Search results for: Complex Demodulation
1356 Visual Inspection of Work Piece with a Complex Shape by Means of Robot Manipulator
Authors: A. Y. Bani Hashim, N. S. A. Ramdan
Abstract:
Inconsistency in manual inspection is real because humans get tired after some time. Recent trends show that automatic inspection is more appealing for mass production inspections. In such as a case, a robot manipulator seems the best candidate to run a dynamic visual inspection. The purpose of this work is to estimate the optimum workspace where a robot manipulator would perform a visual inspection process onto a work piece where a camera is attached to the end effector. The pseudo codes for the planned path are derived from the number of tool transit points, the delay time at the transit points, the process cycle time, and the configuration space that the distance between the tool and the work piece. It is observed that express start and swift end are acceptable in a robot program because applicable works usually in existence during these moments. However, during the mid-range cycle, there are always practical tasks programmed to be executed. For that reason, it is acceptable to program the robot such as that speedy alteration of actuator displacement is avoided. A dynamic visual inspection system using a robot manipulator seems practical for a work piece with a complex shape.
Keywords: Robot manipulator, Visual inspection, Work piece, Trajectory planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16611355 Performances Comparison of Neural Architectures for On-Line Speed Estimation in Sensorless IM Drives
Authors: K.Sedhuraman, S.Himavathi, A.Muthuramalingam
Abstract:
The performance of sensor-less controlled induction motor drive depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides a promising alternative for on-line speed estimation. The on-line speed estimator requires the NN model to be accurate, simpler in design, structurally compact and computationally less complex to ensure faster execution and effective control in real time implementation. This in turn to a large extent depends on the type of Neural Architecture. This paper investigates three types of neural architectures for on-line speed estimation and their performance is compared in terms of accuracy, structural compactness, computational complexity and execution time. The suitable neural architecture for on-line speed estimation is identified and the promising results obtained are presented.Keywords: Sensorless IM drives, rotor speed estimators, artificial neural network, feed- forward architecture, single neuron cascaded architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14581354 A Nano-Scaled SRAM Guard Band Design with Gaussian Mixtures Model of Complex Long Tail RTN Distributions
Authors: Worawit Somha, Hiroyuki Yamauchi
Abstract:
This paper proposes, for the first time, how the challenges facing the guard-band designs including the margin assist-circuits scheme for the screening-test in the coming process generations should be addressed. The increased screening error impacts are discussed based on the proposed statistical analysis models. It has been shown that the yield-loss caused by the misjudgment on the screening test would become 5-orders of magnitude larger than that for the conventional one when the amplitude of random telegraph noise (RTN) caused variations approaches to that of random dopant fluctuation. Three fitting methods to approximate the RTN caused complex Gamma mixtures distributions by the simple Gaussian mixtures model (GMM) are proposed and compared. It has been verified that the proposed methods can reduce the error of the fail-bit predictions by 4-orders of magnitude.Keywords: Mixtures of Gaussian, Random telegraph noise, EM algorithm, Long-tail distribution, Fail-bit analysis, Static random access memory, Guard band design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18411353 Production of the Protein-Vitamin Complex from Wheat Germ
Authors: Gulmira Kenenbay, Urishbay Chomanov, Tamara Tultabayeva, Aruzhan Shoman
Abstract:
Wheat germ has a balanced amino acid composition of the protein, which is well digested by enzymes in the gastrointestinal tract of humans, a high content of vitamins, minerals and unsaturated acids. Introduction components grain food products will enrich their biologically important substances, giving these products a number of valuable properties and reducing their caloric. A complex natural system of substances in foods will help replenish the body's need of essential nutrients, increasing its resistance to the harmful effects of the environment, prolong life. In this regard, there was a need for the development of production technology of protein complexes from wheat germ and then applying them in food, particularly in the dairy industry. Experimental studies were conducted to determine the number of herbal supplements on the sensory characteristics of the product. Studies have been conducted to determine the optimal process parameters of water activity and moisture content of the investigational product.
Keywords: Wheat germ, sensory characteristics of the product, water activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19951352 Investigating the UAE Residential Valuation System: A Framework for Analysis
Authors: Simon Huston, Ebraheim Lahbash, Ali Parsa
Abstract:
The development of the United Arab Emirates (UAE) into a regional trade, tourism, finance and logistics hub has transformed its real estate markets. However, speculative activity and price volatility remain concerns. UAE residential market values (MV) are exposed to fluctuations in capital flows and migration which, in turn, are affected by geopolitical uncertainty, oil price volatility and global investment market sentiment. Internally, a complex interplay between administrative boundaries, land tenure, building quality and evolving location characteristics fragments UAE residential property markets. In short, the UAE Residential Valuation System (UAE-RVS) confronts multiple challenges to collect, filter and analyze relevant information in complex and dynamic spatial and capital markets. A robust (RVS) can mitigate the risk of unhelpful volatility, speculative excess or investment mistakes. The research outlines the institutional, ontological, dynamic and epistemological issues at play. We highlight the importance of system capabilities, valuation standard salience and stakeholders trust.
Keywords: Valuation, property rights, information, institutions, trust, salience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23731351 Facial Expressions Recognition from Complex Background using Face Context and Adaptively Weighted sub-Pattern PCA
Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Ashraful Alam, Nam Kim, Jae-Hyeung Park
Abstract:
A new approach for facial expressions recognition based on face context and adaptively weighted sub-pattern PCA (Aw-SpPCA) has been presented in this paper. The facial region and others part of the body have been segmented from the complex environment based on skin color model. An algorithm has been proposed to accurate detection of face region from the segmented image based on constant ratio of height and width of face (δ= 1.618). The paper also discusses on new concept to detect the eye and mouth position. The desired part of the face has been cropped to analysis the expression of a person. Unlike PCA based on a whole image pattern, Aw-SpPCA operates directly on its sub patterns partitioned from an original whole pattern and separately extracts features from them. Aw-SpPCA can adaptively compute the contributions of each part and a classification task in order to enhance the robustness to both expression and illumination variations. Experiments on single standard face with five types of facial expression database shows that the proposed method is competitive.
Keywords: Aw-SpPC, Expressoin Recognition, Face context, Face Detection, PCA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17211350 Gabriel-constrained Parametric Surface Triangulation
Authors: Oscar E. Ruiz, Carlos Cadavid, Juan G. Lalinde, Ricardo Serrano, Guillermo Peris-Fajarnes
Abstract:
The Boundary Representation of a 3D manifold contains FACES (connected subsets of a parametric surface S : R2 -! R3). In many science and engineering applications it is cumbersome and algebraically difficult to deal with the polynomial set and constraints (LOOPs) representing the FACE. Because of this reason, a Piecewise Linear (PL) approximation of the FACE is needed, which is usually represented in terms of triangles (i.e. 2-simplices). Solving the problem of FACE triangulation requires producing quality triangles which are: (i) independent of the arguments of S, (ii) sensitive to the local curvatures, and (iii) compliant with the boundaries of the FACE and (iv) topologically compatible with the triangles of the neighboring FACEs. In the existing literature there are no guarantees for the point (iii). This article contributes to the topic of triangulations conforming to the boundaries of the FACE by applying the concept of parameterindependent Gabriel complex, which improves the correctness of the triangulation regarding aspects (iii) and (iv). In addition, the article applies the geometric concept of tangent ball to a surface at a point to address points (i) and (ii). Additional research is needed in algorithms that (i) take advantage of the concepts presented in the heuristic algorithm proposed and (ii) can be proved correct.Keywords: surface triangulation, conforming triangulation, surfacesampling, Gabriel complex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16621349 Investigations of Free-to-Roll Motions and its Active Control under Pitch-up Maneuvers
Authors: Tanveer A. Khan, Xue Y. Deng, Yan K. Wang, Xu Si-Wen
Abstract:
Experiments have been carried out at sub-critical Reynolds number to investigate free-to-roll motions induced by forebody and/or wings complex flow on a 30° swept back nonslender wings-slender body-model for static and dynamic (pitch-up) cases. For the dynamic (pitch-up) case it has been observed that roll amplitude decreases and lag increases with increase in pitching speed. Decrease in roll amplitude with increase in pitch rate is attributed to low disturbing rolling moment due to weaker interaction between forebody and wing flow components. Asymmetric forebody vortices dominate and control the roll motion of the model in dynamic case when non-dimensional pitch rate ≥ 1x10-2. Effectiveness of the active control scheme utilizing rotating nose with artificial tip perturbation is observed to be low in the angle of attack region where the complex flow over the wings has contributions from both forebody and wings.Keywords: Artificial Tip Perturbation, ExperimentalInvestigations, Forebody Asymmetric Vortices, Non-slender Wings-Body Model, Wing Rock
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15201348 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method
Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent
Abstract:
A method of modelling topography used in the simulation of riverbeds is proposed in this paper which removes the need for datapoints and measurements of a physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method, and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.
Keywords: Bed topography, FBM, LBM, shallow water, simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3051347 Research on a Forest Fire Spread Simulation Driven by the Wind Field in Complex Terrain
Authors: Ying Shang, Chencheng Wang
Abstract:
The wind field is the main driving factor for the spread of forest fires. For the simulation results of forest fire spread to be more accurate, it is necessary to obtain more detailed wind field data. Therefore, this paper studied the mountainous fine wind field simulation method coupled with WRF (Weather Research and Forecasting Model) and CFD (Computational Fluid Dynamics) to realize the numerical simulation of the wind field in a mountainous area with a scale of 30 m and a small measurement error. Local topographical changes have an important impact on the wind field. Based on the Rothermel fire spread model, a forest fire in Idaho in the western United States was simulated. The historical data proved that the simulation results had a good accuracy. They showed that the fire spread rate will decrease rapidly with time and then reach a steady state. After reaching a steady state, the fire spread growth area will not only be affected by the slope, but will also show a significant quadratic linear positive correlation with the wind speed change.
Keywords: Wind field, numerical simulation, forest fire spread, fire behavior model, complex terrain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3761346 Confronting the Uncertainty of Systemic Innovation in Public Welfare Services
Authors: Harri Jalonen
Abstract:
Faced with social and health system capacity constraints and rising and changing demand for welfare services, governments and welfare providers are increasingly relying on innovation to help support and enhance services. However, the evidence reported by several studies indicates that the realization of that potential is not an easy task. Innovations can be deemed inherently complex to implement and operate, because many of them involve a combination of technological and organizational renewal within an environment featuring a diversity of stakeholders. Many public welfare service innovations are markedly systemic in their nature, which means that they emerge from, and must address, the complex interplay between political, administrative, technological, institutional and legal issues. This paper suggests that stakeholders dealing with systemic innovation in welfare services must deal with ambiguous and incomplete information in circumstances of uncertainty. Employing a literature review methodology and case study, this paper identifies, categorizes and discusses different aspects of the uncertainty of systemic innovation in public welfare services, and argues that uncertainty can be classified into eight categories: technological uncertainty, market uncertainty, regulatory/institutional uncertainty, social/political uncertainty, acceptance/legitimacy uncertainty, managerial uncertainty, timing uncertainty and consequence uncertainty.Keywords: Systemic innovation, uncertainty, welfare services
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16171345 Efficient Semi-Systolic Finite Field Multiplier Using Redundant Basis
Authors: Hyun-Ho Lee, Kee-Won Kim
Abstract:
The arithmetic operations over GF(2m) have been extensively used in error correcting codes and public-key cryptography schemes. Finite field arithmetic includes addition, multiplication, division and inversion operations. Addition is very simple and can be implemented with an extremely simple circuit. The other operations are much more complex. The multiplication is the most important for cryptosystems, such as the elliptic curve cryptosystem, since computing exponentiation, division, and computing multiplicative inverse can be performed by computing multiplication iteratively. In this paper, we present a parallel computation algorithm that operates Montgomery multiplication over finite field using redundant basis. Also, based on the multiplication algorithm, we present an efficient semi-systolic multiplier over finite field. The multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the multiplier saves at least 5% area, 50% time, and 53% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as inversion and division operation.Keywords: Finite field, Montgomery multiplication, systolic array, cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16461344 Optimization of Pretreatment and Enzymatic Saccharification of Cogon Grass Prior Ethanol Production
Authors: Jhalique Jane R. Fojas, Ernesto J. Del Rosario
Abstract:
The dilute acid pretreatment and enzymatic saccharification of lignocellulosic substrate, cogon grass (Imperata cylindrical, L.) was optimized prior ethanol fermentation using simultaneous saccharification and fermentation (SSF) method. The optimum pretreatment conditions, temperature, sulfuric acid concentration, and reaction time were evaluated by determining the maximum sugar yield at constant enzyme loading. Cogon grass, at 10% w/v substrate loading, has optimum pretreatment conditions of 126°C, 0.6% v/v H2SO4, and 20min reaction time. These pretreatment conditions were used to optimize enzymatic saccharification using different enzyme combinations. The maximum saccharification yield of 36.68mg/mL (71.29% reducing sugar) was obtained using 25FPU/g-cellulose cellulase complex combined with 1.1% w/w of cellobiase, ß-glucosidase, and 0.225% w/w of hemicellulase complex, after 96 hours of saccharification. Using the optimum pretreatment and saccharification conditions, SSF of treated substrates was done at 37°C for 120 hours using industrial yeast strain HBY3, Saccharomyces cerevisiae. The ethanol yield for cogon grass at 4% w/w loading was 9.11g/L with 5.74mg/mL total residual sugar.Keywords: Acid pretreatment, bioethanol, biomass, cogon grass, fermentation, lignocellylose, SSF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38901343 Design and Optimization of Parity Generator and Parity Checker Based On Quantum-dot Cellular Automata
Authors: Santanu Santra, Utpal Roy
Abstract:
Quantum-dot Cellular Automata (QCA) is one of the most substitute emerging nanotechnologies for electronic circuits, because of lower power consumption, higher speed and smaller size in comparison with CMOS technology. The basic devices, a Quantum-dot cell can be used to implement logic gates and wires. As it is the fundamental building block on nanotechnology circuits. By applying XOR gate the hardware requirements for a QCA circuit can be decrease and circuits can be simpler in terms of level, delay and cell count. This article present a modest approach for implementing novel optimized XOR gate, which can be applied to design many variants of complex QCA circuits. Proposed XOR gate is simple in structure and powerful in terms of implementing any digital circuits. In order to verify the functionality of the proposed design some complex implementation of parity generator and parity checker circuits are proposed and simulating by QCA Designer tool and compare with some most recent design. Simulation results and physical relations confirm its usefulness in implementing every digital circuit.
Keywords: Clock, CMOS technology, Logic gates, QCA Designer, Quantum-dot Cellular Automata (QCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78361342 Analyzing the Relationship between the Systems Decisions Process and Artificial Intelligence: A Machine Vision Case Study
Authors: Mitchell J. McHugh, John J. Case
Abstract:
Systems engineering is a holistic discipline that seeks to organize and optimize complex, interdisciplinary systems. With the growth of artificial intelligence, systems engineers must face the challenge of leveraging artificial intelligence systems to solve complex problems. This paper analyzes the integration of systems engineering and artificial intelligence and discusses how artificial intelligence systems embody the systems decision process (SDP). The SDP is a four-stage problem-solving framework that outlines how systems engineers can design and implement solutions using value-focused thinking. This paper argues that artificial intelligence models can replicate the SDP, thus validating its flexible, value-focused foundation. The authors demonstrate this by developing a machine vision mobile application that can classify weapons to augment the decision-making role of an Army subject matter expert. This practical application was an end-to-end design challenge that highlights how artificial intelligence systems embody systems engineering principles. The impact of this research demonstrates that the SDP is a dynamic tool that systems engineers should leverage when incorporating artificial intelligence within the systems that they develop.
Keywords: Computer vision, machine learning, mobile application, systems engineering, systems decision process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18041341 Complex Flow Simulation Using a Partially Lagging One-Equation Turbulence Model
Authors: M. Elkhoury
Abstract:
A recently developed one-equation turbulence model has been successfully applied to simulate turbulent flows with various complexities. The model, which is based on the transformation of the k-ε closure, is wall-distance free and equipped with lagging destruction/dissipation terms. Test cases included shockboundary- layer interaction flows over the NACA 0012 airfoil, an axisymmetric bump, and the ONERA M6 wing. The capability of the model to operate in a Scale Resolved Simulation (SRS) mode is demonstrated through the simulation of a massive flow separation over a circular cylinder at Re= 1.2 x106. An assessment of the results against available experiments Menter (k-ε)1Eq and the Spalart- Allmaras model that belongs to the single equation closure family is made.Keywords: Turbulence modeling, complex flow simulation, scale adaptive simulation, one-equation turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14701340 Applying Similarity Theory and Hilbert Huang Transform for Estimating the Differences of Pig-s Blood Pressure Signals between Situations of Intestinal Artery Blocking and Unblocking
Authors: Jia-Rong Yeh, Tzu-Yu Lin, Jiann-Shing Shieh, Yun Chen
Abstract:
A mammal-s body can be seen as a blood vessel with complex tunnels. When heart pumps blood periodically, blood runs through blood vessels and rebounds from walls of blood vessels. Blood pressure signals can be measured with complex but periodic patterns. When an artery is clamped during a surgical operation, the spectrum of blood pressure signals will be different from that of normal situation. In this investigation, intestinal artery clamping operations were conducted to a pig for simulating the situation of intestinal blocking during a surgical operation. Similarity theory is a convenient and easy tool to prove that patterns of blood pressure signals of intestinal artery blocking and unblocking are surely different. And, the algorithm of Hilbert Huang Transform can be applied to extract the character parameters of blood pressure pattern. In conclusion, the patterns of blood pressure signals of two different situations, intestinal artery blocking and unblocking, can be distinguished by these character parameters defined in this paper.Keywords: Blood pressure, spectrum, intestinal artery, similarity theory and Hilbert Huang Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16251339 Fundamental Equation of Complete Factor Synergetics of Complex Systems with Normalization of Dimension
Authors: Li Zong-Cheng
Abstract:
It is by reason of the unified measure of varieties of resources and the unified processing of the disposal of varieties of resources, that these closely related three of new basic models called the resources assembled node and the disposition integrated node as well as the intelligent organizing node are put forth in this paper; the three closely related quantities of integrative analytical mechanics including the disposal intensity and disposal- weighted intensity as well as the charge of resource charge are set; and then the resources assembled space and the disposition integrated space as well as the intelligent organizing space are put forth. The system of fundamental equations and model of complete factor synergetics is preliminarily approached for the general situation in this paper, to form the analytical base of complete factor synergetics. By the essential variables constituting this system of equations we should set twenty variables respectively with relation to the essential dynamical effect, external synergetic action and internal synergetic action of the system.
Keywords: complex system, disposal of resources, completefactor synergetics, fundamental equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14191338 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems
Authors: Li Shoutao, Gordon Lee
Abstract:
Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.Keywords: adaptive fuzzy neural inference, evolutionary tuning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15101337 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA
Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita
Abstract:
This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.Keywords: Dynamic response, Nonlinear impact response, Finite Element analysis, Numerical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17201336 Enhancing the Effectiveness of Air Defense Systems through Simulation Analysis
Authors: F. Felipe
Abstract:
Air Defense Systems contain high-value assets that are expected to fulfill their mission for several years - in many cases, even decades - while operating in a fast-changing, technology-driven environment. Thus, it is paramount that decision-makers can assess how effective an Air Defense System is in the face of new developing threats, as well as to identify the bottlenecks that could jeopardize the security of the airspace of a country. Given the broad extent of activities and the great variety of assets necessary to achieve the strategic objectives, a systems approach was taken in order to delineate the core requirements and the physical architecture of an Air Defense System. Then, value-focused thinking helped in the definition of the measures of effectiveness. Furthermore, analytical methods were applied to create a formal structure that preliminarily assesses such measures. To validate the proposed methodology, a powerful simulation was also used to determine the measures of effectiveness, now in more complex environments that incorporate both uncertainty and multiple interactions of the entities. The results regarding the validity of this methodology suggest that the approach can support decisions aimed at enhancing the capabilities of Air Defense Systems. In conclusion, this paper sheds some light on how consolidated approaches of Systems Engineering and Operations Research can be used as valid techniques for solving problems regarding a complex and yet vital matter.Keywords: Air defense, effectiveness, system, simulation, decision-support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4081335 Multi-Agent Based Modeling Using Multi-Criteria Decision Analysis and OLAP System for Decision Support Problems
Authors: Omar Boutkhoum, Mohamed Hanine, Tarik Agouti, Abdessadek Tikniouine
Abstract:
This paper discusses the intake of combining multi-criteria decision analysis (MCDA) with OLAP systems, to generate an integrated analysis process dealing with complex multi-criteria decision-making situations. In this context, a multi-agent modeling is presented for decision support systems by combining multi-criteria decision analysis (MCDA) with OLAP systems. The proposed modeling which consists in performing the multi-agent system (MAS) architecture, procedure and protocol of the negotiation model is elaborated as a decision support tool for complex decision-making environments. Our objective is to take advantage from the multi-agent system which distributes resources and computational capabilities across interconnected agents, and provide a problem modeling in terms of autonomous interacting component-agents. Thus, the identification and evaluation of criteria as well as the evaluation and ranking of alternatives in a decision support situation will be performed by organizing tasks and user preferences between different agents in order to reach the right decision. At the end, an illustrative example is conducted to demonstrate the function and effectiveness of our MAS modeling.Keywords: Multidimensional Analysis, OLAP Analysis, Multi-criteria Decision Analysis, Multi-Agent System, Decision Support System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18441334 Multilayer Adsorption as a Possible Transition State in Heterogeneous Hydrogenation of C=C Double Bonds
Authors: V. Heral
Abstract:
Ideas about the mechanism of heterogeneous catalytic hydrogenation are diverse. The Horiuti-Polanyi mechanism is most often referred to base on the idea of a semi-hydrogenated state. In our opinion, it does not represent a satisfactory explanation of the hydrogenation mechanism because, for example, (1) It neglects the fact that the bond of atomic hydrogen to the metal surface is strongly polarized, (2) It does not explain why a surface deprived of atomic hydrogen (by thermal desorption or by alkyne) loses isomerization capabilities, but hydrogenation capabilities remain preserved, (3) It was observed that during the hydrogenation of 1-alkenes, the reaction can be of the 0th order to hydrogen and to the alkene at the same time, which is excluded during the competitive adsorption of both reactants on the catalyst surface. We offer an alternative mechanism that satisfactorily explains many of the ambiguities: It is the idea of an independent course of olefin isomerization, catalyzed by acidic atomic hydrogen bonded on the surface of the catalyst, in addition to the hydrogenation itself, in which a two-layer complex appears on the surface of the catalyst: olefin bound to the surface and molecular hydrogen bound to it in the second layer. The rate-determining step of hydrogenation is the conversion of this complex into the final product. In our opinion, the Horiuti-Polanyi mechanism is flawed, and we naturally think that our two-layer theory better describes the experimental findings.
Keywords: Acidity of hydrogenation catalyst, Horiuti-Polanyi, hydrogenation, two-layer hydrogenation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571333 Automatic Extraction of Roads from High Resolution Aerial and Satellite Images with Heavy Noise
Authors: Yan Li, Ronald Briggs
Abstract:
Aerial and satellite images are information rich. They are also complex to analyze. For GIS systems, many features require fast and reliable extraction of roads and intersections. In this paper, we study efficient and reliable automatic extraction algorithms to address some difficult issues that are commonly seen in high resolution aerial and satellite images, nonetheless not well addressed in existing solutions, such as blurring, broken or missing road boundaries, lack of road profiles, heavy shadows, and interfering surrounding objects. The new scheme is based on a new method, namely reference circle, to properly identify the pixels that belong to the same road and use this information to recover the whole road network. This feature is invariable to the shape and direction of roads and tolerates heavy noise and disturbances. Road extraction based on reference circles is much more noise tolerant and flexible than the previous edge-detection based algorithms. The scheme is able to extract roads reliably from images with complex contents and heavy obstructions, such as the high resolution aerial/satellite images available from Google maps.
Keywords: Automatic road extraction, Image processing, Feature extraction, GIS update, Remote sensing, Geo-referencing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17011332 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes
Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy
Abstract:
This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.Keywords: Attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13141331 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language
Authors: Leo Laine, Morgan Johansson
Abstract:
To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.
Keywords: Airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9071330 A Fast Neural Algorithm for Serial Code Detection in a Stream of Sequential Data
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
In recent years, fast neural networks for object/face detection have been introduced based on cross correlation in the frequency domain between the input matrix and the hidden weights of neural networks. In our previous papers [3,4], fast neural networks for certain code detection was introduced. It was proved in [10] that for fast neural networks to give the same correct results as conventional neural networks, both the weights of neural networks and the input matrix must be symmetric. This condition made those fast neural networks slower than conventional neural networks. Another symmetric form for the input matrix was introduced in [1-9] to speed up the operation of these fast neural networks. Here, corrections for the cross correlation equations (given in [13,15,16]) to compensate for the symmetry condition are presented. After these corrections, it is proved mathematically that the number of computation steps required for fast neural networks is less than that needed by classical neural networks. Furthermore, there is no need for converting the input data into symmetric form. Moreover, such new idea is applied to increase the speed of neural networks in case of processing complex values. Simulation results after these corrections using MATLAB confirm the theoretical computations.
Keywords: Fast Code/Data Detection, Neural Networks, Cross Correlation, real/complex values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261329 Screening Post-Menopausal Women for Osteoporosis by Complex Impedance Measurements of the Dominant Arm
Authors: Fırat Matur, Yekta Ülgen
Abstract:
Cole-Cole parameters of 40 post-menopausal women are compared with their DEXA bone mineral density measurements. Impedance characteristics of four extremities are compared; left and right extremities are statistically same, but lower extremities are statistically different than upper ones due to their different fat content. The correlation of Cole-Cole impedance parameters to bone mineral density (BMD) is observed to be higher for dominant arm. With the post-menopausal population, ANOVA tests of the dominant arm characteristic frequency, as a predictor for DEXA classified osteopenic and osteoporic population around lumbar spine, is statistically very significant. When used for total lumbar spine osteoporosis diagnosis, the area under the Receiver Operating Curve of the characteristic frequency is 0.830, suggesting that the Cole-Cole plot characteristic frequency could be a useful diagnostic parameter when integrated into standard screening methods for osteoporosis. Moreover, the characteristic frequency can be directly measured by monitoring frequency driven angular behavior of the dominant arm without performing any complex calculation.Keywords: Bio-impedance spectroscopy, bone mineral density, characteristic frequency, osteoporosis, receiver operating curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24421328 Enhanced Multi-Intensity Analysis in Multi-Scenery Classification-Based Macro and Micro Elements
Authors: R. Bremananth
Abstract:
Several computationally challenging issues are encountered while classifying complex natural scenes. In this paper, we address the problems that are encountered in rotation invariance with multi-intensity analysis for multi-scene overlapping. In the present literature, various algorithms proposed techniques for multi-intensity analysis, but there are several restrictions in these algorithms while deploying them in multi-scene overlapping classifications. In order to resolve the problem of multi-scenery overlapping classifications, we present a framework that is based on macro and micro basis functions. This algorithm conquers the minimum classification false alarm while pigeonholing multi-scene overlapping. Furthermore, a quadrangle multi-intensity decay is invoked. Several parameters are utilized to analyze invariance for multi-scenery classifications such as rotation, classification, correlation, contrast, homogeneity, and energy. Benchmark datasets were collected for complex natural scenes and experimented for the framework. The results depict that the framework achieves a significant improvement on gray-level matrix of co-occurrence features for overlapping in diverse degree of orientations while pigeonholing multi-scene overlapping.Keywords: Automatic classification, contrast, homogeneity, invariant analysis, multi-scene analysis, overlapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11201327 Inversion of Electrical Resistivity Data: A Review
Authors: Shrey Sharma, Gunjan Kumar Verma
Abstract:
High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.Keywords: Resistivity, inversion, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6073