Search results for: Activated sludge
34 Feasibility Study of Mine Tailing’s Treatment by Acidithiobacillus thiooxidans DSM 26636
Authors: M. Gómez-Ramírez, A. Rivas-Castillo, I. Rodríguez-Pozos, R. A. Avalos-Zuñiga, N. G. Rojas-Avelizapa
Abstract:
Among the diverse types of pollutants produced by anthropogenic activities, metals represent a serious threat, due to their accumulation in ecosystems and their elevated toxicity. The mine tailings of abandoned mines contain high levels of metals such as arsenic (As), zinc (Zn), copper (Cu), and lead (Pb), which do not suffer any degradation process, they are accumulated in environment. Abandoned mine tailings potentially could contaminate rivers and aquifers representing a risk for human health due to their high metal content. In an attempt to remove the metals and thereby mitigate the environmental pollution, an environmentally friendly and economical method of bioremediation has been introduced. Bioleaching has been actively studied over the last several years, and it is one of the bioremediation solutions used to treat heavy metals contained in sewage sludge, sediment and contaminated soil. Acidithiobacillus thiooxidans, an extremely acidophilic, chemolithoautotrophic, gram-negative, rod shaped microorganism, which is typically related to Cu mining operations (bioleaching), has been well studied for industrial applications. The sulfuric acid produced plays a major role in bioleaching. Specifically, Acidithiobacillus thiooxidans strain DSM 26636 has been able to leach Al, Ni, V, Fe, Mg, Si, and Ni contained in slags from coal combustion wastes. The present study reports the ability of A. thiooxidans DSM 26636 for the bioleaching of metals contained in two different mine tailing samples (MT1 and MT2). It was observed that Al, Fe, and Mn were removed in 36.3±1.7, 191.2±1.6, and 4.5±0.2 mg/kg for MT1, and in 74.5±0.3, 208.3±0.5, and 20.9±0.1 for MT2. Besides, < 1.5 mg/kg of Au and Ru were also bioleached from MT1; in MT2, bioleaching of Zn was observed at 55.7±1.3 mg/kg, besides removal of < 1.5 mg/kg was observed for As, Ir, Li, and 0.6 for Os in this residue. These results show the potential of strain DSM 26636 for the bioleaching of metals that came from different mine tailings.
Keywords: A. thiooxidans, bioleaching, metals, mine tailings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98733 Environmental Study on Urban Disinfection Using an On-site Generation System
Authors: Víctor Martínez del Rey, Kourosh Nasr Esfahani, Amir Masoud Samani Majd
Abstract:
In this experimental study, the behaviors of Mixed Oxidant solution components (MOS) and sodium hypochlorite (HYPO) as the most commonly applied surface disinfectant were compared through the effectiveness of chlorine disinfection as a function of the contact time and residual chlorine. In this regard, the variation of pH, free available chlorine (FAC) concentration, and electric conductivity (EC) of disinfection solutions in different concentrations were monitored over 48 h contact time. In parallel, the plant stress activated by chlorine-based disinfectants was assessed by comparing MOS and HYPO. The elements of pH and EC in the plant-soil and their environmental impacts, spread by disinfection solutions were analyzed through several concentrations of FAC including 500 mg/L, 1000 mg/L, and 5000 mg/L in irrigated water. All the experiments were carried out at the service station of Sant Cugat, Spain. The outcomes indicated lower pH and higher durability of MOS than HYPO at the same concentration of FAC which resulted in promising stability of FAC within MOS. Furthermore, the pH and EC value of plant-soil irrigated by NaOCl solution were higher than that of MOS solution at the same FAC concentration. On-site generation of MOS as a safe chlorination option might be considered an imaginary future of smart cities.
Keywords: Disinfection, free available chlorine, on-site generation, sodium hypochlorite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50232 Banana Peels as an Eco-Sorbent for Manganese Ions
Authors: M. S. Mahmoud
Abstract:
This study was conducted to evaluate the manganese removal from aqueous solution using Banana peels activated carbon (BPAC). Batch experiments have been carried out to determine the influence of parameters such as pH, biosorbent dose, initial metal ion concentrations and contact times on the biosorption process. From these investigations, a significant increase in percentage removal of manganese 97.4% is observed at pH value 5.0, biosorbent dose 0.8 g, initial concentration 20 ppm, temperature 25 ± 2°C, stirring rate 200 rpm and contact time 2h. The equilibrium concentration and the adsorption capacity at equilibrium of the experimental results were fitted to the Langmuir and Freundlich isotherm models; the Langmuir isotherm was found to well represent the measured adsorption data implying BPAC had heterogeneous surface. A raw groundwater samples were collected from Baharmos groundwater treatment plant network at Embaba and Manshiet Elkanater City/District-Giza, Egypt, for treatment at the best conditions that reached at first phase by BPAC. The treatment with BPAC could reduce iron and manganese value of raw groundwater by 91.4% and 97.1%, respectively and the effect of the treatment process on the microbiological properties of groundwater sample showed decrease of total bacterial count either at 22°C or at 37°C to 85.7% and 82.4%, respectively. Also, BPAC was characterized using SEM and FTIR spectroscopy.
Keywords: Biosorption, banana peels, isothermal models, manganese.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 325231 The Utilisation of Two Types of Fly Ashes Used as Cement Replacement in Soft Soil Stabilisation
Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffill
Abstract:
This study represents the results of an experimental work using two types of fly ashes as a cement replacement in soft soil stabilisation. The fly ashes (FA1 and FA2) used in this study are by-products resulting from an incineration processes between 800 and 1200 ˚C. The stabilised soil in this study was an intermediate plasticity silty clayey soil with medium organic matter content. The experimental works were initially conducted on soil treated with different percentages of FA1 (0, 3, 6, 9, 12, and 15%) to identify the optimum FA1 content. Then FA1 was chemically activated by FA2 which has high alkalinity by blending the optimum content of FA1 with different portions of FA2. The improvement levels were evaluated dependent on the results obtained from consistency limits and compaction tests along with the results of unconfined compressive strength (UCS) tests which were conducted on specimens of soil treated with FA1 and FA2 and exposed to different periods of curing (zero, 7, 14, and 28 days). The results indicated that the FA1 and FA2 used in this study effectively improved the physical and geotechnical properties of the soft soil where the index of plasticity (IP) was decreased significantly from 21 to 13.17 with 12% of FA1; however, there was a slight increase in IP with the use of FA2. Meanwhile, 12% of FA1 was identified as the optimum percentage improving the UCS of stabilised soil significantly. Furthermore, FA2 was found effective as a chemical activator to FA1 where the UCS was improved significantly after using FA2.Keywords: Soft soil stabilisation, waste materials, unconfined compressive strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137330 Narrative and Expository Text Reading Comprehension by Fourth Grade Spanish-Speaking Children
Authors: Mariela V. De Mier, Veronica S. Sanchez Abchi, Ana M. Borzone
Abstract:
This work aims to explore the factors that have an incidence in reading comprehension process, with different type of texts. In a recent study with 2nd, 3rd and 4th grade children, it was observed that reading comprehension of narrative texts was better than comprehension of expository texts. Nevertheless it seems that not only the type of text but also other textual factors would account for comprehension depending on the cognitive processing demands posed by the text. In order to explore this assumption, three narrative and three expository texts were elaborated with different degree of complexity. A group of 40 fourth grade Spanish-speaking children took part in the study. Children were asked to read the texts and answer orally three literal and three inferential questions for each text. The quantitative and qualitative analysis of children responses showed that children had difficulties in both, narrative and expository texts. The problem was to answer those questions that involved establishing complex relationships among information units that were present in the text or that should be activated from children’s previous knowledge to make an inference. Considering the data analysis, it could be concluded that there is some interaction between the type of text and the cognitive processing load of a specific text.
Keywords: comprehension, textual factors, type of text, processing demands.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140829 Mirror Neuron System Study on Elderly Using Dynamic Causal Modeling fMRI Analysis
Authors: R. Keerativittatayut, B. Kaewkamnerdpong, J. Laothamatas, W. Sungkarat
Abstract:
Dynamic Causal Modeling (DCM) functional Magnetic Resonance Imaging (fMRI) is a promising technique to study the connectivity among brain regions and effects of stimuli through modeling neuronal interactions from time-series neuroimaging. The aim of this study is to study characteristics of a mirror neuron system (MNS) in elderly group (age: 60-70 years old). Twenty volunteers were MRI scanned with visual stimuli to study a functional brain network. DCM was employed to determine the mechanism of mirror neuron effects. The results revealed major activated areas including precentral gyrus, inferior parietal lobule, inferior occipital gyrus, and supplementary motor area. When visual stimuli were presented, the feed-forward connectivity from visual area to conjunction area was increased and forwarded to motor area. Moreover, the connectivity from the conjunction areas to premotor area was also increased. Such findings can be useful for future diagnostic process for elderly with diseases such as Parkinson-s and Alzheimer-s.Keywords: Mirror Neuron System (MNS), Dynamic Causal Modeling (DCM), Functional Magnetic Resonance Imaging (fMRI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172828 Development of Molecular Imprinted Polymers (MIPs) for the Selective Removal of Carbamazepine from Aqueous Solution
Authors: Bianca Schweiger, Lucile Bahnweg, Barbara Palm, Ute Steinfeld
Abstract:
The occurrence and removal of trace organic contaminants in the aquatic environment has become a focus of environmental concern. For the selective removal of carbamazepine from loaded waters molecularly imprinted polymers (MIPs) were synthesized with carbamazepine as template. Parameters varied were the type of monomer, crosslinker, and porogen, the ratio of starting materials, and the synthesis temperature. Best results were obtained with a template to crosslinker ratio of 1:20, toluene as porogen, and methacrylic acid (MAA) as monomer. MIPs were then capable to recover carbamazepine by 93% from a 10-5 M landfill leachate solution containing also caffeine and salicylic acid. By comparison, carbamazepine recoveries of 75% were achieved using a nonimprinted polymer (NIP) synthesized under the same conditions, but without template. In landfill leachate containing solutions carbamazepine was adsorbed by 93-96% compared with an uptake of 73% by activated carbon. The best solvent for desorption was acetonitrile, with which the amount of solvent necessary and dilution with water was tested. Selected MIPs were tested for their reusability and showed good results for at least five cycles. Adsorption isotherms were prepared with carbamazepine solutions in the concentration range of 0.01 M to 5*10-6 M. The heterogeneity index showed a more homogenous binding site distribution.Keywords: Carbamazepine, landfill leachate, removal, reuse
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217127 Effect of Superplasticizer and NaOH Molarity on Workability, Compressive Strength and Microstructure Properties of Self-Compacting Geopolymer Concrete
Authors: M. Fadhil Nuruddin, Samuel Demie, M. Fareed Ahmed, Nasir Shafiq
Abstract:
The research investigates the effects of super plasticizer and molarity of sodium hydroxide alkaline solution on the workability, microstructure and compressive strength of self compacting geopolymer concrete (SCGC). SCGC is an improved way of concreting execution that does not require compaction and is made by complete elimination of ordinary Portland cement content. The parameters studied were superplasticizer (SP) dosage and molarity of NaOH solution. SCGC were synthesized from low calcium fly ash, activated by combinations of sodium hydroxide and sodium silicate solutions, and by incorporation of superplasticizer for self compactability. The workability properties such as filling ability, passing ability and resistance to segregation were assessed using slump flow, T-50, V-funnel, L-Box and J-ring test methods. It was found that the essential workability requirements for self compactability according to EFNARC were satisfied. Results showed that the workability and compressive strength improved with the increase in superplasticizer dosage. An increase in strength and a decrease in workability of these concrete samples were observed with the increase in molarity of NaOH solution from 8M to 14M. Improvement of interfacial transition zone (ITZ) and micro structure with the increase of SP and increase of concentration from 8M to 12M were also identified.
Keywords: Compressive strength, Fly ash, Geopolymer concrete, Workability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472626 Reconstruction of a Genome-Scale Metabolic Model to Simulate Uncoupled Growth of Zymomonas mobilis
Authors: Maryam Saeidi, Ehsan Motamedian, Seyed Abbas Shojaosadati
Abstract:
Zymomonas mobilis is known as an example of the uncoupled growth phenomenon. This microorganism also has a unique metabolism that degrades glucose by the Entner–Doudoroff (ED) pathway. In this paper, a genome-scale metabolic model including 434 genes, 757 reactions and 691 metabolites was reconstructed to simulate uncoupled growth and study its effect on flux distribution in the central metabolism. The model properly predicted that ATPase was activated in experimental growth yields of Z. mobilis. Flux distribution obtained from model indicates that the major carbon flux passed through ED pathway that resulted in the production of ethanol. Small amounts of carbon source were entered into pentose phosphate pathway and TCA cycle to produce biomass precursors. Predicted flux distribution was in good agreement with experimental data. The model results also indicated that Z. mobilis metabolism is able to produce biomass with maximum growth yield of 123.7 g (mol glucose)-1 if ATP synthase is coupled with growth and produces 82 mmol ATP gDCW-1h-1. Coupling the growth and energy reduced ethanol secretion and changed the flux distribution to produce biomass precursors.Keywords: Genome-scale metabolic model, Zymomonas mobilis, uncoupled growth, flux distribution, ATP dissipation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 114025 Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes
Authors: John Justo Ambuchi, Zhaohan Zhang, Yujie Feng
Abstract:
Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment.
Keywords: Anaerobic granular sludge, extracellular polymeric substances, iron oxide nanoparticles, multi-wall carbon nanotubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212824 Effects of Chlorhexidine in Application to Hybrid Layers
Authors: Ilma Robo, Saimir Heta, Edona Hasanaj, Vera Ostreni
Abstract:
The hybrid layer (HL), the way it is created and how it is protected against degradation over time, is the key to the clinical success of a composite restoration. The composite supports the dentinal structure exactly with the realized surface of micro-retention. Thus, this surface is in direct proportion to its size versus the duration of clinical use of composite dental restoration. Micro-retention occurs between dentin or acidified enamel and adhesive resin extensions versus pre-prepared spaces, such as hollow dentinal tubules. The way the adhesive resin binds to the acidified dentinal structure depends on the physical or chemical factors of this interrelationship between two structures with very different characteristics. During the acidification process, a precursor to the placement of the adhesive resin layer, activation of metalloproteinases of dental origin occurs, enzymes which are responsible for the degradation of the HL. These enzymes have expressed activity depending on the presence of Zn2+ or Ca2+ ions. There are several ways to inhibit these enzymes, and consequently, there are several ways to inhibit the degradation process of the HL. The study aim is to evaluate chlorhexidine (CHX) as a solution element, inhibitor of dentin activated metalloproteinases, as a result of the application of acidification. This study aims to look at this solution in advantage or contraindication theories, already published in the literature.
Keywords: Hybrid layer, chlorhexidine, degradation, smear layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34923 Biosorption of Heavy Metals by Low Cost Adsorbents
Authors: Azam Tabatabaee, Fereshteh Dastgoshadeh, Akram Tabatabaee
Abstract:
This paper describes the use of by-products as adsorbents for removing heavy metals from aqueous effluent solutions. Products of almond skin, walnut shell, saw dust, rice bran and egg shell were evaluated as metal ion adsorbents in aqueous solutions. A comparative study was done with commercial adsorbents like ion exchange resins and activated carbon too. Batch experiments were investigated to determine the affinity of all of biomasses for, Cd(ΙΙ), Cr(ΙΙΙ), Ni(ΙΙ), and Pb(ΙΙ) metal ions at pH 5. The rate of metal ion removal in the synthetic wastewater by the biomass was evaluated by measuring final concentration of synthetic wastewater. At a concentration of metal ion (50 mg/L), egg shell adsorbed high levels (98.6 – 99.7%) of Pb(ΙΙ) and Cr(ΙΙΙ) and walnut shell adsorbed high levels (35.3 – 65.4%) of Ni(ΙΙ) and Cd(ΙΙ). In this study, it has been shown that by-products were excellent adsorbents for removal of toxic ions from wastewater with efficiency comparable to commercially available adsorbents, but at a reduced cost. Also statistical studies using Independent Sample t Test and ANOVA Oneway for statistical comparison between various elements adsorption showed that there isn’t a significant difference in some elements adsorption percentage by by-products and commercial adsorbents.Keywords: Adsorbents, heavy metals, commercial adsorbents, wastewater, by-products.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247122 Reduction of Power Losses in Distribution Systems
Authors: Y. Al-Mahroqi, I.A. Metwally, A. Al-Hinai, A. Al-Badi
Abstract:
Losses reduction initiatives in distribution systems have been activated due to the increasing cost of supplying electricity, the shortage in fuel with ever-increasing cost to produce more power, and the global warming concerns. These initiatives have been introduced to the utilities in shape of incentives and penalties. Recently, the electricity distribution companies in Oman have been incentivized to reduce the distribution technical and non-technical losses with an equal annual reduction rate for 6 years. In this paper, different techniques for losses reduction in Mazoon Electricity Company (MZEC) are addressed. In this company, high numbers of substation and feeders were found to be non-compliant with the Distribution System Security Standard (DSSS). Therefore, 33 projects have been suggested to bring non-complying 29 substations and 28 feeders to meet the planed criteria and to comply with the DSSS. The largest part of MZEC-s network (South Batinah region) was modeled by ETAP software package. The model has been extended to implement the proposed projects and to examine their effects on losses reduction. Simulation results have shown that the implementation of these projects leads to a significant improvement in voltage profile, and reduction in the active and the reactive power losses. Finally, the economical analysis has revealed that the implementation of the proposed projects in MZEC leads to an annual saving of about US$ 5 million.Keywords: Losses Reduction, Technical Losses, Non-Technical Losses, Cost Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937021 Investigation of Different Stimulation Patterns to Reduce Muscle Fatigue during Functional Electrical Stimulation
Abstract:
Functional electrical stimulation (FES) is a commonly used technique in rehabilitation and often associated with rapid muscle fatigue which becomes the limiting factor in its applications. The objective of this study is to investigate the effects on the onset of fatigue of conventional synchronous stimulation, as well as asynchronous stimulation that mimic voluntary muscle activation targeting different motor units which are activated sequentially or randomly via multiple pairs of stimulation electrodes. We investigate three different approaches with various electrode configurations, as well as different patterns of stimulation applied to the gastrocnemius muscle: Conventional Synchronous Stimulation (CSS), Asynchronous Sequential Stimulation (ASS) and Asynchronous Random Stimulation (ARS). Stimulation was applied repeatedly for 300 ms followed by 700 ms of no-stimulation with 40 Hz effective frequency for all protocols. Ten able-bodied volunteers (28±3 years old) participated in this study. As fatigue indicators, we focused on the analysis of Normalized Fatigue Index (NFI), Fatigue Time Interval (FTI) and pre-post Twitch-Tetanus Ratio (ΔTTR). The results demonstrated that ASS and ARS give higher NFI and longer FTI confirming less fatigue for asynchronous stimulation. In addition, ASS and ARS resulted in higher ΔTTR than conventional CSS. In this study, we proposed a randomly distributed stimulation method for the application of FES and investigated its suitability for reducing muscle fatigue compared to previously applied methods. The results validated that asynchronous stimulation reduces fatigue, and indicates that random stimulation may improve fatigue resistance in some conditions.
Keywords: Asynchronous stimulation, electrode configuration, functional electrical stimulation, muscle fatigue, pattern stimulation, random stimulation, sequential stimulation, synchronous stimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124520 Solar Photocatalysis of Methyl Orange Using Multi-Ion Doped TiO2 Catalysts
Authors: Victor R. Thulari, John Akach, Haleden Chiririwa, Aoyi Ochieng
Abstract:
Solar-light activated titanium dioxide photocatalysts were prepared by hydrolysis of titanium (IV) isopropoxide with thiourea, followed by calcinations at 450 °C. The experiments demonstrated that methyl orange in aqueous solutions were successfully degraded under solar light using doped TiO2. The photocatalytic oxidation of a mono azo methyl-orange dye has been investigated in multi ion doped TiO2 and solar light. Solutions were irradiated by solar-light until high removal was achieved. It was found that there was no degradation of methyl orange in the dark and in the absence of TiO2. Varieties of laboratory prepared TiO2 catalysts both un-doped and doped using titanium (IV) isopropoxide and thiourea as a dopant were tested in order to compare their photoreactivity. As a result, it was found that the efficiency of the process strongly depends on the working conditions. The highest degradation rate of methyl orange was obtained at optimum dosage using commercially produced TiO2. Our work focused on laboratory synthesized catalyst and the maximum methyl orange removal was achieved at 81% with catalyst loading of 0.04 g/L, initial pH of 3 and methyl orange concentration of 0.005 g/L using multi-ion doped catalyst. The kinetics of photocatalytic methyl orange dye stuff degradation was found to follow a pseudo-first-order rate law. The presence of the multi-ion dopant (thiourea) enhanced the photoefficiency of the titanium dioxide catalyst.Keywords: Degradation, kinetics, methyl orange, photocatalysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126619 Isolation and Probiotic Characterization of Arsenic-Resistant Lactic Acid Bacteria for Uptaking Arsenic
Authors: Jatindra N. Bhakta, Kouhei Ohnishi, Yukihiro Munekage, Kozo Iwasaki
Abstract:
The growing health hazardous impact of arsenic (As) contamination in environment is the impetus of the present investigation. Application of lactic acid bacteria (LAB) for the removal of toxic and heavy metals from water has been reported. This study was performed in order to isolate and characterize the Asresistant LAB from mud and sludge samples for using as efficient As uptaking probiotic. Isolation of As-resistant LAB colonies was performed by spread plate technique using bromocresol purple impregnated-MRS (BP-MRS) agar media provided with As @ 50 μg/ml. Isolated LAB were employed for probiotic characterization process, acid and bile tolerance, lactic acid production, antibacterial activity and antibiotic tolerance assays. After As-resistant and removal characterizations, the LAB were identified using 16S rDNA sequencing. A total of 103 isolates were identified as As-resistant strains of LAB. The survival of 6 strains (As99-1, As100-2, As101-3, As102-4, As105-7, and As112-9) was found after passing through the sequential probiotic characterizations. Resistant pattern pronounced hollow zones at As concentration >2000 μg/ml in As99-1, As100-2, and As101-3 LAB strains, whereas it was found at ~1000 μg/ml in rest 3 strains. Among 6 strains, the As uptake efficiency of As102-4 (0.006 μg/h/mg wet weight of cell) was higher (17 – 209%) compared to remaining LAB. 16S rDNA sequencing data of 3 (As99- 1, As100-2, and As101-3) and 3 (As102-4, As105-7, and As112-9) LAB strains clearly showed 97 to 99% (340 bp) homology to Pediococcus dextrinicus and Pediococcus acidilactici, respectively. Though, there was no correlation between the metal resistant and removal efficiency of LAB examined but identified elevated As removing LAB would probably be a potential As uptaking probiotic agent. Since present experiment concerned with only As removal from pure water, As removal and removal mechanism in natural condition of intestinal milieu should be assessed in future studies.Keywords: Lactic acid bacteria, As-resistant, characterization, Pediococcus sp., As removal probiotic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 273418 Generation of Catalytic Films of Zeolite Y and ZSM-5 on FeCrAlloy Metal
Authors: Rana Th. A. Al-Rubaye, Arthur A. Garforth
Abstract:
This work details the generation of thin films of structured zeolite catalysts (ZSM–5 and Y) onto the surface of a metal substrate (FeCrAlloy) using in-situ hydrothermal synthesis. In addition, the zeolite Y is post-synthetically modified by acidified ammonium ion exchange to generate US-Y. Finally the catalytic activity of the structured ZSM-5 catalyst films (Si/Al = 11, thickness 146 0m) and structured US–Y catalyst film (Si/Al = 8, thickness 230m) were compared with the pelleted powder form of ZSM–5 and USY catalysts of similar Si/Al ratios. The structured catalyst films have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-onalloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550oC). The cracking of n–heptane over the pellets and structured catalysts for both ZSM–5 and Y zeolite showed very similar product selectivities for similar amounts of catalyst with an apparent activation energy of around 60 kJ mol-1. This paper demonstrates that structured catalysts can be manufactured with excellent zeolite adherence and when suitably activated/modified give comparable cracking results to the pelleted powder forms. These structured catalysts will improve temperature distribution in highly exothermic and endothermic catalysed processes.
Keywords: FeCrAlloy, Structured catalyst, and Zeolite Y, Zeolite ZSM-5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 318417 Great Powers’ Proxy Wars in Middle East and Difficulty in Transition from Cold War to Cold Peace
Authors: Arash Sharghi, Irina Dotu
Abstract:
The developments in the Middle East region have activated the involvement of a numerous diverse state and non-state actors in the regional affairs. The goals, positions, ideologies, different, and even contrast policy behaviors had procured the spreading and continuity of crisis. Non-state actors varying from Islamic organizations to takfiri-terrorist movements on one hand and regional and trans- regional actors, from another side, seek to reach their interests in the power struggle. Here, a research worthy question comes on the agenda: taking into consideration actors’ contradictory interests and constraints what are the regional peace and stability perspectives? Therein, different actors’ aims definition, their actions and behaviors, which affect instability, can be regarded as independent variables; whereas, on the contrary, Middle East peace and stability perspective analysis is a dependent variable. Though, this regional peace and war theory based research admits the significant influence of trans-regional actors, it asserts the roots of violence to derive from region itself. Consequently, hot war and conflict prevention and hot peace assurance in the Middle East region cannot be attained only by demands and approaches of trans-regional actors. Moreover, capacity of trans-regional actors is sufficient only for a cold war or cold peace to be reached in the region. Furthermore, within the framework of current conflict (struggle) between regional actors it seems to be difficult and even impossible to turn the cold war into a cold peace in the region.
Keywords: Cold peace, cold war, hot war, Middle East, non-state actors, regional and Great powers, war theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117216 Restored CO2 from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift, and Hydrogenation
Authors: R. Jitrwung, K. Krekkeitsakul, C. Kumpidet, J. Tepkeaw, K. Jaikengdee, A. Wannajampa, W. Pathaveekongka
Abstract:
Flue gas discharging from coal fired or gas combustion power plant is containing partially carbon dioxide (CO2). CO2 is a greenhouse gas which has been concerned to the global warming. Carbon Capture Storage and Utilization (CCSU) is a topic which is a tool to deal with this CO2 realization. In this paper, the Flue gas is drawn down from the chimney and filtered then it is compressed to build up the pressure until 8 barg. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA) which is filled with activated carbon. The experiment showed the optimum adsorption pressure at 7 barg at which CO2 can be adsorbed step by step in 1st, 2nd, and 3rd stages obtaining CO2 concentration 29.8, 66.4, and 96.7% respectively. The mixed gas concentration from the last step composed of 96.7% CO2, 2.7% N2 and 0.6% O2. This mixed CO2 product gas obtained from 3 stages PSA contained high concentration of CO2 which is ready to be used for methanol synthesis. The mixed CO2 was experimented in 5-liter methanol synthesis reactor skid by 3 step processes: steam reforming, reverse water gas shift then hydrogenation. The result showed that the ratio of mixed CO2 and CH4 70/30, 50/50, 30/70 and 10/90 yielded methanol 2.4, 4.3, 5.6 and 5.3 L/day and saved 40, 30, 15, and 7% CO2 respectively. The optimum condition (positive in both methanol and CO2 consumption) was mixed CO2/CH4 ratio 47/53% by volume which yielded 4.2 L/day methanol and saved 32% CO2 compared with traditional methanol production from methane steam reforming (5 L/day) but no CO2 consumption.
Keywords: Carbon capture storage and utilization, pressure swing adsorption, reforming, methanol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43315 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment
Authors: Shima Fasahat
Abstract:
This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse. By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.
Keywords: Anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138914 Thermo-Physical Properties and Solubility of CO2 in Piperazine Activated Aqueous Solutions of β-Alanine
Authors: Ghulam Murshid
Abstract:
Carbon dioxide is one of the major greenhouse gas (GHG) contributors. It is an obligation of the industry to reduce the amount of carbon dioxide emission to the acceptable limits. Tremendous research and studies are reported in the past and still the quest to find the suitable and economical solution of this problem needed to be explored in order to develop the most plausible absorber for carbon dioxide removal. Amino acids can be potential alternate solvents for carbon dioxide capture from gaseous streams. This is due to its ability to resist oxidative degradation, low volatility and its ionic structure. In addition, the introduction of promoter-like piperazine to amino acid helps to further enhance the solubility. In this work, the effect of piperazine on thermo physical properties and solubility of β-Alanine aqueous solutions were studied for various concentrations. The measured physicochemical properties data was correlated as a function of temperature using least-squares method and the correlation parameters are reported together with it respective standard deviations. The effect of activator piperazine on the CO2 loading performance of selected amino acid under high-pressure conditions (1bar to 10bar) at temperature range of (30 to 60)oC was also studied. Solubility of CO2 decreases with increasing temperature and increases with increasing pressure. Quadratic representation of solubility using Response Surface Methodology (RSM) shows that the most important parameter to optimize solubility is system pressure. The addition of promoter increases the solubility effect of the solvent.Keywords: Amino acids, CO2, Global warming, Solubility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 364613 Effects of Boron Compounds in Rabbits Fed High Protein and Energy Diet: A Metabolomic and Transcriptomic Approach
Authors: N. Baspinar, A. Basoglu, O. Ozdemir, C. Ozel, F. Terzi, O. Yaman
Abstract:
Current research is targeting new molecular mechanisms that underlie non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders like non-alcoholic steatohepatitis (NASH). Forty New Zealand White rabbits have been used and fed a high protein (HP) and energy diet based on grains and containing 11.76 MJ/kg. Boron added to 3 experimental groups’ drinking waters (30 mg boron/L) as boron compounds. Biochemical analysis including boron levels, and nuclear magnetic resonance (NMR) based metabolomics evaluation, and mRNA expression of peroxisome proliferator-activated receptor (PPAR) family was performed. LDLcholesterol concentrations alone were decreased in all the experimental groups. Boron levels in serum and feces were increased. Content of acetate was in about 2x higher for anhydrous borax group, at least 3x higher for boric acid group. PPARα mRNA expression was significantly decreased in boric acid group. Anhydrous borax attenuated mRNA levels of PPARγ, which was further suppressed by boric acid. Boron supplementation decreased the degenerative alterations in hepatocytes. Except borax group other boron groups did not have a pronounced change in tubular epithels of kidney. In conclusion, high protein and energy diet leads hepatocytes’ degenerative changes which can be prevented by boron supplementation. Boric acid seems to be more effective in this situation.Keywords: High protein and energy diet, boron, metabolomic, transcriptomic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199712 Analytical Development of a Failure Limit and Iso-Uplift Curves for Eccentrically Loaded Shallow Foundations
Authors: N. Abbas, S. Lagomarsino, S. Cattari
Abstract:
Examining existing experimental results for shallow rigid foundations subjected to vertical centric load (N), accompanied or not with a bending moment (M), two main non-linear mechanisms governing the cyclic response of the soil-foundation system can be distinguished: foundation uplift and soil yielding. A soil-foundation failure limit, is defined as a domain of resistance in the two dimensional (2D) load space (N, M) inside of which lie all the admissible combinations of loads; these latter correspond to a pure elastic, non-linear elastic or plastic behavior of the soil-foundation system, while the points lying on the failure limit correspond to a combination of loads leading to a failure of the soil-foundation system. In this study, the proposed resistance domain is constructed analytically based on mechanics. Original elastic limit, uplift initiation limit and iso-uplift limits are constructed inside this domain. These limits give a prediction of the mechanisms activated for each combination of loads applied to the foundation. A comparison of the proposed failure limit with experimental tests existing in the literature shows interesting results. Also, the developed uplift initiation limit and iso-uplift curves are confronted with others already proposed in the literature and widely used due to the absence of other alternatives, and remarkable differences are noted, showing evident errors in the past proposals and relevant accuracy for those given in the present work.
Keywords: Foundation uplift, Iso-uplift curves, Resistance domain, Soil yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217511 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure
Authors: Mohamed Ouzzane, Mahmoud Bady
Abstract:
Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).
Keywords: Air cooling system, refrigeration, thermal ejector, thermal compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60110 The Solar Wall in the Italian Climates
Authors: F. Stazi, C. Di Perna, C. Filiaci, A. Stazi
Abstract:
Passive systems were born with the purpose of the greatest exploitation of solar energy in cold climates and high altitudes. They spread themselves until the 80-s all over the world without any attention to the specific climate and the summer behavior; this caused the deactivation of the systems due to a series of problems connected to the summer overheating, the complex management and the rising of the dust. Until today the European regulation limits only the winter consumptions without any attention to the summer behavior but, the recent European EN 15251 underlines the relevance of the indoor comfort, and the necessity of the analytic studies validation by monitoring case studies. In the porpose paper we demonstrate that the solar wall is an efficient system both from thermal comfort and energy saving point of view and it is the most suitable for our temperate climates because it can be used as a passive cooling sistem too. In particular the paper present an experimental and numerical analisys carried out on a case study with nine different solar passive systems in Ancona, Italy. We carried out a detailed study of the lodging provided by the solar wall by the monitoring and the evaluation of the indoor conditions. Analyzing the monitored data, on the base of recognized models of comfort (ISO, ASHRAE, Givoni-s BBCC), is emerged that the solar wall has an optimal behavior in the middle seasons. In winter phase this passive system gives more advantages in terms of energy consumptions than the other systems, because it gives greater heat gain and therefore smaller consumptions. In summer, when outside air temperature return in the mean seasonal value, the indoor comfort is optimal thanks to an efficient transversal ventilation activated from the same wall.Keywords: Building envelope, energy saving, passive solarwall, thermal comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16539 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples
Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari
Abstract:
Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.Keywords: Electrochemical sensor, molecular imprinted polymer, doxycycline, food control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11748 Deorbiting Performance of Electrodynamic Tethers to Mitigate Space Debris
Authors: Giulia Sarego, Lorenzo Olivieri, Andrea Valmorbida, Carlo Bettanini, Giacomo Colombatti, Marco Pertile, Enrico C. Lorenzini
Abstract:
International guidelines recommend removing any artificial body in Low Earth Orbit (LEO) within 25 years from mission completion. Among disposal strategies, electrodynamic tethers appear to be a promising option for LEO, thanks to the limited storage mass and the minimum interface requirements to the host spacecraft. In particular, recent technological advances make it feasible to deorbit large objects with tether lengths of a few kilometers or less. To further investigate such an innovative passive system, the European Union is currently funding the project E.T.PACK – Electrodynamic Tether Technology for Passive Consumable-less Deorbit Kit in the framework of the H2020 Future Emerging Technologies (FET) Open program. The project focuses on the design of an end of life disposal kit for LEO satellites. This kit aims to deploy a taped tether that can be activated at the spacecraft end of life to perform autonomous deorbit within the international guidelines. In this paper, the orbital performance of the E.T.PACK deorbiting kit is compared to other disposal methods. Besides, the orbital decay prediction is parametrized as a function of spacecraft mass and tether system performance. Different values of length, width, and thickness of the tether will be evaluated for various scenarios (i.e., different initial orbital parameters). The results will be compared to other end-of-life disposal methods with similar allocated resources. The analysis of the more innovative system’s performance with the tape coated with a thermionic material, which has a low work-function (LWT), for which no active component for the cathode is required, will also be briefly discussed. The results show that the electrodynamic tether option can be a competitive and performant solution for satellite disposal compared to other deorbit technologies.Keywords: Deorbiting performance, H2020, spacecraft disposal, space electrodynamic tethers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6267 Effect of Different Methods to Control the Parasitic Weed Phelipanche ramosa (L.- Pomel) in Tomato Crop
Authors: G. Disciglio, F. Lops, A. Carlucci, G. Gatta, A. Tarantino, E. Tarantino
Abstract:
Phelipanche ramosa is the most damaging obligate flowering parasitic weed on wide species of cultivated plants. The semi-arid regions of the world are considered the main centers of this parasitic plant that causes heavy infestation. This is due to its production of high numbers of seeds (up to 200,000) that remain viable for extended periods (up to 20 years). In this study, 13 treatments for the control of Phelipanche were carried out, which included agronomic, chemical, and biological treatments and the use of resistant plant methods. In 2014, a trial was performed at the Department of Agriculture, Food and Environment, University of Foggia (southern Italy), on processing tomato (cv ‘Docet’) grown in pots filled with soil taken from a field that was heavily infested by P. ramosa). The tomato seedlings were transplanted on May 8, 2014, into a sandy-clay soil (USDA). A randomized block design with 3 replicates (pots) was adopted. During the growing cycle of the tomato, at 70, 75, 81 and 88 days after transplantation, the number of P. ramosa shoots emerged in each pot was determined. The tomato fruit were harvested on August 8, 2014, and the quantitative and qualitative parameters were determined. All of the data were subjected to analysis of variance (ANOVA) using the JMP software (SAS Institute Inc. Cary, NC, USA), and for comparisons of means (Tukey's tests). The data show that each treatment studied did not provide complete control against P. ramosa. However, the virulence of the attacks was mitigated by some of the treatments tried: radicon biostimulant, compost activated with Fusarium, mineral fertilizer nitrogen, sulfur, enzone, and the resistant tomato genotype. It is assumed that these effects can be improved by combining some of these treatments with each other, especially for a gradual and continuing reduction of the “seed bank” of the parasite in the soil.
Keywords: Control methods, Phelipanche ramosa, tomato crop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30516 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell
Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman
Abstract:
Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The asprepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.
Keywords: Microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35065 Properties of Adipose Tissue Derived Mesenchymal Stem Cells with Long-Term Cryopreservation
Authors: Jienny Lee, In-Soo Cho, Sang-Ho Cha
Abstract:
Adult mesenchymal stem cells (MSCs) have been investigated using preclinical approaches for tissue regeneration. Porcine MSCs (pMSCs) are capable of growing and attaching to plastic with a fibroblast-like morphology and then differentiating into bone, adipose, and cartilage tissues in vitro. This study was conducted to investigate the proliferating abilities, differentiation potentials, and multipotency of miniature pig adipose tissue-derived MSCs (mpAD-MSCs) with or without long-term cryopreservation, considering that cryostorage has the potential for use in clinical applications. After confirming the characteristics of the mpAD-MSCs, we examined the effect of long-term cryopreservation (> 2 years) on expression of cell surface markers (CD34, CD90 and CD105), proliferating abilities (cumulative population doubling level, doubling time, colony-forming unit, and MTT assay) and differentiation potentials into mesodermal cell lineages. As a result, the expression of cell surface markers is similar between thawed and fresh mpAD-MSCs. However, long-term cryopreservation significantly lowered the differentiation potentials (adipogenic, chondrogenic, and osteogenic) of mpAD-MSCs. When compared with fresh mpAD-MSCs, thawed mpAD-MSCs exhibited lower expression of mesodermal cell lineage-related genes such as peroxisome proliferator-activated receptor-g2, lipoprotein lipase, collagen Type II alpha 1, osteonectin, and osteocalcin. Interestingly, long-term cryostoraged mpAD-MSCs exhibited significantly higher cell viability than the fresh mpAD-MSCs. Long-term cryopreservation induced a 30% increase in the cell viability of mpAD-MSCs when compared with the fresh mpAD-MSCs at 5 days after thawing. However, long-term cryopreservation significantly lowered expression of stemness markers such as Oct3/4, Sox2, and Nanog. Furthermore, long-term cryopreservation negatively affected expression of senescence-associated genes such as telomerase reverse transcriptase and heat shock protein 90 of mpAD-MSCs when compared with the fresh mpAD-MSCs. The results from this study might be important for the successful application of MSCs in clinical trials after long-term cryopreservation.Keywords: Mesenchymal stem cells, Cryopreservation, Stemness, Senescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104