the coefficients of thermal expansion (CTE) on the laminate as well as the inter-lamina stresses induced due to the composite stack layup.
Keywords: Thermal, mechanical, composites, square tubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19471429 Penetration Analysis for Composites Applicable to Military Vehicle Armors, Aircraft Engines and Nuclear Power Plant Structures
Authors: Dong Wook Lee
Abstract:
This paper describes a method for analyzing penetration for composite material using an explicit nonlinear Finite Element Analysis (FEA). This method may be used in the early stage of design for the protection of military vehicles, aircraft engines and nuclear power plant structures made of composite materials. This paper deals with simple ballistic penetration tests for composite materials and the FEA modeling method and results. The FEA was performed to interpret the ballistic field test phenomenon regarding the damage propagation in the structure subjected to local foreign object impact.
Keywords: Computer Aided Engineering, CAE, Finite Element Analysis, FEA, impact analysis, penetration analysis, composite material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6111428 Determination and Comparison of Some Elements in Different Types of Orange Juices and Investigation of Health Effects
Authors: F. Demir, A. S. Kipcak, O. Dere Ozdemir, E. Moroydor Derun, S. Piskin
Abstract:
Fruit juices play important roles in human health as being a key part of nutrition. Juice and nectar are two categories of drinks with so many variations for consumers, regardless of age, lifestyle and taste preferences, which they can find their favorites. Juices contain 100% pulp when pulp content of ‘nectar’ changes between 25%-50%. In this study, potassium (K), magnesium (Mg), and phosphorus (P) contents in orange juice and nectar is determined for conscious consumption. For this purpose inductively coupled plasma optical emission spectrometry (ICP-OES) is used to find out potassium (K), magnesium (Mg), and phosphorus (P) contents in orange juices and nectar. Furthermore, the daily intake of elements from orange juice and nectar that affects human health is also investigated. From the results of experiments K, Mg and P contents are found in orange juice as 1351; 73,25; 89,27 ppm and in orange nectar as 986; 33,76; 51,30 respectively.Keywords: Orange juice, nectar, ICP-OES, element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26371427 Using Tabu Search to Analyze the Mauritian Economic Sectors
Authors: J. Cheeneebash, V. Beeharry, A. Gopaul
Abstract:
The aim of this paper is to express the input-output matrix as a linear ordering problem which is classified as an NP-hard problem. We then use a Tabu search algorithm to find the best permutation among sectors in the input-output matrix that will give an optimal solution. This optimal permutation can be useful in designing policies and strategies for economists and government in their goal of maximizing the gross domestic product.Keywords: Input-Output matrix, linear ordering problem, Tabusearch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14921426 Application Research on Large Profiled Statues of Steel-Concrete Composite Shear Wall
Authors: Zhao Cai-qi, Ma Jun
Abstract:
Twin steel plates-concrete composite shear walls are composed of a pair of steel plate layers and a concrete layer sandwiched between them, which have the characteristics of both reinforced concrete shear walls and steel plate shear walls. Twin steel plates-composite shear walls contain very high ultimsate bearing capacity and ductility, which have great potential to be applied in the super high-rise buildings and special structures. In this paper, we analyzed the basic characteristics and stress mechanism of the twin steel plates-composite shear walls. Specifically, we analyzed the effects of the steel plate thickness, wall thickness and concrete strength on the bearing capacity of the twin steel plates-composite shear walls. The analysis results indicate that: (1) the initial shear stiffness and ultimate shear-carrying capacity is not significantly affected by the thickness of concrete wall but by the class of concrete, (2) both factors significantly impact the shear distribution of the shear walls in ultimate shear-carrying capacity. The technique of twin steel plates-composite shear walls has been successfully applied in the construction of an 88-meter Huge Statue of Buddha located in Hunan Province, China. The analysis results and engineering experiences showed that the twin steel plates-composite shear walls have great potential for future research and applications.Keywords: Twin steel plates-concrete composite shear wall, huge statue of Buddha, shear capacity, initial lateral stiffness, overturning moment bearing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21211425 Physico-Mechanical Properties of Chemically Modified Sisal Fibre Reinforced Unsaturated Polyester Composites
Authors: A. A. Salisu, M. Y. Yakasai, K. M. Aujara
Abstract:
Sisal leaves were subjected to enzymatic retting method to extract the sisal fibre. A portion of the fibre was pretreated with alkali (NaOH), and further treated with benzoyl chloride and silane treatment reagents. Both the treated and untreated Sisal fibre composites were used to fabricate the composite by hand lay-up technique using unsaturated polyester resin. Tensile, flexural, water absorption, density, thickness swelling and chemical resistant tests were conducted and evaluated on the composites. Results obtained for all the parameters showed an increase in the treated fibre compared to untreated fibre. FT-IR spectra results ascertained the inclusion of benzoyl and silane groups on the fibre surface. Scanning electron microscopy (SEM) result obtained showed variation in the morphology of the treated and untreated fibre. Chemical modification was found to improve adhesion of the fibre to the matrix, as well as physico-mechanical properties of the composites.Keywords: Chemical resistance, density test, Sisal fibre, polymer matrix, thickness swelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20121424 Proportionally Damped Finite Element State-Space Model of Composite Laminated Plate with Localized Interface Degeneration
Authors: Shi Qi Koo, Ahmad Beng Hong Kueh
Abstract:
In the present work, the finite element formulation for the investigation of the effects of a localized interfacial degeneration on the dynamic behavior of the [90°/0°] laminated composite plate employing the state-space technique is performed. The stiffness of the laminate is determined by assembling the stiffnesses of subelements. This includes an introduction of an interface layer adopting the virtually zero-thickness formulation to model the interfacial degeneration. Also, the kinematically consistent mass matrix and proportional damping have been formulated to complete the free vibration governing expression. To simulate the interfacial degeneration of the laminate, the degenerated areas are defined from the center propagating outwards in a localized manner. It is found that the natural frequency, damped frequency and damping ratio of the plate decreases as the degenerated area of the interface increases. On the contrary, the loss factor increases correspondingly.
Keywords: Dynamic finite element, localized interface degeneration, proportional damping, state-space modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20821423 Effects of Coupling Agent and Flame Retardant on the Performances of Oil Palm Empty Fruit Bunch Fiber Reinforced Polypropylene Composites
Authors: R. Ridzuan, M. D. H. Beg, M. Y. Rosli, M. H. Rohaya, A. A. Astimar S. Samahani, I. Zawawi
Abstract:
Alkali treated oil palm empty fruit bunch (EFB) fibres (TEFBF) and untreated EFBF fibers (UEFBF) were incorporated in polypropylene (PP) with and without malic anhydride grafted PP (MAPP) and magnesium hydroxide as flame retardant (FR) to produce TEFBF-PP and UEFBF-PP composites by the melt casting method. The composites were characterized by mechanical and burning tests along with a scanning electron microscope and Fourier transform infrared spectroscopy. The significant improvement in flexural modulus (133%) and flame retardant property (60%) of TEFBF-PP composite with MAPP and FR is observed. The improved mechanical property is discussed by the development of encapsulated textures.Keywords: Empty fruit bunch fibers, polypropylene, mechanical property, flame retardant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25321422 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model
Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You
Abstract:
The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.Keywords: Clustering algorithm, potential function, speech signal, the UBSS model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6791421 Influence of MgO Physically Mixed with Tungsten Oxide Supported Silica Catalyst on Coke Formation
Authors: T. Thitiapichart, P. Praserthdama
Abstract:
The effect of additional magnesium oxide (MgO) was investigated by using the tungsten oxide supported on silica catalyst (WOx/SiO2) physically mixed with MgO in a weight ratio 1:1. The both fresh and spent catalysts were characterized by FT-Raman spectrometer, UV-Vis spectrometer, X-Ray diffraction (XRD) and temperature programmed oxidation (TPO). The results indicated that the additional MgO could enhance the conversion of trans-2-butene due to isomerization reaction. However, adding MgO would increase the amount of coke deposit on the WOx/SiO2 catalyst. The TPO profile presented two peaks when the WOx/SiO2 catalyst was physically mixed with MgO. The further peak was suggested that came from coke precursor could be produced by isomerization reaction of undesired product. Then, the occurred coke precursor could deposit and form coke on the acid catalyst.Keywords: Coke formation, metathesis, magnesium oxide, physically mix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23961420 Using Sugar Mill Waste for Biobased Epoxy Composites
Authors: Ulku Soydal, Mustafa Esen Marti, Gulnare Ahmetli
Abstract:
In this study, precipitated calcium carbonate lime waste (LW) from sugar beet process was recycled as the raw material for the preparation of composite materials. Epoxidized soybean oil (ESO) was used as a co-matrix in 50 wt% with DGEBA type epoxy resin (ER). XRD was used for characterization of composites. Effects of ESO and LW filler amounts on mechanical properties of neat ER were investigated. Modification of ER with ESO remarkably enhanced plasticity of ER.Keywords: Epoxy resin, biocomposite, lime waste, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17291419 Matrix-Interleaved Serially Concatenated Block Codes for Speech Transmission in Fixed Wireless Communication Systems
Authors: F. Mehran
Abstract:
In this paper, we study a class of serially concatenated block codes (SCBC) based on matrix interleavers, to be employed in fixed wireless communication systems. The performances of SCBC¬coded systems are investigated under various interleaver dimensions. Numerical results reveal that the matrix interleaver could be a competitive candidate over conventional block interleaver for frame lengths of 200 bits; hence, the SCBC coding based on matrix interleaver is a promising technique to be employed for speech transmission applications in many international standards such as pan-European Global System for Mobile communications (GSM), Digital Cellular Systems (DCS) 1800, and Joint Detection Code Division Multiple Access (JD-CDMA) mobile radio systems, where the speech frame contains around 200 bits.
Keywords: Matrix Interleaver, serial concatenated block codes (SCBC), turbo codes, wireless communications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19391418 Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel
Authors: Viriyavudh Sim, Jung Kyu Choi, Yong Ju Kwak, Oh Hyeon Jeon, Woo Young Jung
Abstract:
In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In-plane compression was considered in the numerical analysis with ABAQUS platform to determine the buckling failure load of BFRP infill panel system. The present result shows that the sandwich BFRP infill panel system has higher resistance to buckling failure than those of glass fiber reinforced polymer (GFRP) infill panel system, i.e. 16% increase in buckling resistance capacity.
Keywords: Basalt fiber reinforced polymer, buckling performance, FEM analysis, sandwich infill panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13501417 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems
Authors: Zi-Ang Li, Mu-Xuan Tao
Abstract:
During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.
Keywords: Finite element analysis, seismic performance evaluation, separated composite structural system, static pushover analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5721416 Investigating the Effectiveness of a 3D Printed Composite Mold
Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg
Abstract:
In composite manufacturing, the fabrication of tooling and tooling maintenance contributes to a large portion of the total cost. However, as the applications of composite materials continue to increase, there is also a growing demand for more tooling. The demand for more tooling places heavy emphasis on the industry’s ability to fabricate high quality tools while maintaining the tool’s cost effectiveness. One of the popular techniques of tool fabrication currently being developed utilizes additive manufacturing technology known as 3D printing. The popularity of 3D printing is due to 3D printing’s ability to maintain low material waste, low cost, and quick fabrication time. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite mold. A steel valve cover from an aircraft reciprocating engine was modeled utilizing 3D scanning and computer-aided design (CAD) to create a 3D printed composite mold. The mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The carbon fiber valve covers were evaluated for dimensional accuracy and quality while the 3D printed composite mold was evaluated for durability and dimensional stability. The data collected from this study provided valuable information in the understanding of 3D printed composite molds, potential improvements for the molds, and considerations for future tooling design.Keywords: Additive manufacturing, carbon fiber, composite tooling, molds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9081415 Principle Components Updates via Matrix Perturbations
Authors: Aiman Elragig, Hanan Dreiwi, Dung Ly, Idriss Elmabrook
Abstract:
This paper highlights a new approach to look at online principle components analysis (OPCA). Given a data matrix X ∈ R,^m x n we characterise the online updates of its covariance as a matrix perturbation problem. Up to the principle components, it turns out that online updates of the batch PCA can be captured by symmetric matrix perturbation of the batch covariance matrix. We have shown that as n→ n0 >> 1, the batch covariance and its update become almost similar. Finally, utilize our new setup of online updates to find a bound on the angle distance of the principle components of X and its update.Keywords: Online data updates, covariance matrix, online principle component analysis (OPCA), matrix perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10381414 Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F
Authors: Fatemeh Panjeh Ali Beik
Abstract:
In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.Keywords: Matrix equations, Iterative methods, Block Krylovsubspace methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19911413 Improved Asymptotic Stability Analysis for Lure Systems with Neutral Type and Time-varying Delays
Authors: Changchun Shen, Shouming Zhong
Abstract:
This paper investigates the problem of absolute stability and robust stability of a class of Lur-e systems with neutral type and time-varying delays. By using Lyapunov direct method and linear matrix inequality technique, new delay-dependent stability criteria are obtained and formulated in terms of linear matrix inequalities (LMIs) which are easy to check the stability of the considered systems. To obtain less conservative stability conditions, an operator is defined to construct the Lyapunov functional. Also, the free weighting matrices approach combining a matrix inequality technique is used to reduce the entailed conservativeness. Numerical examples are given to indicate significant improvements over some existing results.
Keywords: Lur'e system, linear matrix inequalities, Lyapunov, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17901412 Big Bang – Big Crunch Optimization Method in Optimum Design of Complex Composite Laminates
Authors: Pavel Y. Tabakov
Abstract:
An accurate optimal design of laminated composite structures may present considerable difficulties due to the complexity and multi-modality of the functional design space. The Big Bang – Big Crunch (BB-BC) optimization method is a relatively new technique and has already proved to be a valuable tool for structural optimization. In the present study the exceptional efficiency of the method is demonstrated by an example of the lay-up optimization of multilayered anisotropic cylinders based on a three-dimensional elasticity solution. It is shown that, due to its simplicity and speed, the BB-BC is much more efficient for this class of problems when compared to the genetic algorithms.Keywords: Big Bang – Big Crunch method, optimization, composite laminates, pressure vessel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22571411 Some Characteristics of Systolic Arrays
Authors: Halil Snopce, Ilir Spahiu
Abstract:
In this paper is investigated a possible optimization of some linear algebra problems which can be solved by parallel processing using the special arrays called systolic arrays. In this paper are used some special types of transformations for the designing of these arrays. We show the characteristics of these arrays. The main focus is on discussing the advantages of these arrays in parallel computation of matrix product, with special approach to the designing of systolic array for matrix multiplication. Multiplication of large matrices requires a lot of computational time and its complexity is O(n3 ). There are developed many algorithms (both sequential and parallel) with the purpose of minimizing the time of calculations. Systolic arrays are good suited for this purpose. In this paper we show that using an appropriate transformation implicates in finding more optimal arrays for doing the calculations of this type.Keywords: Data dependences, matrix multiplication, systolicarray, transformation matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15201410 Accelerating Sparse Matrix Vector Multiplication on Many-Core GPUs
Authors: Weizhi Xu, Zhiyong Liu, Dongrui Fan, Shuai Jiao, Xiaochun Ye, Fenglong Song, Chenggang Yan
Abstract:
Many-core GPUs provide high computing ability and substantial bandwidth; however, optimizing irregular applications like SpMV on GPUs becomes a difficult but meaningful task. In this paper, we propose a novel method to improve the performance of SpMV on GPUs. A new storage format called HYB-R is proposed to exploit GPU architecture more efficiently. The COO portion of the matrix is partitioned recursively into a ELL portion and a COO portion in the process of creating HYB-R format to ensure that there are as many non-zeros as possible in ELL format. The method of partitioning the matrix is an important problem for HYB-R kernel, so we also try to tune the parameters to partition the matrix for higher performance. Experimental results show that our method can get better performance than the fastest kernel (HYB) in NVIDIA-s SpMV library with as high as 17% speedup.Keywords: GPU, HYB-R, Many-core, Performance Tuning, SpMV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19871409 Semiconvergence of Alternating Iterative Methods for Singular Linear Systems
Authors: Jing Wu
Abstract:
In this paper, we discuss semiconvergence of the alternating iterative methods for solving singular systems. The semiconvergence theories for the alternating methods are established when the coefficient matrix is a singular matrix. Furthermore, the corresponding comparison theorems are obtained.
Keywords: Alternating iterative method, Semiconvergence, Singular matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16551408 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production
Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia
Abstract:
A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.Keywords: Nano-alumina-zirconia, composite catalyst, thin film, biodiesel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17481407 Rotor Bearing System Analysis Using the Transfer Matrix Method with Thickness Assumption of Disk and Bearing
Authors: Omid Ghasemalizadeh, Mohammad Reza Mirzaee, Hossein Sadeghi, Mohammad Taghi Ahmadian
Abstract:
There are lots of different ways to find the natural frequencies of a rotating system. One of the most effective methods which is used because of its precision and correctness is the application of the transfer matrix. By use of this method the entire continuous system is subdivided and the corresponding differential equation can be stated in matrix form. So to analyze shaft that is this paper issue the rotor is divided as several elements along the shaft which each one has its own mass and moment of inertia, which this work would create possibility of defining the named matrix. By Choosing more elements number, the size of matrix would become larger and as a result more accurate answers would be earned. In this paper the dynamics of a rotor-bearing system is analyzed, considering the gyroscopic effect. To increase the accuracy of modeling the thickness of the disk and bearings is also taken into account which would cause more complicated matrix to be solved. Entering these parameters to our modeling would change the results completely that these differences are shown in the results. As said upper, to define transfer matrix to reach the natural frequencies of probed system, introducing some elements would be one of the requirements. For the boundary condition of these elements, bearings at the end of the shaft are modeled as equivalent spring and dampers for the discretized system. Also, continuous model is used for the shaft in the system. By above considerations and using transfer matrix, exact results are taken from the calculations. Results Show that, by increasing thickness of the bearing the amplitude of vibration would decrease, but obviously the stiffness of the shaft and the natural frequencies of the system would accompany growth. Consequently it is easily understood that ignoring the influences of bearing and disk thicknesses would results not real answers.Keywords: Rotor System, Disk and Bearing Thickness, Transfer Matrix, Amplitude.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471406 Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/TiO2 Nano-Composite Coatings
Authors: S. Mahdavi, S. R. Allahkaram
Abstract:
Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nanoparticles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nanoparticles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance.Keywords: Co-Cr alloy, electrodeposition, nano-composite, tribological behavior, trivalent chromium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27991405 Comparison of Hough Transform and Mean Shift Algorithm for Estimation of the Orientation Angle of Industrial Data Matrix Codes
Authors: Ion-Cosmin Dita, Vasile Gui, Franz Quint, Marius Otesteanu
Abstract:
In automatic manufacturing and assembling of mechanical, electrical and electronic parts one needs to reliably identify the position of components and to extract the information of these components. Data Matrix Codes (DMC) are established by these days in many areas of industrial manufacturing thanks to their concentration of information on small spaces. In today’s usually order-related industry, where increased tracing requirements prevail, they offer further advantages over other identification systems. This underlines in an impressive way the necessity of a robust code reading system for detecting DMC on the components in factories. This paper compares two methods for estimating the angle of orientation of Data Matrix Codes: one method based on the Hough Transform and the other based on the Mean Shift Algorithm. We concentrate on Data Matrix Codes in industrial environment, punched, milled, lasered or etched on different materials in arbitrary orientation.
Keywords: Industrial data matrix code, Hough transform, mean shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13351404 The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites
Authors: A. Gürses, Z. Eroğlu, E. Şahin, K. Güneş, Ç. Doğar
Abstract:
In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.
Keywords: Linear low density polyethylene, nanocomposite, organoclay, plasticizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14451403 Image Classification and Accuracy Assessment Using the Confusion Matrix, Contingency Matrix, and Kappa Coefficient
Authors: F. F. Howard, C. B. Boye, I. Yakubu, J. S. Y. Kuma
Abstract:
One of the ways that could be used for the production of land use and land cover maps by a procedure known as image classification is the use of the remote sensing technique. Numerous elements ought to be taken into consideration, including the availability of highly satisfactory Landsat imagery, secondary data and a precise classification process. The goal of this study was to classify and map the land use and land cover of the study area using remote sensing and Geospatial Information System (GIS) analysis. The classification was done using Landsat 8 satellite images acquired in December 2020 covering the study area. The Landsat image was downloaded from the USGS. The Landsat image with 30 m resolution was geo-referenced to the WGS_84 datum and Universal Transverse Mercator (UTM) Zone 30N coordinate projection system. A radiometric correction was applied to the image to reduce the noise in the image. This study consists of two sections: the Land Use/Land Cover (LULC) and Accuracy Assessments using the confusion and contingency matrix and the Kappa coefficient. The LULC classifications were vegetation (agriculture) (67.87%), water bodies (0.01%), mining areas (5.24%), forest (26.02%), and settlement (0.88%). The overall accuracy of 97.87% and the kappa coefficient (K) of 97.3% were obtained for the confusion matrix. While an overall accuracy of 95.7% and a Kappa coefficient of 0.947 were obtained for the contingency matrix, the kappa coefficients were rated as substantial; hence, the classified image is fit for further research.
Keywords: Confusion Matrix, contingency matrix, kappa coefficient, land used/ land cover, accuracy assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2511402 High Resolution Methods Based On Rank Revealing Triangular Factorizations
Authors: M. Bouri, S. Bourennane
Abstract:
In this paper, we propose a novel method for subspace estimation used high resolution method without eigendecomposition where the sample Cross-Spectral Matrix (CSM) is replaced by upper triangular matrix obtained from LU factorization. This novel method decreases the computational complexity. The method relies on a recently published result on Rank-Revealing LU (RRLU) factorization. Simulation results demonstrates that the new algorithm outperform the Householder rank-revealing QR (RRQR) factorization method and the MUSIC in the low Signal to Noise Ratio (SNR) scenarios.
Keywords: Factorization, Localization, Matrix, Signalsubspace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13591401 Carbon-Based Electrodes for Parabens Detection
Authors: Aniela Pop, Ianina Birsan, Corina Orha, Rodica Pode, Florica Manea
Abstract:
Carbon nanofiber-epoxy composite electrode has been investigated through voltammetric and amperometric techniques in order to detect parabens from aqueous solutions. The occurrence into environment as emerging pollutants of these preservative compounds has been extensively studied in the last decades, and consequently, a rapid and reliable method for their quantitative quantification is required. In this study, methylparaben (MP) and propylparaben (PP) were chosen as representatives for paraben class. The individual electrochemical detection of each paraben has been successfully performed. Their electrochemical oxidation occurred at the same potential value. Their simultaneous quantification should be assessed electrochemically only as general index of paraben class as a cumulative signal corresponding to both MP and PP from solution. The influence of pH on the electrochemical signal was studied. pH ranged between 1.3 and 9.0 allowed shifting the detection potential value to smaller value, which is very desired for the electroanalysis. Also, the signal is better-defined and higher sensitivity is achieved. Differential-pulsed voltammetry and square-wave voltammetry were exploited under the optimum pH conditions to improve the electroanalytical performance for the paraben detection. Also, the operation conditions were selected, i.e., the step potential, modulation amplitude and the frequency. Chronomaprometry application as the easiest electrochemical detection method led to worse sensitivity, probably due to a possible fouling effect of the electrode surface. The best electroanalytical performance was achieved by pulsed voltammetric technique but the selection of the electrochemical technique is related to the concrete practical application. A good reproducibility of the voltammetric-based method using carbon nanofiber-epoxy composite electrode was determined and no interference effect was found for the cation and anion species that are common in the water matrix. Besides these characteristics, the long life-time of the electrode give to carbon nanofiber-epoxy composite electrode a great potential for practical applications.
Keywords: Carbon nanofiber-epoxy composite electrode, electroanalysis, methylparaben, propylparaben.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115