**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31108

##### Clustering Categorical Data Using Hierarchies (CLUCDUH)

**Authors:**
Gökhan Silahtaroğlu

**Abstract:**

**Keywords:**
Clustering,
Entropy,
tree,
pruning,
split,
gini

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1329320

**References:**

[1] Raymond T Ng. & Jiawei Han. (1994). Efficient and Effective Clustering Methods for Spatial Data Mining, Proceedings of 20th International Conference on Very Large Data Bases, Santiago de Chile, (pp. 144 - 155). Morgan Kauffmann.

[2] Ester Martin, et. al. (1996). A Density Based Algorithm for Discovering Clusters in LargeSpatial Databases with Noise, Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (pp. 169- 194). Kluwer Academic Publishers. ]

[3] Ankerst Mihael, et.al. (1999) OPTICS: Ordering Points to Identify the Clustering Structure, Proceedings of ACM SIGMOD (pp. 5761 -5767). Pergamon Press.

[4] Hinneburg, Alexander and Keim, Daniel A. (1998). An Efficient Approach to Clustering in Large Multimedia Databases with Noise, Proceedings of Knowledge Discovery and Data Mining (pp. 58 -65). AAAI Press.

[5] Han J., & Kamber, Micheline. (2001). Data Mining Concepts and Techniques, Morgan Kaufman Publishers Academic Press.

[6] Karypis, George, et.al. (1999). CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling, Poceedings of IEEE COMPUTER, V.32, (pp. 68 - 75). IEEE Computer Society Press.

[7] Duda R. & Hart P. E. (1973). Pattern Classification and Scene Analysis, Wilry.

[8] Kauffman, L., & Rousseeuw P.J. (1990), Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley and Sons.

[9] Fisher Douglas H.(1995). Iteraritive Optimisation and Simplification of Hierarchical Clusterings, Technical Report CS-95-01, Vabderbilt University.

[10] Fausett L. (1994). Fundamentals of Neural Networks, Prentice-Hall, New Jersey.

[11] Maulik U. & Sanghamitra B.(2000). Genetic Algorithm-based clustering technique, Journal of the Pattern Recognition, Pergamon, issue: 33.

[12] Zhang Tian et.al. (1996). BIRCH: An Efficient Data Clustering Method for Very Large Databases, Proceedings of ACM International Conference on Management of Data, (409 - 418). Oxford University Press.

[13] Kreyzig E.(1989). Introductory Functional Analysis With Applications, Wiley.

[14] Bill F. (Ed.) (1992). Information retrieval: data structures & algorithms. Prentice Hall.

[15] Mitchell T.(1997). Machine Learning, McGraw-Hill International.

[16] Quinlan,J.Ross. (1987). Simplifying decision trees, International Journal of Man-Machine Studies,issue: 27(3), (pp. 221 - 234).

[17] Breiman L., & Friedman J. H., & Olshen R. A., & Stone C. J. (1984). Classification and Regression Trees, Wadsworth, Belmont.

[18] Mehta M., & Agrawal R., & Rissanen J. (1996). SLIQ: A Fast Scalable Classifier for Data Mining, Proceedings of 5th International Extending Database Technology Conference.France. (pp. 18-32). Springer-Verlag, London.

[19] Agrawal R. & Shafer J.C. (1996). Parallel Mining of Association Rules, Proceedings. of IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6. (962- 969). IEEE Educational Activities Department. USA.

[20] Hettich, S. , & Bay, S. D. (1999). The UCI KDD Archive, Department of Information and Computer Science, University of California, Irvine, CA. Retrieved September 1, 2008, from http://kdd.ics.uci.edu.

[21] Pham D.T., & Chan A.B.(1998). Control Chart Pattern Recognition using a New Type of Self Organizing Neural Network. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. Vol 212, No 1, (pp. 115-127). Professional Engineering Publishing.

[22] Keogh, E. & Pazzani, M. (2001). Derivative Dynamic Time Warping. In First SIAM International Conference on Data Mining (SDM'2001), Chicago, USA.

[23] Alcock R.J. & Manolopoulos Y. (1999). Time-Series Similarity Queries Employing a Feature-Based Approach. 7th Hellenic Conference on Informatics. Ioannina,Greece.