%0 Journal Article
	%A H. Zarei and  M. H. Fazel Zarandi and  M. Karbasian
	%D 2009
	%J International Journal of Industrial and Manufacturing Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 36, 2009
	%T A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel
	%U https://publications.waset.org/pdf/12031
	%V 36
	%X A Decision Support System/Expert System for stock
portfolio selection presented where at first step, both technical and
fundamental data used to estimate technical and fundamental return
and risk (1st phase); Then, the estimated values are aggregated with
the investor preferences (2nd phase) to produce convenient stock
portfolio.
In the 1st phase, there are two expert systems, each of which is
responsible for technical or fundamental estimation. In the technical
expert system, for each stock, twenty seven candidates are identified
and with using rough sets-based clustering method (RC) the effective
variables have been selected. Next, for each stock two fuzzy rulebases
are developed with fuzzy C-Mean method and Takai-Sugeno-
Kang (TSK) approach; one for return estimation and the other for
risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation
method. In parallel, for fundamental expert systems,
fuzzy rule-bases have been identified in the form of “IF-THEN" rules
through brainstorming with the stock market experts and the input
data have been derived from financial statements; as a result two
fuzzy rule-bases have been generated for all the stocks, one for return
and the other for risk.
In the 2nd phase, user preferences represented by four criteria and
are obtained by questionnaire. Using an expert system, four estimated
values of return and risk have been aggregated with the respective
values of user preference. At last, a fuzzy rule base having four rules,
treats these values and produce a ranking score for each stock which
will lead to a satisfactory portfolio for the user.
The stocks of six manufacturing companies and the period of
2003-2006 selected for data gathering.
	%P 1467 - 1476