Search results for: Thermal Energy and Power Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6771

Search results for: Thermal Energy and Power Engineering

4281 Performance Improvement in Internally Finned Tube by Shape Optimization

Authors: Kyoungwoo Park, Byeong Sam Kim, Hyo-Jae Lim, Ji Won Han, Park Kyoun Oh, Juhee Lee, Keun-Yeol Yu

Abstract:

Predictions of flow and heat transfer characteristics and shape optimization in internally finned circular tubes have been performed on three-dimensional periodically fully developed turbulent flow and thermal fields. For a trapezoidal fin profile, the effects of fin height h, upper fin widths d1, lower fin widths d2, and helix angle of fin ? on transport phenomena are investigated for the condition of fin number of N = 30. The CFD and mathematical optimization technique are coupled in order to optimize the shape of internally finned tube. The optimal solutions of the design variables (i.e., upper and lower fin widths, fin height and helix angle) are numerically obtained by minimizing the pressure loss and maximizing the heat transfer rate, simultaneously, for the limiting conditions of d1 = 0.5~1.5 mm, d2 = 0.5~1.5 mm, h= 0.5~1.5mm, ? = 10~30 degrees. The fully developed flow and thermal fields are predicted using the finite volume method and the optimization is carried out by means of the multi-objective genetic algorithm that is widely used in the constrained nonlinear optimization problem.

Keywords: Computational fluid dynamics, Genetic algorithm, Internally finned tube with helix angle, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
4280 Variation of Spot Price and Profits of Andhra Pradesh State Grid in Deregulated Environment

Authors: Chava Sunil Kumar, P.S. Subrahmanyan, J. Amarnath

Abstract:

In this paper variation of spot price and total profits of the generating companies- through wholesale electricity trading are discussed with and without Central Generating Stations (CGS) share and seasonal variations are also considered. It demonstrates how proper analysis of generators- efficiencies and capabilities, types of generators owned, fuel costs, transmission losses and settling price variation using the solutions of Optimal Power Flow (OPF), can allow companies to maximize overall revenue. It illustrates how solutions of OPF can be used to maximize companies- revenue under different scenarios. And is also extended to computation of Available Transfer Capability (ATC) is very important to the transmission system security and market forecasting. From these results it is observed that how crucial it is for companies to plan their daily operations and is certainly useful in an online environment of deregulated power system. In this paper above tasks are demonstrated on 124 bus real-life Indian utility power system of Andhra Pradesh State Grid and results have been presented and analyzed.

Keywords: OPF, ATC, Electricity Market, Bid, Spot Price

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
4279 Breaking the Legacy of Silence: A Feminist Perspective on Therapist Attraction to Clients

Authors: Renata Carneiro, Jody Russon, Allena Moncrief, Erica Wilkins

Abstract:

Views on therapists- attraction have influenced the ethical and professional development of the mental health fields. Because the majority of therapist attraction literature (63.6%) has been conducted from a psychoanalytic standpoint, approaches to attraction from feminist perspectives have not been adequately developed. Considering the lack of a feminist voice regarding attraction, this article attempts to offer a feminist perspective on this issue. The purpose of this article is to offer a feminist perspective on the phenomenon of attraction in order to raise awareness about the importance of power inequalities, intersectionalities, contextual variables and the need for action in the field.

Keywords: attraction, feminism, power inequality, silence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
4278 A Comparative Study on Optimized Bias Current Density Performance of Cubic ZnB-GaN with Hexagonal 4H-SiC Based Impatts

Authors: Arnab Majumdar, Srimani Sen

Abstract:

In this paper, a vivid simulated study has been made on 35 GHz Ka-band window frequency in order to judge and compare the DC and high frequency properties of cubic ZnB-GaN with the existing hexagonal 4H-SiC. A flat profile p+pnn+ DDR structure of impatt is chosen and is optimized at a particular bias current density with respect to efficiency and output power taking into consideration the effect of mobile space charge also. The simulated results obtained reveals the strong potentiality of impatts based on both cubic ZnB-GaN and hexagonal 4H-SiC. The DC-to-millimeter wave conversion efficiency for cubic ZnB-GaN impatt obtained is 50% with an estimated output power of 2.83 W at an optimized bias current density of 2.5×108 A/m2. The conversion efficiency and estimated output power in case of hexagonal 4H-SiC impatt obtained is 22.34% and 40 W respectively at an optimum bias current density of 0.06×108 A/m2.

Keywords: Cubic ZnB-GaN, hexagonal 4H-SiC, Double drift impatt diode, millimeter wave, optimized bias current density, wide band gap semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
4277 Quasi Multi-Pulse Back-to-Back Static Synchronous Compensator Employing Line Frequency Switching 2-Level GTO Inverters

Authors: A.M. Vural, K.C. Bayindir

Abstract:

Back-to-back static synchronous compensator (BtBSTATCOM) consists of two back-to-back voltage-source converters (VSC) with a common DC link in a substation. This configuration extends the capabilities of conventional STATCOM that bidirectional active power transfer from one bus to another is possible. In this paper, VSCs are designed in quasi multi-pulse form in which GTOs are triggered only once per cycle in PSCAD/EMTDC. The design details of VSCs as well as gate switching circuits and controllers are fully represented. Regulation modes of BtBSTATCOM are verified and tested on a multi-machine power system through different simulation cases. The results presented in the form of typical time responses show that practical PI controllers are almost robust and stable in case of start-up, set-point change, and line faults.

Keywords: Flexible AC Transmission Systems (FACTS), Backto-Back Static Synchronous Compensator (BtB-STATCOM), quasi multi-pulse voltage source converter, active power transfer; voltage control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
4276 Viscosity Reduction and Upgrading of Athabasca Oilsands Bitumen by Natural Zeolite Cracking

Authors: Abu S.M. Junaid, Wei Wang, Christopher Street, Moshfiqur Rahman, Matt Gersbach, Sarah Zhou, William McCaffrey, Steven M. Kuznicki

Abstract:

Oilsands bitumen is an extremely important source of energy for North America. However, due to the presence of large molecules such as asphaltenes, the density and viscosity of the bitumen recovered from these sands are much higher than those of conventional crude oil. As a result the extracted bitumen has to be diluted with expensive solvents, or thermochemically upgraded in large, capital-intensive conventional upgrading facilities prior to pipeline transport. This study demonstrates that globally abundant natural zeolites such as clinoptilolite from Saint Clouds, New Mexico and Ca-chabazite from Bowie, Arizona can be used as very effective reagents for cracking and visbreaking of oilsands bitumen. Natural zeolite cracked oilsands bitumen products are highly recoverable (up to ~ 83%) using light hydrocarbons such as pentane, which indicates substantial conversion of heavier fractions to lighter components. The resultant liquid products are much less viscous, and have lighter product distribution compared to those produced from pure thermal treatment. These natural minerals impart similar effect on industrially extracted Athabasca bitumen.

Keywords: Natural Zeolites, Oilsands Bitumen, Cracking, Viscosity Reduction, Upgrading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2848
4275 Exergy Analysis of a Solar Humidification- Dehumidification Desalination Unit

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

This paper presents the exergy analysis of a desalination unit using humidification-dehumidification process. Here, this unit is considered as a thermal system with three main components, which are the heating unit by using a solar collector, the evaporator or the humidifier, and the condenser or the dehumidifier. In these components the exergy is a measure of the quality or grade of energy and it can be destroyed in them. According to the second law of thermodynamics this destroyed part is due to irreversibilities which must be determined to obtain the exergetic efficiency of the system. In the current paper a computer program has been developed using visual basic to determine the exergy destruction and the exergetic efficiencies of the components of the desalination unit at variable operation conditions such as feed water temperature, outlet air temperature, air to feed water mass ratio and salinity, in addition to cooling water mass flow rate and inlet temperature, as well as quantity of solar irradiance. The results obtained indicate that the exergy efficiency of the humidifier increases by increasing the mass ratio and decreasing the outlet air temperature. In the other hand the exergy efficiency of the condenser increases with the increase of this ratio and also with the increase of the outlet air temperature.

Keywords: Exergy analysis, desalination, solar, humidifier, condenser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459
4274 Power Generation from Sewage by a Micro-Hydraulic Turbine

Authors: Tomomi Uchiyama, Tomoko Okayama, Yukio Ide

Abstract:

This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function.

Keywords: Generation of electricity, micro-hydraulic turbine, sewage, sewer pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
4273 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear

Authors: Barenten Suciu, Yuya Nakamoto

Abstract:

Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.

Keywords: Power generation, circular arc helical gear, piezo- electric sheet, contact problem, optimal center distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
4272 Generation Expansion Planning Strategies on Power System: A Review

Authors: V. Phupha, T. Lantharthong, N. Rugthaicharoencheep

Abstract:

The problem of generation expansion planning (GEP) has been extensively studied for many years. This paper presents three topics in GEP as follow: statistical model, models for generation expansion, and expansion problem. In the topic of statistical model, the main stages of the statistical modeling are briefly explained. Some works on models for GEP are reviewed in the topic of models for generation expansion. Finally for the topic of expansion problem, the major issues in the development of a longterm expansion plan are summarized.

Keywords: Generation expansion planning, strategies, power system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3209
4271 Improving Gas Separation Performance of Poly(Vinylidene Fluoride) Based Membranes Containing Ionic Liquid

Authors: S. Al-Enezi, J. Samuel, A. Al-Banna

Abstract:

Polymer based membranes are one of the low-cost technologies available for the gas separation. Three major elements required for a commercial gas separating membrane are high permeability, high selectivity, and good mechanical strength. Poly(vinylidene fluoride) (PVDF) is a commercially available fluoropolymer and a widely used membrane material in gas separation devices since it possesses remarkable thermal, chemical stability, and excellent mechanical strength. The PVDF membrane was chemically modified by soaking in different ionic liquids and dried. The thermal behavior of modified membranes was investigated by differential scanning calorimetry (DSC), and thermogravimetry (TGA), and the results clearly show the best affinity between the ionic liquid and the polymer support. The porous structure of the PVDF membranes was clearly seen in the scanning electron microscopy (SEM) images. The CO₂ permeability of blended membranes was explored in comparison with the unmodified matrix. The ionic liquid immobilized in the hydrophobic PVDF support exhibited good performance for separations of CO₂/N₂. The improved permeability of modified membrane (PVDF-IL) is attributed to the high concentration of nitrogen rich imidazolium moieties.

Keywords: PVDF, gas permeability, polymer membrane, ionic liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031
4270 Evolution of Cord Absorbed Dose during of Larynx Cancer Radiotherapy, with 3D Treatment Planning and Tissue Equivalent Phantom

Authors: Mohammad Hassan Heidari, Amir Hossein Goodarzi, Majid Azarniush

Abstract:

Radiation doses to tissues and organs were measured using the anthropomorphic phantom as an equivalent to the human body. When high-energy X-rays are externally applied to treat laryngeal cancer, the absorbed dose at the laryngeal lumen is lower than given dose because of air space, which it should pass through, before reaching the lesion. Specially, in case of high-energy X-rays, the loss of dose is considerable. Three-dimensional absorbed dose distributions have been computed for high-energy photon radiation therapy of laryngeal and hypopharyngeal cancers, using a coaxial pair of opposing lateral beams in fixed positions. Treatment plans obtained under various conditions of irradiation.

Keywords: 3D Treatment Planning, anthropomorphic phantom, larynx cancer, radiotherapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
4269 Application of GAMS and GA in the Location and Penetration of Distributed Generation

Authors: Alireza Dehghani Pilehvarani, Mojtaba Hakimzadeh, Mohammad Jafari Far, Reza Sedaghati

Abstract:

Distributed Generation (DG) can help in reducing the cost of electricity to the costumer, relieve network congestion and provide environmentally friendly energy close to load centers. Its capacity is also scalable and it provides voltage support at distribution level. Hence, DG placement and penetration level is an important problem for both the utility and DG owner. DG allocation and capacity determination is a nonlinear optimization problem. The objective function of this problem is the minimization of the total loss of the distribution system. Also high levels of penetration of DG are a new challenge for traditional electric power systems. This paper presents a new methodology for the optimal placement of DG and penetration level of DG in distribution system based on General Algebraic Modeling System (GAMS) and Genetic Algorithm (GA).

Keywords: Distributed Generation, Location, Loss Reduction, Distribution Network, GA, GAMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625
4268 Optimal Power Allocation for the Proposed Asymmetric Turbo Code for 3G Systems

Authors: K. Ramasamy, B. Balamuralithara, Mohammad Umar Siddiqi

Abstract:

We proposed a new class of asymmetric turbo encoder for 3G systems that performs well in both “water fall" and “error floor" regions in [7]. In this paper, a modified (optimal) power allocation scheme for the different bits of new class of asymmetric turbo encoder has been investigated to enhance the performance. The simulation results and performance bound for proposed asymmetric turbo code with modified Unequal Power Allocation (UPA) scheme for the frame length, N=400, code rate, r=1/3 with Log-MAP decoder over Additive White Gaussian Noise (AWGN) channel are obtained and compared with the system with typical UPA and without UPA. The performance tests are extended over AWGN channel for different frame size to verify the possibility of implementation of the modified UPA scheme for the proposed asymmetric turbo code. From the performance results, it is observed that the proposed asymmetric turbo code with modified UPA performs better than the system without UPA and with typical UPA and it provides a coding gain of 0.4 to 0.52dB.

Keywords: Asymmetric turbo code, Generator polynomial, Interleaver, UPA, WCDMA, cdma2000.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
4267 Production of Carbon Nanotubes by Iron Catalyst

Authors: Ezgi Dündar-Tekkaya, Nilgün Karatepe

Abstract:

Carbon nanotubes (CNTs) with their high mechanical, electrical, thermal and chemical properties are regarded as promising materials for many different potential applications. Having unique properties they can be used in a wide range of fields such as electronic devices, electrodes, drug delivery systems, hydrogen storage, textile etc. Catalytic chemical vapor deposition (CCVD) is a common method for CNT production especially for mass production. Catalysts impregnated on a suitable substrate are important for production with chemical vapor deposition (CVD) method. Iron catalyst and MgO substrate is one of most common catalyst-substrate combination used for CNT. In this study, CNTs were produced by CCVD of acetylene (C2H2) on magnesium oxide (MgO) powder substrate impregnated by iron nitrate (Fe(NO3)3•9H2O) solution. The CNT synthesis conditions were as follows: at synthesis temperatures of 500 and 800°C multiwall and single wall CNTs were produced respectively. Iron (Fe) catalysts were prepared by with Fe:MgO ratio of 1:100, 5:100 and 10:100. The duration of syntheses were 30 and 60 minutes for all temperatures and catalyst percentages. The synthesized materials were characterized by thermal gravimetric analysis (TGA), transmission electron microscopy (TEM) and Raman spectroscopy.

Keywords: Carbon nanotube, catalyst, catalytic chemical vapordeposition, iron

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2887
4266 Fe3O4 and Fe3O4@Au Nanoparticles: Synthesis and Functionalisation for Biomolecular Attachment

Authors: Hendriëtte van der Walt, Lesley Chown, Richard Harris, Ndabenhle Sosibo, Robert Tshikhudo

Abstract:

The use of magnetic and magnetic/gold core/shell nanoparticles in biotechnology or medicine has shown good promise due to their hybrid nature which possesses superior magnetic and optical properties. Some of these potential applications include hyperthermia treatment, bio-separations, diagnostics, drug delivery and toxin removal. Synthesis refinement to control geometric and magnetic/optical properties, and finding functional surfactants for biomolecular attachment, are requirements to meet application specifics. Various high-temperature preparative methods were used for the synthesis of iron oxide and gold-coated iron oxide nanoparticles. Different surface functionalities, such as 11-aminoundecanoic and 11-mercaptoundecanoic acid, were introduced on the surface of the particles to facilitate further attachment of biomolecular functionality and drug-like molecules. Nanoparticle thermal stability, composition, state of aggregation, size and morphology were investigated and the results from techniques such as Fourier Transform-Infra Red spectroscopy (FT-IR), Ultraviolet visible spectroscopy (UV-vis), Transmission Electron Microscopy (TEM) and thermal analysis are discussed.

Keywords: Core/shell, Iron oxide, Gold coating, Nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2938
4265 Mobile Cloud Middleware: A New Service for Mobile Users

Authors: K. Akherfi, H. Harroud

Abstract:

Cloud computing (CC) and mobile cloud computing (MCC) have advanced rapidly the last few years. Today, MCC undergoes fast improvement and progress in terms of hardware (memory, embedded sensors, power consumption, touch screen, etc.) software (more and more sophisticated mobile applications) and transmission (higher data transmission rates achieved with different technologies such as 3Gs). This paper presents a review on the concept of CC and MCC. Then, it discusses what has been done regarding middleware in cloud and mobile cloud computing. Later, it shows the architecture of our proposed middleware along with its functionalities which will be provided to mobile clients in order to overcome the well known problems (such as low battery power, slow CPU speed and little memory…).

Keywords: Context-aware, cloud computing, middleware, mobile cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151
4264 Thermodynamic Modeling of the High Temperature Shift Converter Reactor Using Minimization of Gibbs Free Energy

Authors: H. Zare Aliabadi

Abstract:

The equilibrium chemical reactions taken place in a converter reactor of the Khorasan Petrochemical Ammonia plant was studied using the minimization of Gibbs free energy method. In the minimization of the Gibbs free energy function the Davidon– Fletcher–Powell (DFP) optimization procedure using the penalty terms in the well-defined objective function was used. It should be noted that in the DFP procedure along with the corresponding penalty terms the Hessian matrices for the composition of constituents in the Converter reactor can be excluded. This, in fact, can be considered as the main advantage of the DFP optimization procedure. Also the effect of temperature and pressure on the equilibrium composition of the constituents was investigated. The results obtained in this work were compared with the data collected from the converter reactor of the Khorasan Petrochemical Ammonia plant. It was concluded that the results obtained from the method used in this work are in good agreement with the industrial data. Notably, the algorithm developed in this work, in spite of its simplicity, takes the advantage of short computation and convergence time.

Keywords: Gibbs free energy, converter reactors, Chemical equilibrium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
4263 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy

Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan

Abstract:

Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.

Keywords: Biomechanical energy management, gait rehabilitation, knee exosuit, wearable robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143
4262 Impact of Landuse Change on Surface Temperature in Ibadan, Nigeria

Authors: Abegunde Linda, Adedeji Oluwatola

Abstract:

It has become an increasing evident that large development influences the climate. There are concerns that rising temperature over developed areas could have negative impact and increase living discomfort within city boundaries. Temperature trends in Ibadan city have received little attention, yet the area has experienced heavy urban expansion between 1972 and 2014. This research aims at examining the impact of landuse change on surface temperature knowing that the built-up environment absorb and store solar energy, resulting into the Urban Heat Island (UHI) effect. The Landsat imagery was used to examine the landuse change for a period of 42 years (1972-2014). Land Surface Temperature (LST) was obtained by converting the thermal band to a surface temperature map and zonal statistic analyses was used to examine the relationship between landuse and temperature emission. The results showed that the settlement area increased to a large extent while the area covered by vegetation reduced during the study period. The spatial and temporal trends of surface temperature are related to the gradual change in urban landuse/landcover and the settlement area has the highest emission. This research provides useful insight into the temporal behavior of the Ibadan city.

Keywords: Landuse, LST, Remote sensing, UHI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2744
4261 A Direct Down-conversion Receiver for Low-power Wireless Sensor Networks

Authors: Gianluca Cornetta, Abdellah Touhafi, David J. Santos, Jose Manuel Vazquez

Abstract:

A direct downconversion receiver implemented in 0.13 μm 1P8M process is presented. The circuit is formed by a single-end LNA, an active balun for conversion into balanced mode, a quadrature double-balanced passive switch mixer and a quadrature voltage-controlled oscillator. The receiver operates in the 2.4 GHz ISM band and complies with IEEE 802.15.4 (ZigBee) specifications. The circuit exhibits a very low noise figure of only 2.27 dB and dissipates only 14.6 mW with a 1.2 V supply voltage and is hence suitable for low-power applications.

Keywords: LNA, Active Balun, Passive Mixer, VCO, IEEE 802.15.4(ZigBee).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
4260 Sustainable Engineering: Synergy of BIM and Environmental Assessment Tools in the Hong Kong Construction Industry

Authors: Kwok Tak Kit

Abstract:

The construction industry plays an important role in environmental and carbon emissions as it consumes a huge amount of natural resources and energy. Sustainable engineering involves the process of planning, design, procurement, construction and delivery in which the whole building and construction process resulting from building and construction can be effectively and sustainability managed to achieve the use of natural resources. Implementation of sustainable technology development and innovation, adoption of the advanced construction process and facilitate the facilities management to implement the energy and waste control more accurately and effectively. Study and research in the relationship of BIM and environment assessment tools lack a clear discussion. In this paper, we will focus on the synergy of BIM technology and sustainable engineering in the AEC industry and outline the key factors which enhance the use of advanced innovation, technology and method and define the role of stakeholders to achieve zero-carbon emission toward the Paris Agreement to limit global warming to well below 2°C above pre-industrial levels. A case study of the adoption of Building Information Modeling (BIM) and environmental assessment tools in Hong Kong will be discussed in this paper.

Keywords: sustainability, sustainable engineering, BIM, LEED

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 484
4259 Design of OTA with Common Drain and Folded Cascade Used in ADC

Authors: Gu Wei, Gao Wei

Abstract:

In this report, an OTA which is used in fully differential pipelined ADC was described. Using gain-boost architecture with difference-ended amplifier, this OTA achieve high-gain and high-speed. Besides, the CMFB circuit is also used, and some methods are concerned to improve the performance. Then, by optimization the layout design, OTA-s mismatch was reduced. This design was using TSMC 0.18um CMOS process and simulation both schematic and layout in Cadence. The result of the simulation shows that the OTA has a gain up to 80dB,a unity gain bandwidth of about 1.437GHz for a 2pF load, a slew rate is about 428V/μs, a output swing is 0.2V~1.35V, with the power supply of 1.8V, the power consumption is 88mW. This amplifier was used in a 10bit 150MHz pipelined ADC.

Keywords: OTA, common drain, CMFB, pipelined ADC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3319
4258 Thermal Effect on Wave Interaction in Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.

Keywords: Temperature dependent mechanical characteristics, wave propagation properties, damage detection, wave finite element, composite structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
4257 A Comparison of Deterministic and Probabilistic Methods for Determining the Required Amount of Spinning Reserve

Authors: A. Ehsani, A. Karimizadeh, H. Fallahi, A. Jalali

Abstract:

In an electric power system, spinning reserve requirements can be determined by using deterministic and/or probabilistic measures. Although deterministic methods are usual in many systems, application of probabilistic methods becomes increasingly important in the new environment of the electric power utility industry. This is because of the increased uncertainty associated with competition. In this paper 1) a new probabilistic method is presented which considers the reliability of transmission system in a simplified manner and 2) deterministic and probabilistic methods are compared. The studied methods are applied to the Roy Billinton Test System (RBTS).

Keywords: Reliability, Spinning Reserve, Risk, Transmission, Unit Commitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
4256 Rotor Concepts for the Counter Flow Heat Recovery Fan

Authors: Christoph Speer

Abstract:

Decentralized ventilation systems should combine a small and economical design with high aerodynamic and thermal efficiency. The Counter Flow Heat Recovery Fan (CHRF) provides the ability to meet these requirements by using only one cross flow fan with a large number of blades to generate both airflows and which simultaneously acts as a regenerative counter flow heat exchanger. The successful development of the first laboratory prototype has shown the potential of this ventilation system. Occurring condensate on the surfaces of the fan blades during the cold and dry season can be recovered through the characteristic mode of operation. Hence the CHRF provides the possibility to avoid the need for frost protection and condensate drain. Through the implementation of system-specific solutions for flow balancing and summer bypass the required functionality is assured. The scalability of the CHRF concept allows the use in renovation as well as in new buildings from single-room devices through to systems for office buildings. High aerodynamic and thermal efficiency and the lower number of required mechatronic components should enable a reduction in investment as well as operating costs. The rotor is the key component of the system, the requirements and possible implementation variants are presented.

Keywords: CHRF, counter flow heat recovery fan, decentralized ventilation system, renovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
4255 The Transfer of Energy Technologies in a Developing Country Context Towards Improved Practice from Past Successes and Failures

Authors: Lindiwe O. K. Mabuza, Alan C. Brent, Maxwell Mapako

Abstract:

Technology transfer of renewable energy technologies is very often unsuccessful in the developing world. Aside from challenges that have social, economic, financial, institutional and environmental dimensions, technology transfer has generally been misunderstood, and largely seen as mere delivery of high tech equipment from developed to developing countries or within the developing world from R&D institutions to society. Technology transfer entails much more, including, but not limited to: entire systems and their component parts, know-how, goods and services, equipment, and organisational and managerial procedures. Means to facilitate the successful transfer of energy technologies, including the sharing of lessons are subsequently extremely important for developing countries as they grapple with increasing energy needs to sustain adequate economic growth and development. Improving the success of technology transfer is an ongoing process as more projects are implemented, new problems are encountered and new lessons are learnt. Renewable energy is also critical to improve the quality of lives of the majority of people in developing countries. In rural areas energy is primarily traditional biomass. The consumption activities typically occur in an inefficient manner, thus working against the notion of sustainable development. This paper explores the implementation of technology transfer in the developing world (sub-Saharan Africa). The focus is necessarily on RETs since most rural energy initiatives are RETs-based. Additionally, it aims to highlight some lessons drawn from the cited RE projects and identifies notable differences where energy technology transfer was judged to be successful. This is done through a literature review based on a selection of documented case studies which are judged against the definition provided for technology transfer. This paper also puts forth research recommendations that might contribute to improved technology transfer in the developing world. Key findings of this paper include: Technology transfer cannot be complete without satisfying pre-conditions such as: affordability, maintenance (and associated plans), knowledge and skills transfer, appropriate know how, ownership and commitment, ability to adapt technology, sound business principles such as financial viability and sustainability, project management, relevance and many others. It is also shown that lessons are learnt in both successful and unsuccessful projects.

Keywords: Technology transfer, technology management, renewable energy, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
4254 Design and Analysis of a Novel 8-DOF Hybrid Manipulator

Authors: H. Mohammadipanah, H. Zohoor

Abstract:

This paper presents kinematic and dynamic analysis of a novel 8-DOF hybrid robot manipulator. The hybrid robot manipulator under consideration consists of a parallel robot which is followed by a serial mechanism. The parallel mechanism has three translational DOF, and the serial mechanism has five DOF so that the overall degree of freedom is eight. The introduced manipulator has a wide workspace and a high capability to reduce the actuating energy. The inverse and forward kinematic solutions are described in closed form. The theoretical results are verified by a numerical example. Inverse dynamic analysis of the robot is presented by utilizing the Iterative Newton-Euler and Lagrange dynamic formulation methods. Finally, for performing a multi-step arc welding process, results have indicated that the introduced manipulator is highly capable of reducing the actuating energy.

Keywords: hybrid robot, closed form, inverse dynamic, actuating energy, arc welding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
4253 Mechanical Properties of Ordinary Portland Cement Modified Cold Bitumen Emulsion Mixture

Authors: Hayder Kamil Shanbara, Felicite Ruddock, William Atherton, Nassier A. Nassir

Abstract:

Cold bitumen emulsion mixture (CBEM) offers a series benefits as compared with hot mix asphalt (HMA); these include environmental factors, energy saving, the resolution of logistical challenges that can characterise hot mix, and the potential to reserve funds. However, this mixture has some problems similar to any bituminous mixtures as it has low early strength, long curing time that needed to obtain the maximum performance, high air voids and considered inferior to HMA. Thus, CBEM has been used in limited applications such as lightly trafficked roads, footways and reinstatements. This laboratory study describes the development of CBEM using ordinary Portland cement (OPC) instead of the traditional mineral filler. Stiffness modulus, moisture damage and temperature sensitivity tests were used to evaluate the mechanical properties of the produced mixtures. The study concluded that there is a substantial improvement in the mechanical properties and moisture damage resistance of CBEMs containing OPC. Also, the produced cement modified CBEM shows a considerable lower thermal sensitivity than the conventional CBEM.

Keywords: Cold bitumen emulsion mixture, moisture damage, OPC, stiffness modulus, temperature sensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
4252 Power System Security Constrained Economic Dispatch Using Real Coded Quantum Inspired Evolution Algorithm

Authors: A. K. Al-Othman, F. S. Al-Fares, K. M. EL-Nagger

Abstract:

This paper presents a new optimization technique based on quantum computing principles to solve a security constrained power system economic dispatch problem (SCED). The proposed technique is a population-based algorithm, which uses some quantum computing elements in coding and evolving groups of potential solutions to reach the optimum following a partially directed random approach. The SCED problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Real Coded Quantum-Inspired Evolution Algorithm (RQIEA) is then applied to solve the constrained optimization formulation. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that RQIEA is very applicable for solving security constrained power system economic dispatch problem (SCED).

Keywords: State Estimation, Fuzzy Linear Regression, FuzzyLinear State Estimator (FLSE) and Measurements Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706