Search results for: vulnerability intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 556

Search results for: vulnerability intelligence

346 Security Strengths and Weaknesses of Blockchain Smart Contract System: A Survey

Authors: Malaw Ndiaye, Karim Konate

Abstract:

Smart contracts are computer protocols that facilitate, verify, and execute the negotiation or execution of a contract, or that render a contractual term unnecessary. Blockchain and smart contracts can be used to facilitate almost any financial transaction. Thanks to these smart contracts, the settlement of dividends and coupons could be automated. Smart contracts have become lucrative and profitable targets for attackers because they can hold a great amount of money. Smart contracts, although widely used in blockchain technology, are far from perfect due to security concerns. Although a series of attacks are listed, there is a lack of discussions and proposals on improving security. This survey takes stock of smart contract security from a more comprehensive perspective by correlating the level of vulnerability and systematic review of security levels in smart contracts.

Keywords: Blockchain, bitcoin, smart Contract, criminal smart contract, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539
345 A Control Model for Improving Safety and Efficiency of Navigation System Based on Reinforcement Learning

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Artificial Intelligence (AI), specifically Reinforcement Learning (RL), has proven helpful in many control path planning technologies by maximizing and enhancing their performance, such as navigation systems. Since it learns from experience by interacting with the environment to determine the optimal policy, the optimal policy takes the best action in a particular state, accounting for the long-term rewards. Most navigation systems focus primarily on "arriving faster," overlooking safety and efficiency while estimating the optimum path, as safety and efficiency are essential factors when planning for a long-distance journey. This paper represents an RL control model that proposes a control mechanism for improving navigation systems. Also, the model could be applied to other control path planning applications because it is adjustable and can accept different properties and parameters. However, the navigation system application has been taken as a case and evaluation study for the proposed model. The model utilized a Q-learning algorithm for training and updating the policy. It allows the agent to analyze the quality of an action made in the environment to maximize rewards. The model gives the ability to update rewards regularly based on safety and efficiency assessments, allowing the policy to consider the desired safety and efficiency benefits while making decisions, which improves the quality of the decisions taken for path planning compared to the conventional RL approaches.

Keywords: Artificial intelligence, control system, navigation systems, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201
344 Design and Control of PEM Fuel Cell Diffused Aeration System using Artificial Intelligence Techniques

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

Fuel cells have become one of the major areas of research in the academia and the industry. The goal of most fish farmers is to maximize production and profits while holding labor and management efforts to the minimum. Risk of fish kills, disease outbreaks, poor water quality in most pond culture operations, aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI) techniques control is used to control the fuel cell output power by control input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparison study is applied between the performance of fuzzy logic control (FLC) and neural network control (NNC). The results show the effectiveness of NNC over FLC.

Keywords: PEM fuel cell, Diffused aeration system, Artificialintelligence (AI) techniques, neural network control, fuzzy logiccontrol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
343 Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments

Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis

Abstract:

In this contribution an innovative platform is being presented that integrates intelligent agents and evolutionary computation techniques in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting: I) various assessment agents for e-learning environments, II) a specific resource retrieval agent for the provision of additional information from Internet sources matching the needs and profile of the specific user and III) a genetic algorithm designed to extract efficient information (classifying rules) based on the students- answering input data. The agents are implemented in order to provide intelligent assessment services based on computational intelligence techniques such as Bayesian Networks and Genetic Algorithms. The proposed Genetic Algorithm (GA) is used in order to extract efficient information (classifying rules) based on the students- answering input data. The idea of using a GA in order to fulfil this difficult task came from the fact that GAs have been widely used in applications including classification of unknown data. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.

Keywords: Bayesian Networks, Computational Intelligencetechniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents, Genetic Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
342 Factors Affecting Employee Decision Making in an AI Environment

Authors: Yogesh C. Sharma, A. Seetharaman

Abstract:

The decision-making process in humans is a complicated system influenced by a variety of intrinsic and extrinsic factors. Human decisions have a ripple effect on subsequent decisions. In this study, the scope of human decision making is limited to employees. In an organisation, a person makes a variety of decisions from the time they are hired to the time they retire. The goal of this research is to identify various elements that influence decision making. In addition, the environment in which a decision is made is a significant aspect of the decision-making process. Employees in today's workplace use artificial intelligence (AI) systems for automation and decision augmentation. The impact of AI systems on the decision-making process is examined in this study. This research is designed based on a systematic literature review. Based on gaps in the literature, limitations and the scope of future research have been identified. Based on these findings, a research framework has been designed to identify various factors affecting employee decision making. Employee decision making is influenced by technological advancement, data-driven culture, human trust, decision automation-augmentation and workplace motivation. Hybrid human-AI systems require development of new skill sets and organisational design. Employee psychological safety and supportive leadership influences overall job satisfaction.

Keywords: Employee decision making, artificial intelligence, environment, human trust, technology innovation, psychological safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
341 Impact Analysis Based on Change Requirement Traceability in Object Oriented Software Systems

Authors: Sunil Tumkur Dakshinamurthy, Mamootil Zachariah Kurian

Abstract:

Change requirement traceability in object oriented software systems is one of the challenging areas in research. We know that the traces between links of different artifacts are to be automated or semi-automated in the software development life cycle (SDLC). The aim of this paper is discussing and implementing aspects of dynamically linking the artifacts such as requirements, high level design, code and test cases through the Extensible Markup Language (XML) or by dynamically generating Object Oriented (OO) metrics. Also, non-functional requirements (NFR) aspects such as stability, completeness, clarity, validity, feasibility and precision are discussed. We discuss this as a Fifth Taxonomy, which is a system vulnerability concern.

Keywords: Artifacts, NFRs, OO metrics, SDLC, XML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
340 Designing Offshore Pipelines Facing the Geohazard of Active Seismic Faults

Authors: Maria S. Trimintziou, Michael G. Sakellariou, Prodromos N. Psarropoulos

Abstract:

The current study focuses on the seismic design of offshore pipelines against active faults. After an extensive literature review of the provisions of the seismic norms worldwide and of the available analytical methods, the study simulates numerically (through finite-element modeling and strain-based criteria) the distress of offshore pipelines subjected to PGDs induced by active normal and reverse seismic faults at the seabed. Factors, such as the geometrical properties of the fault, the mechanical properties of the ruptured soil formations, and the pipeline characteristics, are examined. After some interesting conclusions regarding the seismic vulnerability of offshore pipelines, potential cost-effective mitigation measures are proposed taking into account constructability issues.

Keywords: Active faults, Seismic design, offshore pipelines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
339 On the Parameter Optimization of Fuzzy Inference Systems

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

Nowadays, more engineering systems are using some kind of Artificial Intelligence (AI) for the development of their processes. Some well-known AI techniques include artificial neural nets, fuzzy inference systems, and neuro-fuzzy inference systems among others. Furthermore, many decision-making applications base their intelligent processes on Fuzzy Logic; due to the Fuzzy Inference Systems (FIS) capability to deal with problems that are based on user knowledge and experience. Also, knowing that users have a wide variety of distinctiveness, and generally, provide uncertain data, this information can be used and properly processed by a FIS. To properly consider uncertainty and inexact system input values, FIS normally use Membership Functions (MF) that represent a degree of user satisfaction on certain conditions and/or constraints. In order to define the parameters of the MFs, the knowledge from experts in the field is very important. This knowledge defines the MF shape to process the user inputs and through fuzzy reasoning and inference mechanisms, the FIS can provide an “appropriate" output. However an important issue immediately arises: How can it be assured that the obtained output is the optimum solution? How can it be guaranteed that each MF has an optimum shape? A viable solution to these questions is through the MFs parameter optimization. In this Paper a novel parameter optimization process is presented. The process for FIS parameter optimization consists of the five simple steps that can be easily realized off-line. Here the proposed process of FIS parameter optimization it is demonstrated by its implementation on an Intelligent Interface section dealing with the on-line customization / personalization of internet portals applied to E-commerce.

Keywords: Artificial Intelligence, Fuzzy Logic, Fuzzy InferenceSystems, Nonlinear Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
338 Web Application Security, Attacks and Mitigation

Authors: Ayush Chugh, Gaurav Gupta

Abstract:

Today’s technology is heavily dependent on web applications. Web applications are being accepted by users at a very rapid pace. These have made our work efficient. These include webmail, online retail sale, online gaming, wikis, departure and arrival of trains and flights and list is very long. These are developed in different languages like PHP, Python, C#, ASP.NET and many more by using scripts such as HTML and JavaScript. Attackers develop tools and techniques to exploit web applications and legitimate websites. This has led to rise of web application security; which can be broadly classified into Declarative Security and Program Security. The most common attacks on the applications are by SQL Injection and XSS which give access to unauthorized users who totally damage or destroy the system. This paper presents a detailed literature description and analysis on Web Application Security, examples of attacks and steps to mitigate the vulnerabilities.

Keywords: Attacks, Injection, JavaScript, SQL, Vulnerability, XSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4968
337 Coastal Resources Spatial Planning and Potential Oil Risk Analysis: Case Study of Misratah’s Coastal Resources, Libya

Authors: Abduladim Maitieg, Kevin Lynch, Mark Johnson

Abstract:

The goal of the Libyan Environmental General Authority (EGA) and National Oil Corporation (Department of Health, Safety & Environment) during the last 5 years has been to adopt a common approach to coastal and marine spatial planning. Protection and planning of the coastal zone is a significant for Libya, due to the length of coast and, the high rate of oil export, and spills’ potential negative impacts on coastal and marine habitats. Coastal resource scenarios constitute an important tool for exploring the long-term and short-term consequences of oil spill impact and available response options that would provide an integrated perspective on mitigation. To investigate that, this paper reviews the Misratah coastal parameters to present the physical and human controls and attributes of coastal habitats as the first step in understanding how they may be damaged by an oil spill. This paper also investigates costal resources, providing a better understanding of the resources and factors that impact the integrity of the ecosystem. Therefore, the study described the potential spatial distribution of oil spill risk and the coastal resources value, and also created spatial maps of coastal resources and their vulnerability to oil spills along the coast. This study proposes an analysis of coastal resources condition at a local level in the Misratah region of the Mediterranean Sea, considering the implementation of coastal and marine spatial planning over time as an indication of the will to manage urban development. Oil spill contamination analysis and their impact on the coastal resources depend on (1) oil spill sequence, (2) oil spill location, (3) oil spill movement near the coastal area. The resulting maps show natural, socio-economic activity, environmental resources along of the coast, and oil spill location. Moreover, the study provides significant geodatabase information which is required for coastal sensitivity index mapping and coastal management studies. The outcome of study provides the information necessary to set an Environmental Sensitivity Index (ESI) for the Misratah shoreline, which can be used for management of coastal resources and setting boundaries for each coastal sensitivity sectors, as well as to help planners measure the impact of oil spills on coastal resources. Geographic Information System (GIS) tools were used in order to store and illustrate the spatial convergence of existing socio-economic activities such as fishing, tourism, and the salt industry, and ecosystem components such as sea turtle nesting area, Sabkha habitats, and migratory birds feeding sites. These geodatabases help planners investigate the vulnerability of coastal resources to an oil spill.

Keywords: Coastal and marine spatial planning advancement training, GIS mapping, human uses, ecosystem components, Misratah coast, Libyan, oil spill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 959
336 Conflict, Confusion, Choice: A Phenomenological Approach to Acts of Corruption

Authors: Yvonne T. Haigh

Abstract:

Public sector corruption has long-term and damaging effects that are deep and broad. Addressing corruption relies on understanding the drivers that precipitate acts of corruption and developing educational programs that target areas of vulnerability. This paper provides an innovative approach to explore the nature of corruption by drawing on the perceptions and ideas of a group of public servants who have been part of a corruption investigation. The paper examines these reflections through the ideas of Pierre Bourdieu and Alfred Schutz to point to some of the steps that can lead to corrupt activity. The paper demonstrates that phenomenological inquiry is useful in the exploration of corruption and, as a theoretical framework, it highlights that corruption emerges through a combination of conflict, doubt and uncertainty. The paper calls for anti-corruption education programs to be attentive to way in which these conditions can influence the steps into corruption.

Keywords: Phenomenology, choice, conflict, corruption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
335 Appraisal of Methods for Identifying, Mapping, and Modelling of Fluvial Erosion in a Mining Environment

Authors: F. F. Howard, I. Yakubu, C. B. Boye, J. S. Y. Kuma

Abstract:

Natural and human activities, such as mining operations, expose the natural soil to adverse environmental conditions, leading to contamination of soil, groundwater, and surface water, which has negative effects on humans, flora, and fauna. Bare or partly exposed soil is most liable to fluvial erosion. This paper enumerates various methods used to identify, map, and model fluvial erosion in a mining environment. Classical, Artificial Intelligence (AI), and GIS methods have been reviewed. One of the many classical methods used to estimate river erosion is the Revised Universal Soil Loss Equation (RUSLE) model. The RUSLE model is easy to use. Its reliance on empirical relationships that may not always be applicable to specific circumstances or locations is a flaw. Other classical models for estimating fluvial erosion are the Soil and Water Assessment Tool (SWAT) and the Universal Soil Loss Equation (USLE). These models offer a more complete understanding of the underlying physical processes and encompass a wider range of situations. Although more difficult to utilise, they depend on the availability and dependability of input data for correctness. AI can help deal with multivariate and complex difficulties and predict soil loss with higher accuracy than traditional methods, and also be used to build unique models for identifying degraded areas. AI techniques have become popular as an alternative predictor for degraded environments. However, this research proposed a hybrid of classical, AI, and GIS methods for efficient and effective modelling of fluvial erosion.

Keywords: Fluvial erosion, classical methods, Artificial Intelligence, Geographic Information System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185
334 Personalized Applications for Advanced Healthcare through AI-ML and Blockchain

Authors: Anuja Vyas, Aikel Indurkhya, Hari Krishna Garg

Abstract:

Nearly 25 years have passed since the landmark publication of the Human Genome Project, yet scientists have only begun to scratch the surface of its potential benefits. To bridge this gap, a personalized genomic application has been envisioned as a transformative tool accessible to people worldwide. This innovative solution proposes an integrated framework combining blockchain technology, genome-specific applications, and data compression techniques, ensuring operations to be swift, secure, transparent, and space-efficient. The software harnesses advanced Artificial Intelligence and Machine Learning methodologies, such as neural networks, evaluation matrices, fuzzy logic, and expert systems, to analyze individual genomic data. It generates personalized reports by comparing a user's genome with a reference genome, highlighting significant differences. Blockchain technology, with its inherent security, encryption, and immutability features, is leveraged for robust data transport and storage. In addition, a 'Data Abbreviation' technique ensures that genetic data and reports occupy minimal space. This integrated approach promises to be a significant leap forward, potentially transforming human health and well-being on a global scale.

Keywords: Artificial intelligence in genomics, blockchain technology, data abbreviation, data compression, data security in genomics, data storage, expert systems, fuzzy logic, genome applications, genomic data analysis, human genome project, neural networks, personalized genomics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39
333 Minimizing Grid Reliance: A Power Model Approach for Peak Hour Demand Based on Hybrid Solar Systems

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Electrical energy demands have increased due to population growth and the variety of new electrical load technologies. This increase demand has nearly doubled during peak hours. Consequently, that necessitates the construction of new power plant infrastructures, which is a costly approach due to the expense of construction building, future preservation like maintenance, and environmental impact. As an alternative approach, most electrical utilities increase the price of electrical usage during peak hours, encouraging consumers to use less electricity during peak periods under Time-Of-Use programs, which may not be universally suitable for all consumers. Furthermore, in some areas, the excessive demand and the lack of supply cause an electrical outage, posing considerable stress and challenges to electrical utilities and consumers. However, control systems, artificial intelligence (AI), and renewable energy (RE), when effectively integrated, provide new solutions to mitigate excessive demand during peak hours. This paper presents a power model that reduces the reliance on the power grid during peak hours by utilizing a hybrid solar system connected to a residential house with a power management controller, that prioritizes the power drives between Photovoltaic (PV) production, battery backup, and the utility electrical grid. As a result, dependence on utility grid was from 3% to 18% during peak hours, improving energy stability safely and efficiently for electrical utilities, consumers, and communities, providing a viable alternative to conventional approaches such as Time-Of-Use programs.

Keywords: Artificial intelligence, AI, control system, photovoltaic, PV, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128
332 Sustainable Development in Disaster Affected Rural Areas: The Case of Dinar Villages

Authors: Nese Dikmen

Abstract:

Post-disaster reconstruction projects offer opportunities to facilitate physical, social and economic development and to reduce future hazard vulnerability long after the disasters. Sustainability of post-disaster reconstruction project conducted in the villages of Dinar following the 1995 earthquake was investigated in this paper. Officials of the Government who were involved in the project were interviewed. Besides, two field surveys were done in 12 villages of Dinar in winter months of 2008. Beneficiaries were interviewed and physical, socio-cultural and economic impacts of the reconstruction were examined. The research revealed that the postdisaster reconstruction project has negative aspects from the point view of sustainability. The physical, socio-cultural and economic factors were not considered during decision making process of the project.

Keywords: Dinar, Post-disaster reconstruction, Sustainable development, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
331 Distortion of Flow Measurement and Cavitation Occurs Due to Orifice Inlet Velocity Profiles

Authors: Byung-Soo Shin, Nam-Seok Kim, Sang-Kyu Lee, O-Hyun Keum

Abstract:

This analysis investigates the distortion of flow measurement and the increase of cavitation along orifice flowmeter. The analysis using the numerical method (CFD) validated the distortion of flow measurement through the inlet velocity profile considering the convergence and grid dependency. Realizable k-e model was selected and y+ was about 50 in this numerical analysis. This analysis also estimated the vulnerability of cavitation effect due to inlet velocity profile. The investigation concludes that inclined inlet velocity profile could vary the pressure which was measured at pressure tab near pipe wall and it led to distort the pressure values ranged from -3.8% to 5.3% near the orifice plate and to make the increase of cavitation. The investigation recommends that the fully developed inlet velocity flow is beneficial to accurate flow measurement in orifice flowmeter.

Keywords: Orifice, k-e model, CFD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
330 Visual Odometry and Trajectory Reconstruction for UAVs

Authors: Sandro Bartolini, Alessandro Mecocci, Alessio Medaglini

Abstract:

The growing popularity of systems based on Unmanned Aerial Vehicles (UAVs) is highlighting their vulnerability particularly in relation to the positioning system used. Typically, UAV architectures use the civilian GPS which is exposed to a number of different attacks, such as jamming or spoofing. This is why it is important to develop alternative methodologies to accurately estimate the actual UAV position without relying on GPS measurements only. In this paper we propose a position estimate method for UAVs based on monocular visual odometry. We have developed a flight control system capable of keeping track of the entire trajectory travelled, with a reduced dependency on the availability of GPS signal. Moreover, the simplicity of the developed solution makes it applicable to a wide range of commercial drones. The final goal is to allow for safer flights in all conditions, even under cyber-attacks trying to deceive the drone.

Keywords: Visual odometry, autonomous UAV, position measurement, autonomous outdoor flight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 584
329 Tag Impersonation Attack on Ultra-Lightweight Radio Frequency Identification Authentication Scheme

Authors: Reham Al-Zahrani, Noura Aleisa

Abstract:

The proliferation of Radio Frequency Identification (RFID) technology has raised concerns about system security, particularly regarding tag impersonation attacks. Regarding RFID systems, an appropriate authentication protocol must resist active and passive attacks. A tag impersonation occurs when an adversary's tag is used to fool an authenticating reader into believing it is a legitimate tag. The paper thoroughly analyses the security of the Efficient, Secure, and Practical Ultra-Lightweight RFID Authentication Scheme (ESRAS). It examines the protocol within the context of RFID systems and focuses specifically on its vulnerability to tag impersonation attacks. The Scyther tool is utilized to assess the protocol's security, providing a comprehensive evaluation of ESRAS's effectiveness in preventing unauthorized tag impersonation.

Keywords: RFID, radio frequency identification, impersonation attack, authentication, ultra-lightweight protocols, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87
328 Important Factors for Successful Solution of Emotional Situations: Empirical Study on Young People

Authors: R. Lekaviciene, D. Antiniene

Abstract:

Attempts to split the construct of emotional intelligence (EI) into separate components – ability to understand own and others’ emotions and ability to control own and others’ emotions may be meaningful more theoretically than practically. In real life, a personality encounters various emotional situations that require exhibition of complex EI to solve them. Emotional situation solution tests enable measurement of such undivided EI. The object of the present study is to determine sociodemographic and other factors that are important for emotional situation solutions. The study involved 1,430 participants from various regions of Lithuania. The age of participants varied from 17 years to 27 years. Emotional social and interpersonal situation scale EI-DARL-V2 was used. Each situation had two mandatory answering formats: The first format contained assignments associated with hypothetical theoretical knowledge of how the situation should be solved, while the second format included the question of how the participant would personally resolve the given situation in reality. A questionnaire that contained various sociodemographic data of subjects was also presented. Factors, statistically significant for emotional situation solution, have been determined: gender, family structure, the subject’s relation with his or her mother, mother’s occupation, subjectively assessed financial situation of the family, level of education of the subjects and his or her parents, academic achievement, etc. The best solvers of emotional situations are women with high academic achievements. According to their chosen study profile/acquired profession, they are related to the fields in social sciences and humanities. The worst solvers of emotional situations are men raised in foster homes. They are/were bad students and mostly choose blue-collar professions.

Keywords: Emotional intelligence, emotional situations, solution of situation, young people.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
327 Data Privacy and Safety with Large Language Models

Authors: Ashly Joseph, Jithu Paulose

Abstract:

Large language models (LLMs) have revolutionized natural language processing capabilities, enabling applications such as chatbots, dialogue agents, image, and video generators. Nevertheless, their trainings on extensive datasets comprising personal information poses notable privacy and safety hazards. This study examines methods for addressing these challenges, specifically focusing on approaches to enhance the security of LLM outputs, safeguard user privacy, and adhere to data protection rules. We explore several methods including post-processing detection algorithms, content filtering, reinforcement learning from human and AI inputs, and the difficulties in maintaining a balance between model safety and performance. The study also emphasizes the dangers of unintentional data leakage, privacy issues related to user prompts, and the possibility of data breaches. We highlight the significance of corporate data governance rules and optimal methods for engaging with chatbots. In addition, we analyze the development of data protection frameworks, evaluate the adherence of LLMs to General Data Protection Regulation (GDPR), and examine privacy legislation in academic and business policies. We demonstrate the difficulties and remedies involved in preserving data privacy and security in the age of sophisticated artificial intelligence by employing case studies and real-life instances. This article seeks to educate stakeholders on practical strategies for improving the security and privacy of LLMs, while also assuring their responsible and ethical implementation.

Keywords: Data privacy, large language models, artificial intelligence, machine learning, cybersecurity, general data protection regulation, data safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104
326 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation

Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon

Abstract:

This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.

Keywords: Human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
325 Damage Evaluation of Curved Steel Bridges Upgraded with Isolation Bearings and Unseating Prevention Cable Restrainers

Authors: Carlos Mendez Galindo, Toshiro Hayashikawa, Javier Gil Belda

Abstract:

This paper investigates the effectiveness of the use of seismic isolation devices on the overall 3D seismic response of curved highway viaducts with an emphasis on expansion joints. Furthermore, an evaluation of the effectiveness of the use of cable restrainers is presented. For this purpose, the bridge seismic performance has been evaluated on four different radii of curvature, considering two cases: restrained and unrestrained curved viaducts. Depending on the radius of curvature, three-dimensional non-linear dynamic analysis shows the vulnerability of curved viaducts to pounding and deck unseating damage. In this study, the efficiency of using LRB supports combined with cable restrainers on curved viaducts is demonstrated, not only by reducing in all cases the possible damage, but also by providing a similar behavior in the viaducts despite of curvature radius.

Keywords: Nonlinear dynamic response, seismic design, seismic isolation, unseating prevention system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
324 Cloud Computing Security for Multi-Cloud Service Providers: Controls and Techniques in our Modern Threat Landscape

Authors: Sandesh Achar

Abstract:

Cloud computing security is a broad term that covers a variety of security concerns for organizations that use cloud services. Multi-cloud service providers must consider several factors when addressing security for their customers, including identity and access management, data at rest and in transit, egress and ingress traffic control, vulnerability and threat management, and auditing. This paper explores each of these aspects of cloud security in detail and provides recommendations for best practices for multi-cloud service providers. It also discusses the challenges inherent in securing a multi-cloud environment and offers solutions for overcoming these challenges. By the end of this paper, readers should have a good understanding of the various security concerns associated with multi-cloud environments in the context of today’s modern cyber threats and how to address them.

Keywords: Multi-cloud service, SOC, system organization control, data loss prevention, DLP, identity and access management, IAM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
323 An Atomic-Domains-Based Approach for Attack Graph Generation

Authors: Fangfang Chen, Chunlu Wang, Zhihong Tian, Shuyuan Jin, Tianle Zhang

Abstract:

Attack graph is an integral part of modeling the overview of network security. System administrators use attack graphs to determine how vulnerable their systems are and to determine what security measures to deploy to defend their systems. Previous methods on AGG(attack graphs generation) are aiming at the whole network, which makes the process of AGG complex and non-scalable. In this paper, we propose a new approach which is simple and scalable to AGG by decomposing the whole network into atomic domains. Each atomic domain represents a host with a specific privilege. Then the process for AGG is achieved by communications among all the atomic domains. Our approach simplifies the process of design for the whole network, and can gives the attack graphs including each attack path for each host, and when the network changes we just carry on the operations of corresponding atomic domains which makes the process of AGG scalable.

Keywords: atomic domain, vulnerability, attack graphs, generation, computer security

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
322 CRYPTO COPYCAT: A Fashion Centric Blockchain Framework for Eliminating Fashion Infringement

Authors: Magdi Elmessiry, Adel Elmessiry

Abstract:

The fashion industry represents a significant portion of the global gross domestic product, however, it is plagued by cheap imitators that infringe on the trademarks which destroys the fashion industry's hard work and investment. While eventually the copycats would be found and stopped, the damage has already been done, sales are missed and direct and indirect jobs are lost. The infringer thrives on two main facts: the time it takes to discover them and the lack of tracking technologies that can help the consumer distinguish them. Blockchain technology is a new emerging technology that provides a distributed encrypted immutable and fault resistant ledger. Blockchain presents a ripe technology to resolve the infringement epidemic facing the fashion industry. The significance of the study is that a new approach leveraging the state of the art blockchain technology coupled with artificial intelligence is used to create a framework addressing the fashion infringement problem. It transforms the current focus on legal enforcement, which is difficult at best, to consumer awareness that is far more effective. The framework, Crypto CopyCat, creates an immutable digital asset representing the actual product to empower the customer with a near real time query system. This combination emphasizes the consumer's awareness and appreciation of the product's authenticity, while provides real time feedback to the producer regarding the fake replicas. The main findings of this study are that implementing this approach can delay the fake product penetration of the original product market, thus allowing the original product the time to take advantage of the market. The shift in the fake adoption results in reduced returns, which impedes the copycat market and moves the emphasis to the original product innovation.

Keywords: Fashion, infringement, Blockchain, artificial intelligence, textiles supply.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
321 Comparative Analysis and Evaluation of Software Vulnerabilities Testing Techniques

Authors: Khalid Alnafjan, Tazar Hussain, Hanif Ullah, Zia ul haq Paracha

Abstract:

Software and applications are subjected to serious and damaging security threats, these threats are increasing as a result of increased number of potential vulnerabilities. Security testing is an indispensable process to validate software security requirements and to identify security related vulnerabilities. In this paper we analyze and compare different available vulnerabilities testing techniques based on a pre defined criteria using analytical hierarchy process (AHP). We have selected five testing techniques which includes Source code analysis, Fault code injection, Robustness, Stress and Penetration testing techniques. These testing techniques have been evaluated against five criteria which include cost, thoroughness, Ease of use, effectiveness and efficiency. The outcome of the study is helpful for researchers, testers and developers to understand effectiveness of each technique in its respective domain. Also the study helps to compare the inner working of testing techniques against a selected criterion to achieve optimum testing results.

Keywords: Software Security, Security Testing, Testing techniques, vulnerability, AHP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2898
320 Services and Applications for Smart Office Environments - A Survey of State-of-the-Art Usage Scenarios

Authors: Carsten Röcker

Abstract:

This paper reports on a survey of state-of-the-art application scenarios for smart office environments. Based on an analysis of ongoing research activities and industry projects, functionalities and services of future office systems are extracted. In a second step, these results are used to identify the key characteristics of emerging products.

Keywords: Ambient Intelligence, Ubiquitous Computing, Smart Office Environments, Application Scenarios.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
319 Evolved Disease Avoidance Mechanisms, Generalized Prejudice, Modern Attitudes towards Individuals with Intellectual Disability

Authors: Campbell Townsend, David Hamilton

Abstract:

Previous research has demonstrated that negative attitudes towards people with physical disabilities and obesity are predicted by a component of perceived vulnerability to disease; germ aversion. These findings have been suggested as illustrations of an evolved but over-active mechanism which promotes the avoidance of pathogen-carrying individuals. To date, this interpretation of attitude formation has not been explored with regard to people with intellectual disability, and no attempts have been made to examine possible mediating factors. This study examined attitudes in 333 adults and demonstrated that the moderate positive relationship between germ aversion and negative attitudes toward people with intellectual disability is fully mediated by social dominance orientation, a general preference for hierarchies and inequalities among social groups. These findings have implications for the design of programs which attempt to promote community acceptance and inclusion of people with disabilities.

Keywords: avoidance, evolutionary psychology, intellectual disability, prejudice

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
318 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
317 A Combined Fuzzy Decision Making Approach to Supply Chain Risk Assessment

Authors: P. Moeinzadeh, A. Hajfathaliha

Abstract:

Many firms implemented various initiatives such as outsourced manufacturing which could make a supply chain (SC) more vulnerable to various types of disruptions. So managing risk has become a critical component of SC management. Different types of SC vulnerability management methodologies have been proposed for managing SC risk, most offer only point-based solutions that deal with a limited set of risks. This research aims to reinforce SC risk management by proposing an integrated approach. SC risks are identified and a risk index classification structure is created. Then we develop a SC risk assessment approach based on the analytic network process (ANP) and the VIKOR methods under the fuzzy environment where the vagueness and subjectivity are handled with linguistic terms parameterized by triangular fuzzy numbers. By using FANP, risks weights are calculated and then inserted to the FVIKOR to rank the SC members and find the most risky partner.

Keywords: Analytic network process (ANP), Fuzzy sets, Supply chain risk management (SCRM), VIšekriterijumsko KOmpromisno Rangiranje (VIKOR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2928