Search results for: Adaptive fuzzy clustering
1686 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding
Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi
Abstract:
A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15651685 Energy Map Construction using Adaptive Alpha Grey Prediction Model in WSNs
Authors: Surender Kumar Soni, Dhirendra Pratap Singh
Abstract:
Wireless Sensor Networks can be used to monitor the physical phenomenon in such areas where human approach is nearly impossible. Hence the limited power supply is the major constraint of the WSNs due to the use of non-rechargeable batteries in sensor nodes. A lot of researches are going on to reduce the energy consumption of sensor nodes. Energy map can be used with clustering, data dissemination and routing techniques to reduce the power consumption of WSNs. Energy map can also be used to know which part of the network is going to fail in near future. In this paper, Energy map is constructed using the prediction based approach. Adaptive alpha GM(1,1) model is used as the prediction model. GM(1,1) is being used worldwide in many applications for predicting future values of time series using some past values due to its high computational efficiency and accuracy.Keywords: Adaptive Alpha GM(1, 1) Model, Energy Map, Prediction Based Data Reduction, Wireless Sensor Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18011684 Electricity Consumption Prediction Model using Neuro-Fuzzy System
Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil
Abstract:
In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20111683 An Efficient and Generic Hybrid Framework for High Dimensional Data Clustering
Authors: Dharmveer Singh Rajput , P. K. Singh, Mahua Bhattacharya
Abstract:
Clustering in high dimensional space is a difficult problem which is recurrent in many fields of science and engineering, e.g., bioinformatics, image processing, pattern reorganization and data mining. In high dimensional space some of the dimensions are likely to be irrelevant, thus hiding the possible clustering. In very high dimensions it is common for all the objects in a dataset to be nearly equidistant from each other, completely masking the clusters. Hence, performance of the clustering algorithm decreases. In this paper, we propose an algorithmic framework which combines the (reduct) concept of rough set theory with the k-means algorithm to remove the irrelevant dimensions in a high dimensional space and obtain appropriate clusters. Our experiment on test data shows that this framework increases efficiency of the clustering process and accuracy of the results.Keywords: High dimensional clustering, sub-space, k-means, rough set, discernibility matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19481682 A Spanning Tree for Enhanced Cluster Based Routing in Wireless Sensor Network
Authors: M. Saravanan, M. Madheswaran
Abstract:
Wireless Sensor Network (WSN) clustering architecture enables features like network scalability, communication overhead reduction, and fault tolerance. After clustering, aggregated data is transferred to data sink and reducing unnecessary, redundant data transfer. It reduces nodes transmitting, and so saves energy consumption. Also, it allows scalability for many nodes, reduces communication overhead, and allows efficient use of WSN resources. Clustering based routing methods manage network energy consumption efficiently. Building spanning trees for data collection rooted at a sink node is a fundamental data aggregation method in sensor networks. The problem of determining Cluster Head (CH) optimal number is an NP-Hard problem. In this paper, we combine cluster based routing features for cluster formation and CH selection and use Minimum Spanning Tree (MST) for intra-cluster communication. The proposed method is based on optimizing MST using Simulated Annealing (SA). In this work, normalized values of mobility, delay, and remaining energy are considered for finding optimal MST. Simulation results demonstrate the effectiveness of the proposed method in improving the packet delivery ratio and reducing the end to end delay.
Keywords: Wireless sensor network, clustering, minimum spanning tree, genetic algorithm, low energy adaptive clustering hierarchy, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17861681 Iterative Clustering Algorithm for Analyzing Temporal Patterns of Gene Expression
Authors: Seo Young Kim, Jae Won Lee, Jong Sung Bae
Abstract:
Microarray experiments are information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. For biologists, a key aim when analyzing microarray data is to group genes based on the temporal patterns of their expression levels. In this paper, we used an iterative clustering method to find temporal patterns of gene expression. We evaluated the performance of this method by applying it to real sporulation data and simulated data. The patterns obtained using the iterative clustering were found to be superior to those obtained using existing clustering algorithms.Keywords: Clustering, microarray experiment, temporal pattern of gene expression data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13551680 (λ, μ)-Intuitionistic Fuzzy Subgroups of Groups with Operators
Authors: Shaoquan Sun, Chunxiang Liu
Abstract:
The aim of this paper is to introduce the concepts of the (λ, μ)-intuitionistic fuzzy subgroups and (λ, μ)-intuitionistic fuzzy normal subgroups of groups with operators, and to investigate their properties and characterizations based on M-group homomorphism.Keywords: Intuitionistic fuzzy group, (λ, μ)-intuitionistic fuzzy subgroup of groups with operators, (λ, μ)-intuitionistic fuzzy normal subgroup of groups with operators, M-group homomorphism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17731679 Overview of Adaptive Spline Interpolation
Authors: Rongli Gai, Zhiyuan Chang, Xiaohong Wang, Jingyu Liu
Abstract:
In view of various situations in the interpolation process, most researchers use self-adaptation to adjust the interpolation process, which is also one of the current and future research hotspots in the field of CNC (Computerized Numerical Control) machining. In the interpolation process, according to the overview of the spline curve interpolation algorithm, the adaptive analysis is carried out from the factors affecting the interpolation process. The adaptive operation is reflected in various aspects, such as speed, parameters, errors, nodes, feed rates, random period, sensitive point, step size, curvature, adaptive segmentation, adaptive optimization, etc. This paper will analyze and summarize the research of adaptive imputation in the direction of the above factors affecting imputation.
Keywords: Adaptive algorithm, CNC machining, interpolation constraints, spline curve interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5521678 Intuitionistic Fuzzy Positive Implicative Ideals with Thresholds (λ,μ) of BCI-Algebras
Authors: Qianqian Li, Shaoquan Sun
Abstract:
The aim of this paper is to introduce the notion of intuitionistic fuzzy positive implicative ideals with thresholds (λ, μ) of BCI-algebras and to investigate its properties and characterizations.Keywords: BCI-algebra, intuitionistic fuzzy set, intuitionistic fuzzy ideal with thresholds (λ, μ), intuitionistic fuzzy positive implicative ideal with thresholds (λ, μ).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21091677 On λ− Summable of Orlicz Space of Entire Sequences of Fuzzy Numbers
Authors: N. Subramanian, U. K. Misra, M. S. Panda
Abstract:
In this paper the concept of strongly (λM)p - Ces'aro summability of a sequence of fuzzy numbers and strongly λM- statistically convergent sequences of fuzzy numbers is introduced.Keywords: Fuzzy numbers, statistical convergence, Orlicz space, entire sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19191676 The Analysis of Different Classes of Weighted Fuzzy Petri Nets and Their Features
Authors: Yurii Bloshko, Oksana Olar
Abstract:
This paper presents the analysis of six different classes of Petri nets: fuzzy Petri nets (FPN), generalized fuzzy Petri nets (GFPN), parameterized fuzzy Petri nets (PFPN), T2GFPN, flexible generalized fuzzy Petri nets (FGFPN), binary Petri nets (BPN). These classes were simulated in the special software PNeS® for the analysis of its pros and cons on the example of models which are dedicated to the decision-making process of passenger transport logistics. The paper includes the analysis of two approaches: when input values are filled with the experts’ knowledge; when fuzzy expectations represented by output values are added to the point. These approaches fulfill the possibilities of triples of functions which are replaced with different combinations of t-/s-norms.
Keywords: Fuzzy petri net, intelligent computational techniques, knowledge representation, triangular norms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4541675 Optimized Data Fusion in an Intelligent Integrated GPS/INS System Using Genetic Algorithm
Authors: Ali Asadian, Behzad Moshiri, Ali Khaki Sedigh, Caro Lucas
Abstract:
Most integrated inertial navigation systems (INS) and global positioning systems (GPS) have been implemented using the Kalman filtering technique with its drawbacks related to the need for predefined INS error model and observability of at least four satellites. Most recently, a method using a hybrid-adaptive network based fuzzy inference system (ANFIS) has been proposed which is trained during the availability of GPS signal to map the error between the GPS and the INS. Then it will be used to predict the error of the INS position components during GPS signal blockage. This paper introduces a genetic optimization algorithm that is used to update the ANFIS parameters with respect to the INS/GPS error function used as the objective function to be minimized. The results demonstrate the advantages of the genetically optimized ANFIS for INS/GPS integration in comparison with conventional ANFIS specially in the cases of satellites- outages. Coping with this problem plays an important role in assessment of the fusion approach in land navigation.Keywords: Adaptive Network based Fuzzy Inference System (ANFIS), Genetic optimization, Global Positioning System (GPS), Inertial Navigation System (INS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19091674 A Diagnostic Fuzzy Rule-Based System for Congenital Heart Disease
Authors: Ersin Kaya, Bulent Oran, Ahmet Arslan
Abstract:
In this study, fuzzy rule-based classifier is used for the diagnosis of congenital heart disease. Congenital heart diseases are defined as structural or functional heart disease. Medical data sets were obtained from Pediatric Cardiology Department at Selcuk University, from years 2000 to 2003. Firstly, fuzzy rules were generated by using medical data. Then the weights of fuzzy rules were calculated. Two different reasoning methods as “weighted vote method" and “singles winner method" were used in this study. The results of fuzzy classifiers were compared.Keywords: Congenital heart disease, Fuzzy rule-basedclassifiers, Classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18211673 Fuzzy Uncertainty Theory for Stealth Fighter Aircraft Selection in Entropic Fuzzy TOPSIS Decision Analysis Process
Authors: C. Ardil
Abstract:
The purpose of this paper is to present fuzzy TOPSIS in an entropic fuzzy environment. Due to the ambiguous concepts often represented in decision data, exact values are insufficient to model real-life situations. In this paper, the rating of each alternative is defined in fuzzy linguistic terms, which can be expressed with triangular fuzzy numbers. The weight of each criterion is then derived from the decision matrix using the entropy weighting method. Next, a vertex method is proposed to calculate the distance between two triangular fuzzy numbers. According to the TOPSIS concept, a closeness coefficient is defined to determine the ranking order of all alternatives by simultaneously calculating the distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). Finally, an illustrative example of selecting stealth fighter aircraft is shown at the end of this article to highlight the procedure of the proposed method. Correlation analysis and validation analysis using TOPSIS, WSM, and WPM methods were performed to compare the ranking order of the alternatives.
Keywords: stealth fighter aircraft selection, fuzzy uncertainty theory (FUT), fuzzy entropic decision (FED), fuzzy linguistic variables, triangular fuzzy numbers, multiple criteria decision making analysis, MCDMA, TOPSIS, WSM, WPM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6011672 Clustering Categorical Data Using Hierarchies (CLUCDUH)
Authors: Gökhan Silahtaroğlu
Abstract:
Clustering large populations is an important problem when the data contain noise and different shapes. A good clustering algorithm or approach should be efficient enough to detect clusters sensitively. Besides space complexity, time complexity also gains importance as the size grows. Using hierarchies we developed a new algorithm to split attributes according to the values they have and choosing the dimension for splitting so as to divide the database roughly into equal parts as much as possible. At each node we calculate some certain descriptive statistical features of the data which reside and by pruning we generate the natural clusters with a complexity of O(n).Keywords: Clustering, tree, split, pruning, entropy, gini.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15561671 The Approximate Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind by Using Iterative Interpolation
Authors: N. Parandin, M. A. Fariborzi Araghi
Abstract:
in this paper, we propose a numerical method for the approximate solution of fuzzy Fredholm functional integral equations of the second kind by using an iterative interpolation. For this purpose, we convert the linear fuzzy Fredholm integral equations to a crisp linear system of integral equations. The proposed method is illustrated by some fuzzy integral equations in numerical examples.Keywords: Fuzzy function integral equations, Iterative method, Linear systems, Parametric form of fuzzy number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14071670 On Some Subspaces of Entire Sequence Space of Fuzzy Numbers
Authors: T. Balasubramanian, A. Pandiarani
Abstract:
In this paper we introduce some subspaces of fuzzy entire sequence space. Some general properties of these sequence spaces are discussed. Also some inclusion relation involving the spaces are obtained. Mathematics Subject Classification: 40A05, 40D25.
Keywords: Fuzzy Numbers, Entire sequences, completeness, Fuzzy entire sequences
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12411669 Nonlinear Controller for Fuzzy Model of Double Inverted Pendulums
Authors: I. Zamani, M. H. Zarif
Abstract:
In this paper a method for designing of nonlinear controller for a fuzzy model of Double Inverted Pendulum is proposed. This system can be considered as a fuzzy large-scale system that includes offset terms and disturbance in each subsystem. Offset terms are deterministic and disturbances are satisfied a matching condition that is mentioned in the paper. Based on Lyapunov theorem, a nonlinear controller is designed for this fuzzy system (as a model reference base) which is simple in computation and guarantees stability. This idea can be used for other fuzzy large- scale systems that include more subsystems Finally, the results are shown.
Keywords: Controller, Fuzzy Double Inverted Pendulums, Fuzzy Large-Scale Systems, Lyapunov Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25141668 An Energy Aware Data Aggregation in Wireless Sensor Network Using Connected Dominant Set
Authors: M. Santhalakshmi, P Suganthi
Abstract:
Wireless Sensor Networks (WSNs) have many advantages. Their deployment is easier and faster than wired sensor networks or other wireless networks, as they do not need fixed infrastructure. Nodes are partitioned into many small groups named clusters to aggregate data through network organization. WSN clustering guarantees performance achievement of sensor nodes. Sensor nodes energy consumption is reduced by eliminating redundant energy use and balancing energy sensor nodes use over a network. The aim of such clustering protocols is to prolong network life. Low Energy Adaptive Clustering Hierarchy (LEACH) is a popular protocol in WSN. LEACH is a clustering protocol in which the random rotations of local cluster heads are utilized in order to distribute energy load among all sensor nodes in the network. This paper proposes Connected Dominant Set (CDS) based cluster formation. CDS aggregates data in a promising approach for reducing routing overhead since messages are transmitted only within virtual backbone by means of CDS and also data aggregating lowers the ratio of responding hosts to the hosts existing in virtual backbones. CDS tries to increase networks lifetime considering such parameters as sensors lifetime, remaining and consumption energies in order to have an almost optimal data aggregation within networks. Experimental results proved CDS outperformed LEACH regarding number of cluster formations, average packet loss rate, average end to end delay, life computation, and remaining energy computation.Keywords: Wireless sensor network, connected dominant set, clustering, data aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11291667 A New Reliability Allocation Method Based On Fuzzy Numbers
Authors: Peng Li, Chuanri Li, Tao Li
Abstract:
Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method, and gives concrete processes on determining the factor and sub-factor sets, weight sets, judgment set, and multi-stage fuzzy evaluation. To determine the weight of factor and sub-factor sets, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.
Keywords: Reliability allocation, fuzzy arithmetic, allocation weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33291666 Fuzzy Multiple Criteria Decision Making for Unmanned Combat Aircraft Selection Using Proximity Measure Method
Authors: C. Ardil
Abstract:
Intuitionistic fuzzy sets (IFS), Pythagorean fuzzy sets (PyFS), Picture fuzzy sets (PFS), q-rung orthopair fuzzy sets (q-ROF), Spherical fuzzy sets (SFS), T-spherical FS, and Neutrosophic sets (NS) are reviewed as multidimensional extensions of fuzzy sets in order to more explicitly and informatively describe the opinions of decision-making experts under uncertainty. To handle operations with standard fuzzy sets (SFS), the necessary operators; weighted arithmetic mean (WAM), weighted geometric mean (WGM), and Minkowski distance function are defined. The algorithm of the proposed proximity measure method (PMM) is provided with a multiple criteria group decision making method (MCDM) for use in a standard fuzzy set environment. To demonstrate the feasibility of the proposed method, the problem of selecting the best drone for an Air Force procurement request is used. The proximity measure method (PMM) based multidimensional standard fuzzy sets (SFS) is introduced to demonstrate its use with an issue involving unmanned combat aircraft selection.
Keywords: standard fuzzy sets (SFS), unmanned combat aircraft selection, multiple criteria decision making (MCDM), proximity measure method (PMM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3591665 Energy Efficiency of Adaptive-Rate Medium Access Control Protocols for Sensor Networks
Authors: Rooholah Hasanizadeh, Saadan Zokaei
Abstract:
Energy efficient protocol design is the aim of current researches in the area of sensor networks where limited power resources impose energy conservation considerations. In this paper we care for Medium Access Control (MAC) protocols and after an extensive literature review, two adaptive schemes are discussed. Of them, adaptive-rate MACs which were introduced for throughput enhancement show the potency to save energy, even more than adaptive-power schemes. Then we propose an allocation algorithm for getting accurate and reliable results. Through a simulation study we validated our claim and showed the power saving of adaptive-rate protocols.Keywords: Adaptive-rate, adaptive-power, MAC protocol, energy efficiency, sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19541664 Incremental Algorithm to Cluster the Categorical Data with Frequency Based Similarity Measure
Authors: S.Aranganayagi, K.Thangavel
Abstract:
Clustering categorical data is more complicated than the numerical clustering because of its special properties. Scalability and memory constraint is the challenging problem in clustering large data set. This paper presents an incremental algorithm to cluster the categorical data. Frequencies of attribute values contribute much in clustering similar categorical objects. In this paper we propose new similarity measures based on the frequencies of attribute values and its cardinalities. The proposed measures and the algorithm are experimented with the data sets from UCI data repository. Results prove that the proposed method generates better clusters than the existing one.Keywords: Clustering, Categorical, Incremental, Frequency, Domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18201663 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants
Authors: Rahib Hidayat Abiyev
Abstract:
This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23751662 Fuzzy-Genetic Optimal Control for Four Degreeof Freedom Robotic Arm Movement
Authors: V. K. Banga, R. Kumar, Y. Singh
Abstract:
In this paper, we present optimal control for movement and trajectory planning for four degrees-of-freedom robot using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs) for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like; Movement, Friction and Settling Time in robotic arm movement have been compensated using Fuzzy logic and Genetic Algorithms. The development of a fuzzy genetic optimization algorithm is presented and discussed. The result are compared only GA and Fuzzy GA. This paper describes genetic algorithms, which is designed to optimize robot movement and trajectory. Though the model represents is a general model for redundant structures and could represent any n-link structures. The result is a complete trajectory planning with Fuzzy logic and Genetic algorithms demonstrating the flexibility of this technique of artificial intelligence.Keywords: Inverse kinematics, Genetic algorithms (GAs), Fuzzy logic (FL), Trajectory planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22931661 A New Approach For Ranking Of Generalized Trapezoidal Fuzzy Numbers
Authors: Amit Kumar, Pushpinder Singh, Parampreet Kaur, Amarpreet Kaur
Abstract:
Ranking of fuzzy numbers play an important role in decision making, optimization, forecasting etc. Fuzzy numbers must be ranked before an action is taken by a decision maker. In this paper, with the help of several counter examples it is proved that ranking method proposed by Chen and Chen (Expert Systems with Applications 36 (2009) 6833-6842) is incorrect. The main aim of this paper is to propose a new approach for the ranking of generalized trapezoidal fuzzy numbers. The main advantage of the proposed approach is that the proposed approach provide the correct ordering of generalized and normal trapezoidal fuzzy numbers and also the proposed approach is very simple and easy to apply in the real life problems. It is shown that proposed ranking function satisfies all the reasonable properties of fuzzy quantities proposed by Wang and Kerre (Fuzzy Sets and Systems 118 (2001) 375-385).Keywords: Ranking function, Generalized trapezoidal fuzzy numbers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27171660 Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach
Authors: Seyed Habib A. Rahmati, Mohsen Sadegh Amalnick
Abstract:
Different terms of the Statistical Process Control (SPC) has sketch in the fuzzy environment. However, Measurement System Analysis (MSA), as a main branch of the SPC, is rarely investigated in fuzzy area. This procedure assesses the suitability of the data to be used in later stages or decisions of the SPC. Therefore, this research focuses on some important measures of MSA and through a new method introduces the measures in fuzzy environment. In this method, which works based on Buckley approach, imprecision and vagueness nature of the real world measurement are considered simultaneously. To do so, fuzzy version of the gauge capability (Cg and Cgk) are introduced. The method is also explained through example clearly.Keywords: SPC, MSA, gauge capability, Cg, Cgk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51761659 Numerical Solving of General Fuzzy Linear Systems by Huang's Method
Authors: S. J. Hosseini Ghoncheh, M. Paripour
Abstract:
In this paper the Huang-s method for solving a m×n fuzzy linear system when, m≤ n, is considered. The method in detail is discussed and illustrated by solving some numerical examples.
Keywords: Fuzzy number, fuzzy linear systems, Huang's method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12911658 A Fuzzy Linear Regression Model Based on Dissemblance Index
Authors: Shih-Pin Chen, Shih-Syuan You
Abstract:
Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.Keywords: Dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14421657 A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel
Authors: H. Zarei, M. H. Fazel Zarandi, M. Karbasian
Abstract:
A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.Keywords: Stock Portfolio Selection, Fuzzy Rule-Base ExpertSystems, Financial Decision Support Systems, Technical Analysis, Fundamental Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841