Search results for: phase correlation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2590

Search results for: phase correlation

160 Implementing Education 4.0 Trends in Language Learning

Authors: Luz Janeth Ospina M.

Abstract:

The fourth industrial revolution is changing the role of education substantially and, therefore, the role of instructors and learners at all levels. Education 4.0 is an imminent response to the needs of a globalized world where humans and technology are being aligned to enable endless possibilities, among them the need for students, as digital natives, to communicate effectively in at least one language besides their mother tongue, and also the requirement of developing theirs. This is an exploratory study in which a control group (N = 21), all of the students of Spanish as a foreign language at the university level, after taking a Spanish class, responded to an online questionnaire about the engagement, atmosphere, and environment in which their course was delivered. These aspects considered in the survey were relative to the instructor’s teaching style, including: (a) active, hands-on learning; (b) flexibility for in-class activities, easily switching between small group work, individual work, and whole-class discussion; and (c) integrating technology into the classroom. Strongly believing in these principles, the instructor deliberately taught the course in a SCALE-UP room, as it could facilitate such a positive and encouraging learning environment. These aspects are trends related to Education 4.0 and have become integral to the instructor’s pedagogical stance that calls for a constructive-affective role, instead of a transmissive one. As expected, with a learning environment that (a) fosters student engagement and (b) improves student outcomes, the subjects were highly engaged, which was partially due to the learning environment. An overwhelming majority (all but one) of students agreed or strongly agreed that the atmosphere and the environment were ideal. Outcomes of this study are relevant and indicate that it is about time for teachers to build up a meaningful correlation between humans and technology. We should see the trends of Education 4.0 not as a threat but as practices that should be in the hands of critical and creative instructors whose pedagogical stance responds to the needs of the learners in the 21st century.

Keywords: Active learning, education 4.0, higher education, pedagogical stance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690
159 Importance of Risk Assessment in Managers´ Decision-Making Process

Authors: Mária Hudáková, Vladimír Míka, Katarína Hollá

Abstract:

Making decisions is the core of management and a result of conscious activities which is under way in a particular environment and concrete conditions. The managers decide about the goals, procedures and about the methods how to respond to the changes and to the problems which developed. Their decisions affect the effectiveness, quality, economy and the overall successfulness in every organisation. In spite of this fact, they do not pay sufficient attention to the individual steps of the decision-making process. They emphasise more how to cope with the individual methods and techniques of making decisions and forget about the way how to cope with analysing the problem or assessing the individual solution variants. In many cases, the underestimating of the analytical phase can lead to an incorrect assessment of the problem and this can then negatively influence its further solution. Based on our analysis of the theoretical solutions by individual authors who are dealing with this area and the realised research in Slovakia and also abroad we can recognise an insufficient interest of the managers to assess the risks in the decision-making process. The goal of this paper is to assess the risks in the managers´ decision-making process relating to the conditions of the environment, to the subject’s activity (the manager’s personality), to the insufficient assessment of individual variants for solving the problems but also to situations when the arisen problem is not solved. The benefit of this paper is the effort to increase the need of the managers to deal with the risks during the decision-making process. It is important for every manager to assess the risks in his/her decision-making process and to make efforts to take such decisions which reflect the basic conditions, states and development of the environment in the best way and especially for the managers´ decisions to contribute to achieving the determined goals of the organisation as effectively as possible.

Keywords: Risk, decision-making, manager, process, analysis, source of risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
158 Experimental Investigation of Heat Transfer and Flow of Nano Fluids in Horizontal Circular Tube

Authors: Abdulhassan Abd. K, Sattar Al-Jabair, Khalid Sultan

Abstract:

We have measured the pressure drop and convective heat transfer coefficient of water – based AL(25nm),AL2O3(30nm) and CuO(50nm) Nanofluids flowing through a uniform heated circular tube in the fully developed laminar flow regime. The experimental results show that the data for Nanofluids friction factor show a good agreement with analytical prediction from the Darcy's equation for single-phase flow. After reducing the experimental results to the form of Reynolds, Rayleigh and Nusselt numbers. The results show the local Nusselt number and temperature have distribution with the non-dimensional axial distance from the tube entry. Study decided that thenNanofluid as Newtonian fluids through the design of the linear relationship between shear stress and the rate of stress has been the study of three chains of the Nanofluid with different concentrations and where the AL, AL2O3 and CuO – water ranging from (0.25 - 2.5 vol %). In addition to measuring the four properties of the Nanofluid in practice so as to ensure the validity of equations of properties developed by the researchers in this area and these properties is viscosity, specific heat, and density and found that the difference does not exceed 3.5% for the experimental equations between them and the practical. The study also demonstrated that the amount of the increase in heat transfer coefficient for three types of Nano fluid is AL, AL2O3, and CuO – Water and these ratios are respectively (45%, 32%, 25%) with insulation and without insulation (36%, 23%, 19%), and the statement of any of the cases the best increase in heat transfer has been proven that using insulation is better than not using it. I have been using three types of Nano particles and one metallic Nanoparticle and two oxide Nanoparticle and a statement, whichever gives the best increase in heat transfer.

Keywords: Newtonian, NUR factor, Brownian motion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
157 Lateral-Torsional Buckling of Steel Girder Systems Braced by Solid Web Crossbeams

Authors: Ruoyang Tang, Jianguo Nie

Abstract:

Lateral-torsional bracing members are critical to the stability of girder systems during the construction phase of steel-concrete composite bridges, and the interaction effect of multiple girders plays an essential role in the determination of buckling load. In this paper, an investigation is conducted on the lateral-torsional buckling behavior of the steel girder system which is composed of three or four I-shaped girders and braced by solid web crossbeams. The buckling load for such girder system is comprehensively analyzed and an analytical solution is developed for uniform pressure loading conditions. Furthermore, post-buckling analysis including initial geometric imperfections is performed and parametric studies in terms of bracing density, stiffness ratio as well as the number and spacing of girders are presented in order to find the optimal bracing plans for an arbitrary girder layout. The theoretical solution of critical load on account of local buckling mode shows good agreement with the numerical results in eigenvalue analysis. In addition, parametric analysis results show that both bracing density and stiffness ratio have a significant impact on the initial stiffness, global stability and failure mode of such girder system. Taking into consideration the effect of initial geometric imperfections, an increase in bracing density between adjacent girders can effectively improve the bearing capacity of the structure, and higher beam-girder stiffness ratio can result in a more ductile failure mode.

Keywords: Bracing member, construction stage, lateral-torsional buckling, steel girder system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538
156 Comparison of Composite Programming and Compromise Programming for Aircraft Selection Problem Using Multiple Criteria Decision Making Analysis Method

Authors: C. Ardil

Abstract:

In this paper, the comparison of composite programming and compromise programming for the aircraft selection problem is discussed using the multiple criteria decision analysis method. The decision making process requires the prior definition and fulfillment of certain factors, especially when it comes to complex areas such as aircraft selection problems. The proposed technique gives more efficient results by extending the composite programming and compromise programming, which are widely used in modeling multiple criteria decisions. The proposed model is applied to a practical decision problem for evaluating and selecting aircraft problems.A selection of aircraft was made based on the proposed approach developed in the field of multiple criteria decision making. The model presented is solved by using the following methods: composite programming, and compromise programming. The importance values of the weight coefficients of the criteria are calculated using the mean weight method. The evaluation and ranking of aircraft are carried out using the composite programming and compromise programming methods. In order to determine the stability of the model and the ability to apply the developed composite programming and compromise programming approach, the paper analyzes its sensitivity, which involves changing the value of the coefficient λ and q in the first part. The second part of the sensitivity analysis relates to the application of different multiple criteria decision making methods, composite programming and compromise programming. In addition, in the third part of the sensitivity analysis, the Spearman correlation coefficient of the ranks obtained was calculated which confirms the applicability of all the proposed approaches.

Keywords: composite programming, compromise programming, additive weighted model, multiplicative weighted model, multiple criteria decision making analysis, MCDMA, aircraft selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
155 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: Modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 896
154 Energy Interaction among HVAC and Supermarket Environment

Authors: D. Woradechjumroen, H. Li, Y. Yu

Abstract:

Supermarkets are the most electricity-intensive type of commercial buildings. The unsuitable indoor environment of a supermarket provided by abnormal HVAC operations incurs waste energy consumption in refrigeration systems. This current study briefly describes significantly solid backgrounds and proposes easyto- use analysis terminology for investigating the impact of HVAC operations on refrigeration power consumption using the field-test data obtained from building automation system (BAS). With solid backgrounds and prior knowledge, expected energy interactions between HVAC and refrigeration systems are proposed through Pearson’s correlation analysis (R value) by considering correlations between equipment power consumption and dominantly independent variables (driving force conditions).The R value can be conveniently utilized to evaluate how strong relations between equipment operations and driving force parameters are. The calculated R values obtained from field data are compared to expected ranges of R values computed by energy interaction methodology. The comparisons can separate the operational conditions of equipment into faulty and normal conditions. This analysis can simply investigate the condition of equipment operations or building sensors because equipment could be abnormal conditions due to routine operations or faulty commissioning processes in field tests. With systematically solid and easy-to-use backgrounds of interactions provided in the present article, the procedures can be utilized as a tool to evaluate the proper commissioning and routine operations of HVAC and refrigeration systems to detect simple faults (e.g. sensors and driving force environment of refrigeration systems and equipment set-point) and optimize power consumption in supermarket buildings. Moreover, the analysis will be used to further study the FDD research for supermarkets in future.

Keywords: Energy interaction, HVAC, R-value, Supermarket buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3213
153 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels

Authors: Foad Hassaninejadafarahani, Scott Ormiston

Abstract:

Reflux condensation occurs in vertical channels and tubes when there is an upward core flow of vapour (or gas-vapour mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapour-gas mixture (or pure vapour) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapour core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces a sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on finite volume method and co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and gas mass fraction profiles, as well as axial variations of film thickness.

Keywords: Reflux Condensation, Heat Transfer, Channel, Laminar Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
152 Why Are Entrepreneurs Resistant to E-tools?

Authors: D. Ščeulovs, E. Gaile-Sarkane

Abstract:

Latvia is the fourth in the world by means of broadband internet speed. The total number of internet users in Latvia exceeds 70% of its population. The number of active mailboxes of the local internet e-mail service Inbox.lv accounts for 68% of the population and 97.6% of the total number of internet users. The Latvian portal Draugiem.lv is a phenomenon of social media, because 58.4 % of the population and 83.5% of internet users use it. A majority of Latvian company profiles are available on social networks, the most popular being Twitter.com. These and other parameters prove the fact consumers and companies are actively using the Internet. 

However, after the authors in a number of studies analyzed how enterprises are employing the e-environment, namely, e-environment tools, they arrived to the conclusions that are not as flattering as the aforementioned statistics. There is an obvious contradiction between the statistical data and the actual studies. As a result, the authors have posed a question: Why are entrepreneurs resistant to e-tools? In order to answer this question, the authors have addressed the Technology Acceptance Model (TAM). The authors analyzed each phase and determined several factors affecting the use of e-environment, reaching the main conclusion that entrepreneurs do not have a sufficient level of e-literacy (digital literacy). 

The authors employ well-established quantitative and qualitative methods of research: grouping, analysis, statistic method, factor analysis in SPSS 20  environment etc. 

The theoretical and methodological background of the research is formed by, scientific researches and publications, that from the mass media and professional literature, statistical information from legal institutions as well as information collected by the author during the survey.

Keywords: E-environment, e-environment tools, technology acceptance model, factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
151 Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP

Authors: Guillaume Mullier, Jean François Chatelain

Abstract:

Carbon Fiber Reinforced Plastics (CFRPs) are widely used for advanced applications, in particular in aerospace, automotive and wind energy industries. Once cured to near net shape, CFRP parts need several finishing operations such as trimming, milling or drilling in order to accommodate fastening hardware and meeting the final dimensions. The present research aims to study the effect of the cutting temperature in trimming on the mechanical strength of high performance CFRP laminates used for aeronautics applications. The cutting temperature is of great importance when dealing with trimming of CFRP. Temperatures higher than the glass-transition temperature (Tg) of the resin matrix are highly undesirable: they cause degradation of the matrix in the trimmed edges area, which can severely affect the mechanical performance of the entire component. In this study, a 9.50mm diameter CVD diamond coated carbide tool with six flutes was used to trim 24-plies CFRP laminates. A 300m/min cutting speed and 1140mm/min feed rate were used in the experiments. The tool was heated prior to trimming using a blowtorch, for temperatures ranging from 20°C to 300°C. The temperature at the cutting edge was measured using embedded KType thermocouples. Samples trimmed for different cutting temperatures, below and above Tg, were mechanically tested using three-points bending short-beam loading configurations. New cutting tools as well as worn cutting tools were utilized for the experiments. The experiments with the new tools could not prove any correlation between the length of cut, the cutting temperature and the mechanical performance. Thus mechanical strength was constant, regardless of the cutting temperature. However, for worn tools, producing a cutting temperature rising up to 450°C, thermal damage of the resin was observed. The mechanical tests showed a reduced mean resistance in short beam configuration, while the resistance in three point bending decreases with increase of the cutting temperature.

Keywords: Composites, Trimming, Thermal Damage, Surface Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
150 Associations between Metabolic Syndrome and Bone Mineral Density and Trabecular Bone Score in Postmenopausal Women with Non-Vertebral Fractures

Authors: Vladyslav Povoroznyuk, Larysa Martynyuk, Iryna Syzonenko, Liliya Martynyuk

Abstract:

Medical, social, and economic relevance of osteoporosis is caused by reducing quality of life, increasing disability and mortality of the patients as a result of fractures due to the low-energy trauma. This study is aimed to examine the associations of metabolic syndrome components, bone mineral density (BMD) and trabecular bone score (TBS) in menopausal women with non-vertebral fractures. 1161 menopausal women aged 50-79 year-old were examined and divided into three groups: A included 419 women with increased body weight (BMI - 25.0-29.9 kg/m2), B – 442 females with obesity (BMI >29.9 kg/m2)i and C – 300 women with metabolic syndrome (diagnosis according to IDF criteria, 2005). BMD of lumbar spine (L1-L4), femoral neck, total body and forearm was investigated with usage of dual-energy X-ray absorptiometry. The bone quality indexes were measured according to Med-Imaps installation. All analyses were performed using Statistical Package 6.0. BMD of lumbar spine (L1-L4), femoral neck, total body, and ultradistal radius was significant higher in women with obesity and metabolic syndrome compared to the pre-obese ones (p<0.001). TBS was significantly higher in women with increased body weight compared to obese and metabolic syndrome patients. Analysis showed significant positive correlation between waist circumference, triglycerides level and BMD of lumbar spine and femur. Significant negative association between serum HDL level and BMD of investigated sites was established. The TBS (L1-L4) indexes positively correlated with HDL (high-density lipoprotein) level. Despite the fact that BMD indexes were better in women with metabolic syndrome, the frequency of non-vertebral fractures was significantly higher in this group of patients.

Keywords: Bone mineral density, trabecular bone score, metabolic syndrome, fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
149 Exploring Additional Intention Predictors within Dietary Behavior among Type 2 Diabetes

Authors: D. O. Omondi, M. K. Walingo, G. M. Mbagaya

Abstract:

Objective: This study explored the possibility of integrating Health Belief Concepts as additional predictors of intention to adopt a recommended diet-category within the Theory of Planned Behavior (TPB). Methods: The study adopted a Sequential Exploratory Mixed Methods approach. Qualitative data were generated on attitude, subjective norm, perceived behavioral control and perceptions on predetermined diet-categories including perceived susceptibility, perceived benefits, perceived severity and cues to action. Synthesis of qualitative data was done using constant comparative approach during phase 1. A survey tool developed from qualitative results was used to collect information on the same concepts across 237 legible Type 2 diabetics. Data analysis included use of Structural Equation Modeling in Analysis of Moment Structures to explore the possibility of including perceived susceptibility, perceived benefits, perceived severity and cues to action as additional intention predictors in a single nested model. Results: Two models-one nested based on the traditional TPB model {χ2=223.3, df = 77, p = .02, χ2/df = 2.9; TLI = .93; CFI =.91; RMSEA (90CI) = .090(.039, .146)} and the newly proposed Planned Behavior Health Belief Model (PBHB) {χ2 = 743.47, df = 301, p = .019; TLI = .90; CFI=.91; RMSEA (90CI) = .079(.031, .14)} passed the goodness of fit tests based on common fit indicators used. Conclusion: The newly developed PBHB Model ranked higher than the traditional TPB model with reference made to chi-square ratios (PBHB: χ2/df = 2.47; p=0.19 against TPB: χ2/df = 2.9, p=0.02). The integrated model can be used to motivate Type 2 diabetics towards healthy eating.

Keywords: Theory, intention, predictors, mixed methods design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
148 Application of Pulse Doubling in Star-Connected Autotransformer Based 12-Pulse AC-DC Converter for Power Quality Improvement

Authors: Rohollah. Abdollahi, Alireza. Jalilian

Abstract:

This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMD-s) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse ac-dc converters each of them consisting of three-phase diode bridge rectifier. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6- pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

Keywords: AC–DC converter, star-connected autotransformer, power quality, 24 pulse rectifier, Pulse Doubling, direct torquecontrolled induction motor drive (DTCIMD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2862
147 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: Exergy analysis, Genetic algorithm, Rankine cycle, Single and Multi-objective function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620
146 Implicit Responses for Assessment of Autism Based on Natural Behaviors Obtained Inside Immersive Virtual Environment

Authors: E. Olmos-Raya, A. Cascales Martínez, N. Minto de Sousa, M. Alcañiz Raya

Abstract:

The late detection and subjectivity of the assessment of Autism Spectrum Disorder (ASD) imposed a difficulty for the children’s clinical and familiar environment. The results showed in this paper, are part of a research project about the assessment and training of social skills in children with ASD, whose overall goal is the use of virtual environments together with physiological measures in order to find a new model of objective ASD assessment based on implicit brain processes measures. In particular, this work tries to contribute by studying the differences and changes in the Skin Conductance Response (SCR) and Eye Tracking (ET) between a typical development group (TD group) and an ASD group (ASD group) after several combined stimuli using a low cost Immersive Virtual Environment (IVE). Subjects were exposed to a virtual environment that showed natural scenes that stimulated visual, auditory and olfactory perceptual system. By exposing them to the IVE, subjects showed natural behaviors while measuring SCR and ET. This study compared measures of subjects diagnosed with ASD (N = 18) with a control group of subjects with typical development (N=10) when exposed to three different conditions: only visual (V), visual and auditory (VA) and visual, auditory and olfactory (VAO) stimulation. Correlations between SCR and ET measures were also correlated with the Autism Diagnostic Observation Schedule (ADOS) test. SCR measures showed significant differences among the experimental condition between groups. The ASD group presented higher level of SCR while we did not find significant differences between groups regarding DF. We found high significant correlations among all the experimental conditions in SCR measures and the subscale of ADOS test of imagination and symbolic thinking. Regarding the correlation between ET measures and ADOS test, the results showed significant relationship between VA condition and communication scores.

Keywords: Autism, electrodermal activity, eye tracking, immersive virtual environment, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 802
145 Thermal and Electrical Properties of Carbon Nanotubes Purified by Acid Digestion

Authors: Neslihan Yuca, Nilgün Karatepe, Fahrettin Yakuphanoğlu

Abstract:

Carbon nanotubes (CNTs) possess unique structural, mechanical, thermal and electronic properties, and have been proposed to be used for applications in many fields. However, to reach the full potential of the CNTs, many problems still need to be solved, including the development of an easy and effective purification procedure, since synthesized CNTs contain impurities, such as amorphous carbon, carbon nanoparticles and metal particles. Different purification methods yield different CNT characteristics and may be suitable for the production of different types of CNTs. In this study, the effect of different purification chemicals on carbon nanotube quality was investigated. CNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. The liquid phase oxidation method was applied for the purification of the synthesized CNT materials. Three different acid chemicals (HNO3, H2SO4, and HCl) were used in the removal of the metal catalysts from the synthesized CNT material to investigate the possible effects of each acid solution to the purification step. Purification experiments were carried out at two different temperatures (75 and 120 °C), two different acid concentrations (3 and 6 M) and for three different time intervals (6, 8 and 15 h). A 30% H2O2 : 3M HCl (1:1 v%) solution was also used in the purification step to remove both the metal catalysts and the amorphous carbon. The purifications using this solution were performed at the temperature of 75°C for 8 hours. Purification efficiencies at different conditions were evaluated by thermogravimetric analysis. Thermal and electrical properties of CNTs were also determined. It was found that the obtained electrical conductivity values for the carbon nanotubes were typical for organic semiconductor materials and thermal stabilities were changed depending on the purification chemicals.

Keywords: Carbon nanotubes, purification, acid digestion, thermalstability, electrical conductivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389
144 Statistical Approach to Identify Stress and Biases Impairing Decision-Making in High-Risk Industry

Authors: Ph. Fauquet-Alekhine

Abstract:

Decision-making occurs several times an hour when working in high risk industry and an erroneous choice might have undesirable outcomes for people and the environment surrounding the industrial plant. Industrial decisions are very often made in a context of acute stress. Time pressure is a crucial stressor leading decision makers sometimes to boost up the decision-making process and if it is not possible then shift to the simplest strategy. We thus found it interesting to update the characterization of the stress factors impairing decision-making at Chinon Nuclear Power Plant (France) in order to optimize decision making contexts and/or associated processes. The investigation was based on the analysis of reports addressing safety events over the last 3 years. Among 93 reports, those explicitly addressing decision-making issues were identified. Characterization of each event was undertaken in terms of three criteria: stressors, biases impairing decision making and weaknesses of the decision-making process. The statistical analysis showed that biases were distributed over 10 possibilities among which the hypothesis confirmation bias was clearly salient. No significant correlation was found between criteria. The analysis indicated that the main stressor was time pressure and highlights an unexpected form of stressor: the trust asymmetry principle of the expert. The analysis led to the conclusion that this stressor impaired decision-making from a psychological angle rather than from a physiological angle: it induces defensive bias of self-esteem, self-protection associated with a bias of confirmation. This leads to the hypothesis that this stressor can intervene in some cases without being detected, and to the hypothesis that other stressors of the same kind might occur without being detected too. Further investigations addressing these hypotheses are considered. The analysis also led to the conclusion that dealing with these issues implied i) decision-making methods being well known to the workers and automated and ii) the decision-making tools being well known and strictly applied. Training was thus adjusted.

Keywords: Bias, expert, high risk industry, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 657
143 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on spring back for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for spring back in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in Uchannel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24 ). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on spring back of flange angle (β2 ) and wall opening angle (β1 ), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the spring back behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for spring back was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values.  

Keywords: Advance high strength steel, U-channel process, Springback, Design of Experiment, Optimization, Response Surface Methodology (RSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
142 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm

Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou

Abstract:

Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and Weight on Bit (WOB) used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036 m3/h and -2.374 m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. The best combination of funnel viscosity, final shear force and drilling time is obtained through quantitative calculation. The minimum loss rate of lost circulation wells in Shunbei area is 10 m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.

Keywords: Drilling fluid, loss rate, main controlling factors, Unmanned Intervention Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 378
141 Improving Urban Mobility: Analyzing Impacts of Connected and Automated Vehicles on Traffic and Emissions

Authors: Saad Roustom, Hajo Ribberink

Abstract:

In most cities in the world, traffic has increased strongly over the last decades, causing high levels of congestion and deteriorating inner-city air quality. This study analyzes the impact of connected and automated vehicles (CAVs) on traffic performance and greenhouse gas (GHG) emissions under different CAV penetration rates in mixed fleet environments of CAVs and driver-operated vehicles (DOVs) and under three different traffic demand levels. Utilizing meso-scale traffic simulations of the City of Ottawa, Canada, the research evaluates the traffic performance of three distinct CAV driving behaviors—Cautious, Normal, and Aggressive—at penetration rates of 25%, 50%, 75%, and 100%, across three different traffic demand levels. The study employs advanced correlation models to estimate GHG emissions. The results reveal that Aggressive and Normal CAVs generally reduce traffic congestion and GHG emissions, with their benefits being more pronounced at higher penetration rates (50% to 100%) and elevated traffic demand levels. On the other hand, Cautious CAVs exhibit an increase in both traffic congestion and GHG emissions. However, results also show deteriorated traffic flow conditions when introducing 25% penetration rates of any type of CAVs. Aggressive CAVs outperform all other driving at improving traffic flow conditions and reducing GHG emissions. The findings of this study highlight the crucial role CAVs can play in enhancing urban traffic performance and mitigating the adverse impact of transportation on the environment. This research advocates for the adoption of effective CAV-related policies by regulatory bodies to optimize traffic flow and reduce GHG emissions. By providing insights into the impact of CAVs, this study aims to inform strategic decision-making and stimulate the development of sustainable urban mobility solutions.

Keywords: Connected and automated vehicles, congestion, GHG emissions, mixed fleet environment, traffic performance, traffic simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81
140 Analysis of the Current and Ideal Situation of Iran’s Football Talent Management Process from the Perspective of the Elites

Authors: Mehran Nasiri, Ardeshir Poornemat

Abstract:

The aim of this study was to investigate the current and ideal situations of the process of talent identification in Iranian football from the point of view of Iranian instructors of the Asian Football Confederation (AFC). This research was a descriptive-analytical study; in data collection phase a questionnaire was used, whose face validity was confirmed by experts of Physical Education and Sports Science. The reliability of questionnaire was estimated through the use of Cronbach's alpha method (0.91). This study involved 122 participants of Iranian instructors of the AFC who were selected based on stratified random sampling method. Descriptive statistics were used to describe the variables and inferential statistics (Chi-square) were used to test the hypotheses of the study at significant level (p ≤ 0.05). The results of Chi-square test related to the point of view of Iranian instructors of the AFC showed that the grass-roots scientific method was the best way to identify football players (0.001), less than 10 years old were the best ages for talent identification (0.001), the Football Federation was revealed to be the most important organization in talent identification (0.002), clubs were shown to be the most important institution in developing talents (0.001), trained scouts of Football Federation were demonstrated to be the best and most appropriate group for talent identification (0.001), and being referred by the football academy coaches was shown to be the best way to attract talented football players in Iran (0.001). It was also found that there was a huge difference between the current and ideal situation of the process of talent identification in Iranian football from the point of view of Iranian instructors of the AFC. Hence, it is recommended that the policy makers of talent identification for Iranian football provide a comprehensive, clear and systematic model of talent identification and development processes for the clubs and football teams, so that the talent identification process helps to nurture football talents more efficiently.

Keywords: Current situation, talent finding, ideal situation, instructors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 954
139 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas

Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders

Abstract:

A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.

Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371
138 Isolation and Probiotic Characterization of Arsenic-Resistant Lactic Acid Bacteria for Uptaking Arsenic

Authors: Jatindra N. Bhakta, Kouhei Ohnishi, Yukihiro Munekage, Kozo Iwasaki

Abstract:

The growing health hazardous impact of arsenic (As) contamination in environment is the impetus of the present investigation. Application of lactic acid bacteria (LAB) for the removal of toxic and heavy metals from water has been reported. This study was performed in order to isolate and characterize the Asresistant LAB from mud and sludge samples for using as efficient As uptaking probiotic. Isolation of As-resistant LAB colonies was performed by spread plate technique using bromocresol purple impregnated-MRS (BP-MRS) agar media provided with As @ 50 μg/ml. Isolated LAB were employed for probiotic characterization process, acid and bile tolerance, lactic acid production, antibacterial activity and antibiotic tolerance assays. After As-resistant and removal characterizations, the LAB were identified using 16S rDNA sequencing. A total of 103 isolates were identified as As-resistant strains of LAB. The survival of 6 strains (As99-1, As100-2, As101-3, As102-4, As105-7, and As112-9) was found after passing through the sequential probiotic characterizations. Resistant pattern pronounced hollow zones at As concentration >2000 μg/ml in As99-1, As100-2, and As101-3 LAB strains, whereas it was found at ~1000 μg/ml in rest 3 strains. Among 6 strains, the As uptake efficiency of As102-4 (0.006 μg/h/mg wet weight of cell) was higher (17 – 209%) compared to remaining LAB. 16S rDNA sequencing data of 3 (As99- 1, As100-2, and As101-3) and 3 (As102-4, As105-7, and As112-9) LAB strains clearly showed 97 to 99% (340 bp) homology to Pediococcus dextrinicus and Pediococcus acidilactici, respectively. Though, there was no correlation between the metal resistant and removal efficiency of LAB examined but identified elevated As removing LAB would probably be a potential As uptaking probiotic agent. Since present experiment concerned with only As removal from pure water, As removal and removal mechanism in natural condition of intestinal milieu should be assessed in future studies.

Keywords: Lactic acid bacteria, As-resistant, characterization, Pediococcus sp., As removal probiotic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722
137 Emotion Regulation: An Exploratory Cross-Sectional Study on the Change and Grow Therapeutic Model

Authors: Eduardo da Silva, Tânia Caetano, Jessica B. Lopes

Abstract:

Emotion dysregulation has been linked to psychopathology in general and, in particular, to substance abuse and other addiction-related disorders, such as eating disorders, impulsive disorder, and gambling. It has been proposed that a lessening of the difficulties in emotion regulation can have a significant positive impact on the treatment of these disorders. The present study explores the association between the progress in the Change & Grow® therapeutic model (5 stages of treatment), and the decrease in the difficulties related to emotion regulation. The Change & Grow® model has five stages of treatment according to the model’s five principles (Truth, Acceptance, Gratitude, Love and Responsibility) and incorporates different therapeutic approaches such as positive psychology, cognitive and behavioral therapy and third generation therapies. The main objective is to understand the impact of the presented therapeutic model on difficulties in emotion regulation in patients with addiction-related disorders. The exploratory study has a cross-sectional design. Participants were 44 (15 women and 29 men) Portuguese patients in the residential Villa Ramadas International Treatment Centre. The instrument used was the Portuguese version of the Difficulties in Emotion Regulation Scale (DERS), which measures six dimensions of emotion regulation (Strategies, Non-acceptance, Awareness, Impulse, Goals, and Clarity). The mean rank scores for both the DERS total score and the Impulse subscale showed statistically significant differences according to Stage of Treatment/Principles. Furthermore, Stage of Treatment/Principles held a negative correlation with the scores of the Non-acceptance and Impulse subscales, as well as the DERS total score. The results indicate that the Change & Grow® model seems to have an impact in lessening the patient’s difficulties in emotion regulation. The Impulse dimension suffered the greater impact, which supports the well-known relevance of impulse control, or related difficulties, in addiction-related disorders.

Keywords: Addiction, Change & Grow®, emotion regulation, psychopathology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
136 Impact Assessment of Credit Policy and Medical Credit Facility (MCF) on Nigerian Private Sector Health Market: Evidence from Eight Nigerian States

Authors: Chimaobi V. Okolo, Kenneth A. Okpala, Johnbull S. Ogboi

Abstract:

A teeming set of doctors that graduated from various universities within and outside Nigeria with the hope of practicing in the country, has their hope shattered because of poor financing, lack of medical equipments and a very weak healthcare systems. Such hydra headed challenges, allows room for quackery which increasingly contributes to the cause of mortality in Nigeria. With a view of reversing the challenges of healthcare delivery and financing in Nigeria, African Health Market for Equity (AHME), a project funded by the Bill and Melinda Gates foundation [With contribution from Department For International Development (DFID)] and currently implemented in three African Countries (Nigeria, Kenya and Ghana) over a Five (5) year period supports the healthcare sector via Medical credit fund (MCF). The study examines the impact of credit policy and medical credit funding on Nigerian health market. Ordinary least square analysis, correlation and granger causality tests were employed to measure the extent to which the Nigerian healthcare market has been influenced. Medical credit fund significantly and positively influenced average monthly turnover of private healthcare providers and Commercial bank’s lending rate had a weak relationship with access to credit/approved loans (13.46%). The programme has so far made 13.91% progress, which is very poor, considering the minimum targeted private health care providers (437.6) and expected number of loan approvals (180.4) for the two years. Medical credit policy in Nigeria should be revised to include private healthcare providers in rural area for more positive impact and increased returns. Good brand advert and sensitization of the programme to stakeholders and health pressure group, and an extension of the programme beyond five years is necessary to better address the issues raised in the study.

Keywords: Credit, health market, medical credit facility, policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
135 Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves

Authors: Hanifeh Imanian, Morteza Kolahdoozan

Abstract:

The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.

Keywords: Dispersion, marine environment, mathematical-statistical relationship, oil spill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
134 Sustainable Intensification of Agriculture in Victoria’s Food Bowl: Optimizing Productivity with the use of Decision-Support Tools

Authors: M. Johnson, R. Faggian, V. Sposito

Abstract:

A participatory and engaged approach is key in connecting agricultural managers to sustainable agricultural systems to support and optimize production in Victoria’s food bowl. A sustainable intensification (SI) approach is well documented globally, but participation rates amongst Victorian farmers is fragmentary, and key outcomes and implementation strategies are poorly understood. Improvement in decision-support management tools and a greater understanding of the productivity gains available upon implementation of SI is necessary. This paper reviews the current understanding and uptake of SI practices amongst farmers in one of Victoria’s premier food producing regions, the Goulburn Broken; and it spatially analyses the potential for this region to adapt to climate change and optimize food production. A Geographical Information Systems (GIS) approach is taken to develop an interactive decision-support tool that can be accessible to on-ground agricultural managers. The tool encompasses multiple criteria analysis (MCA) that identifies factors during the construction phase of the tool, using expert witnesses and regional knowledge, framed within an Analytical Hierarchy Process. Given the complexities of the interrelations between each of the key outcomes, this participatory approach, in which local realities and factors inform the key outcomes and help to strategies for a particular region, results in a robust strategy for sustainably intensifying production in key food producing regions. The creation of an interactive, locally embedded, decision-support management and education tool can help to close the gap between farmer knowledge and production, increase on-farm adoption of sustainable farming strategies and techniques, and optimize farm productivity.

Keywords: Agriculture, decision-support management tools, GIS, sustainable intensification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844
133 Evaluation of Seismic Damage for Gisha Bridge in Tehran by HAZUS Methodology

Authors: Langroudi B., Salehi E., Keshani S., Baghersad M.

Abstract:

Transportation is of great importance in the current life of human beings. The transportation system plays many roles, from economical development to after-catastrophe aids such as rescue operation in the first hours and days after an earthquake. In after earthquakes response phase, transportation system acts as a basis for ground operations including rescue and relief operation, food providing for victims and etc. It is obvious that partial or complete obstruction of this system results in the stop of these operations. Bridges are one of the most important elements of transportation network. Failure of a bridge, in the most optimistic case, cuts the relation between two regions and in more developed countries, cuts the relation of numerous regions. In this paper, to evaluate the vulnerability and estimate the damage level of Tehran bridges, HAZUS method, developed by Federal Emergency Management Agency (FEMA) with the aid of National Institute of Building Science (NIBS), is used for the first time in Iran. In this method, to evaluate the collapse probability, fragility curves are used. Iran is located on seismic belt and thus, it is vulnerable to earthquakes. Thus, the study of the probability of bridge collapses, as an important part of transportation system, during earthquakes is of great importance. The purpose of this study is to provide fragility curves for Gisha Bridge, one of the longest steel bridges in Tehran, as an important lifeline element. Besides, the damage probability for this bridge during a specific earthquake, introduced as scenario earthquakes, is calculated. The fragility curves show that for the considered scenario, the probability of occurrence of complete collapse for the bridge is 8.6%.

Keywords: Bridge, Damage evaluation, Fragility curve, Lifelines, Seismic vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
132 Prediction of Seismic Damage Using Scalar Intensity Measures Based On Integration of Spectral Values

Authors: Konstantinos G. Kostinakis, Asimina M. Athanatopoulou

Abstract:

A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are non structure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: Damage measures, Bidirectional excitation, Spectral based IMs, R/C buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
131 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review

Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough

Abstract:

The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.

Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191