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Abstract—Natural and human activities, such as mining 

operations, expose the natural soil to adverse environmental 
conditions, leading to contamination of soil, groundwater, and 
surface water, which has negative effects on humans, flora, and 
fauna. Bare or partly exposed soil is most liable to fluvial erosion. 
This paper enumerates various methods used to identify, map, and 
model fluvial erosion in a mining environment. Classical, Artificial 
Intelligence (AI), and GIS methods have been reviewed. One of the 
many classical methods used to estimate river erosion is the Revised 
Universal Soil Loss Equation (RUSLE) model. The RUSLE model is 
easy to use. Its reliance on empirical relationships that may not 
always be applicable to specific circumstances or locations is a flaw. 
Other classical models for estimating fluvial erosion are the Soil and 
Water Assessment Tool (SWAT) and the Universal Soil Loss 
Equation (USLE). These models offer a more complete 
understanding of the underlying physical processes and encompass a 
wider range of situations. Although more difficult to utilise, they 
depend on the availability and dependability of input data for 
correctness. AI can help deal with multivariate and complex 
difficulties and predict soil loss with higher accuracy than traditional 
methods, and also be used to build unique models for identifying 
degraded areas. AI techniques have become popular as an alternative 
predictor for degraded environments. However, this research 
proposed a hybrid of classical, AI, and GIS methods for efficient and 
effective modelling of fluvial erosion. 

 
Keywords—Fluvial erosion, classical methods, Artificial 

Intelligence, Geographic Information System. 

I. INTRODUCTION 

LUVIAL erosion can be due to mining-related operations 
such as the removal of soils and plants, which results in 

increased fluvial erosion and the creation of significant 
volumes of waste (solid and liquid) with suspended sediment 
burdening downstream water bodies [36]. The degradation 
caused by fluvial erosion in a mine can be detrimental to 
people’s health and safety as well as cause environmental 
harm (on-site and off-site repercussions) to fields and loss of 
soil fertility [60]. These eroded areas continue to exist due to 
climate change and poor land use management, which prevent 
soil formation and vegetation development [35]. 

In degraded and disturbed areas, evidence of lands 
indicating active fluvial erosion (Fig. 1) and its relative mass 
movement processes of sediment yield into water bodies are 
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inequivalent signals of severe geomorphic activity [35], [36]. 
The intensity of fluvial soil erosion can vary greatly depending 
on the temperature, soil, topography, cropping, and land 
management at a given location [55]. According to published 
literature, this high activity is a result of human disturbance of 
an unstable geomorphic system, and good examples of these 
effects include deforestation and illegal mining [2], [35], [36]. 

 

 

Fig. 1 Fluvial Erosion in Construction/Mining Areas 

II. CLASSICAL METHODS  

There are few approaches for modelling fluvial erosion in 
mining environments in literature. In France, the "Talus Royal 
Method" was successfully applied to rock road cuts [23]. In 
the United States, the Rosgen technique has been frequently 
employed for periodic stream rehabilitation, including mined 
areas [46], [47]. In mining locations in the United States, 
Australia, Colombia, and Spain, the GeoFluv technique has 
proven to be effective [11]-[13]. 

The hydrology, erosive stability, and evolution of both 
conventional and geomorphic restoration techniques in mining 
zones can also be evaluated using a variety of methodologies, 
models, and software [45], [61]. Utilising conventional 
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erosion models, such as the USLE [58], the RUSLE, and the 
Modified Universal Soil Loss Equation (MUSL) [43], [44], is 
a noteworthy technique for assessing the stability of mining-
degraded sites. The geomorphic development of post-mining 
landscapes has been evaluated using the Dynamic Water 
Erosion Prediction Project (DWEPP), the Water Erosion 
Prediction Project (WEPP) [16], [20], [42], [57], and 
Landscape Evolution Models (LEMs), like SIBERIA or 
CAESAR-Lisflood, as well as the European Soil Erosion 
Model (EUROSEM) [21], [37], WATEM/SEDEM model, and 
the Limburg Soil Erosion Model [25]. When correctly 
calibrated, these models have yielded excellent results. 

Reference [36] identified that topography, slope, and 
surface soil cover have an effect on the action of river erosion. 
The authors examined two surface soil covers (topsoil and 
subsoil) with two topographic profiles (linear and concave) 
throughout two hydrologic years. Sediment load, rill growth, 
and plant colonisation were the four profiles that were 
measured in the field. Their results showed that carbonate 
colluvium or topsoil cover on a concave slope produced more 
sediment than thick, uncompacted topsoil cover on a linear 
slope. The study also found a connection between topography 
and vegetation establishment, which is important for 
preventing river erosion. Fluvial erosion is exceedingly worse 
in tropical and hilly places due to sudden soil changes and 
excessive rainfall combined with land management, according 
to [36] and [56]. Lengthy precipitation events and snow 
gliding produce fluvial erosion and avalanches, which, in 
addition to geological, morphological, and anthropogenic 
variables, make certain locations more vulnerable [65]. 

To effectively manage fluvial erosion, the terrain, land 
cover, and vegetation must all be appropriately managed [52]. 
The available literature shows that topography and land cover 
management are critical components of mining operations [8], 
[36]. Additionally, efforts should be directed toward 
producing biologically functioning and stable soils that limit 
river erosion and promote post-mining land regeneration [8], 
[36]. 

III. AI METHODS 

In contrast to other traditional modelling techniques, the AI 
technique is a novel one with a flexible numerical structure 
capable of discovering complicated non-linear correlations 
between input and output data [4]. The AI techniques found in 
existing literature for identifying fluvial erosion include 
Kohonen Neural Network, multivariate adaptive regression 
splines, multivariate partial least square regression, variable 
importance projection statistics, random forest, support vector 
machine, least square support vector machine, random 
subspace algorithms, ANN-Bagging, AdaBoost, reducing 
pruning error tree, fractal rainfall disaggregation, boruta 
algorithm, naïve bayes trees, Fischer's linear discriminant, 
shuffled frog leaping algorithm, particle swarm optimization, 
fuzzy inference system, convolutional neural networks, object-
based image analysis, and many others. 

A. Review of Applications of AI Techniques for Fluvial 

Erosion Modelling 

It is interesting that the use of various AI approaches to 
detect fluvial erosion is widespread in the literature. For 
instance, [32] quantitatively predicted soil loss from natural 
runoff plots using WEPP and neural networks. The scientists 
used information from 2,879 erosion events from eight 
different US locales. Eight input parameters were used to 
create neural networks for the data from each individual site, 
and ten parameters were used to create neural networks for the 
whole data set. The data demonstrate that neural networks 
outperformed the WEPP model in predicting event runoff 
volumes and soil loss amounts, with the exception of a small 
number of minor events where negative erosion predictions 
were physically impractical. 

The linear correlation coefficient (R) for the neural network 
predictions that came as a result was found to be between 0.7 
and 0.9. In sites where there is enough information from 
erosion monitoring, the acquired results point to the possibility 
of utilising neural networks to estimate soil erosion by water 
at the plot scale. For the purpose of simulating soil erosion, 
[57] employed five AI techniques: Fuzzy K-Nearest 
Neighbour (FKNN), Artificial Neural Network (ANN), 
Support Vector Machine (SVM), Relevance Vector Machine 
(RVM), and Least Square Support Vector Machine (LSSVM). 
In order to evaluate these models, a historical dataset with ten 
explanatory variables was used, and four alternative land-use 
management strategies were used to manage soil erosion on 
hillslopes in northern Vietnam. Randomly produced data 
samples representing both soil erosion and non-erosion 
totalled 236 (80% for training and 20% for testing) to assess 
the robustness of the five models. 

To assess the performance of the five models, [55] used the 
Classification Accuracy Rate (CAR) and Area Under Receiver 
Operating Characteristic (AUROC) performance indicators. 
According to the results, the RVM model performs best during 
both the training (CAR = 92.22% and AUC = 0.98) and testing 
(CAR = 91.94% and AUC = 0.97) phases. The performance of 
the other four AI methods was strong. These findings 
unequivocally support the effectiveness of using AI algorithms 
to predict soil erosion. Both the training (CAR = 92.22% and 
AUC = 0.98) and testing (CAR = 91.94% and AUC = 0.97) 
phases demonstrated that the RVM model had the most 
impressive results. The performance of the other four AI 
strategies was likewise excellent. Therefore, these results 
strongly indicate the effectiveness of utilising AI techniques to 
anticipate soil erosion. 

Reference [36] compared deterministic model-based erosion 
modelling approaches. For the research findings, both 
empirically-based and process-based models were applied. 
The ANN and Fuzzy Inference System (FIS) were used in the 
empirical modelling, which was based on statistics and AI 
methodologies. Physical process-based modelling (WEPP, 
EUROSEM, and CIHAM-UC) includes the calibration, 
validation, and testing of the model's constituent parts, such as 
the equations. The Chirgu River basin was used to gather the 
input and output data for the various models throughout both 
the rainy and dry (irrigation) seasons. The gathered data 
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demonstrates that the AI-based techniques offer a respectable 
match with a r2 coefficient of determination that is close to 
0.7. 

For soil erosion modelling, [65] used Object Image 
Analysis (OBIA) and a Convolutional Neural Network (CNN) 
based on the U-Net architecture. A collection of manually 
mapped erosion sites was used to train the algorithms. CNN 
performed well in object identification tasks, allowing 
researchers to determine the relevant qualities or traits that can 
be utilized to distinguish eroded locations from other places. 

Reference [24] simulated soil erosion rates using ANN 
techniques. In order to show the spatial variations in the soil 
erosion rate, a Geographic Information System (GIS) was used 
as a pre-processor and post-processor tool in this work. The 
ANN technique was trained, improved, and verified using data 
from the Kasihain watershed in northern Iran. Field plots were 
used to calculate soil erosion values on the hillslopes. A Multi-
Layer Perceptron (MLP) network was used to calculate the 
rate of soil erosion, with inputs including slope, air and soil 
temperature, rainfall intensity and amount, soil moisture, and 
vegetation cover. The study's findings demonstrate that the 
ANN can predict soil erosion with an r2 of 0.94 and an 
arithmetic mean squared error of 0.04 with high levels of 
accuracy. The results also show that coupling ANN with GIS 
for soil erosion estimates and mapping has a lot of promise. 

Reference [5] assessed the efficacy of ANN applications to 
forecast erosion risk using several simulations and produced 
accurate classification outcomes. One of Indonesia's most 
significant potential watersheds, the Serang Watershed in 
Kulonprogo, Yogyakarta, was used to test the model. The 
simulation results showed that the number of iterations had a 
significant impact on accuracy relative to other variables. 
ANN, which has a performance accuracy of 99.32% and a root 
mean square (RMS) error of 0.0001, is a possible technique 
for future erosion modelling. 

Reference [7] used four AI techniques to predict the 
susceptibility of gully erosion: ANN, General Linear Model 
(GLM), Maximum Entropy (MaxEnt), SVM, and random 
sampling of training and validation data. The 50/50 random 
sample ANN was the most effective model in the examination 
of the research findings. For the Urseren valley (in the Central 
Swiss Alps), [49] mapped several erosion processes using 
high-resolution aerial pictures using OBIA and CNN with U-
Net architecture. With increases in total degraded area of 
167% and 201%, respectively, over the 16-year study period, 
the findings of this study show that OBIA and U-Net followed 
similar linear trajectories. 

Additionally, CNN with U-Net design can be applied to 
spatially and temporally uncharted data, making it a method 
capable of efficiently and effectively capturing the temporal 
patterns and spatial heterogeneity of degradation in alpine 
grasslands. Additionally, U-Net was considered to be a strong 
and powerful tool for mapping erosion locations in a 
foresighted manner using a significant volume of fresh aerial 
imagery. 

Reference [49] automated the identification of areas of soil 
degradation on agricultural land. The method is based on 

information from multitemporal remote sensing. Deep 
machine learning methods were used to choose appropriate 
remote sensing data scenes. An examination of 1028 pictures 
from Landsat 4, 5, 7, and 8 of 530 agricultural areas served as 
the foundation for deep machine learning. The findings of this 
work suggest that deep machine learning can be used to 
choose remote sensing data from a binary dataset. 

Using extremely high spatial resolution photos from Google 
Earth, [22] used a mask region-based convolutional neural 
network (Mask R-CNN) to automatically delineate and 
categorise yardangs (wind-eroded areas). More than 90% of 
the found yardangs accurately identified and classified the 
change in landform, according to the results of manual 
validation on photos from additional research sites, resulting 
in an overall detection accuracy of 74%. The scientists came 
to the conclusion that Mask R-CNN is a trustworthy model for 
defining different kinds of multi-scale yardangs and for 
researching the morphological and evolutionary characteristics 
of landforms. 

Using improved mask R-CNN and transfer learning, [54] 
automatically identified and dynamically monitored open-pit 
mines in Hubei Province. With values of 0.9718, 0.8251, and 
0.0862, respectively, the IMRT model outperformed R-CNN 
in terms of pixel accuracy (PA), Kappa, and missed alarm, 
indicating that it was more effective at automatically 
identifying open-pit mines. The outcomes are also used to 
measure the environmental harm caused by mines. The 
evaluation's findings also indicate that level 1 (severe) land 
occupation and the loss of vital mining sites are responsible 
for 34.67% and 36.2%, respectively, of the damage to the 
topographic landscape. 

Reference [38] employed CNN with U-Net architecture and 
a weighted cross-entropy loss function to detect rills on 
tailings dams. The final model produced promising results 
with precision scores of 83.3 percent, 72.0%, and 77.2%. 

B. Importance of Using AI Techniques for Fluvial Erosion 
Modelling 

It is critical to have a model that accurately depicts the real 
world since erosion modelling is a crucial measuring tool for 
both land users and decision makers to evaluate land 
cultivation [5]. The ambiguous data from various sources and 
the processing techniques make erosion models difficult. AI 
can be trusted to analyse complex, non-linear data, including 
that related to erosion [5]. The comparison of several cutting-
edge machine learning methods is necessary for the 
complicated and dynamic process of modelling soil erosion 
[55]. AI has shown considerable promise and effectiveness in 
resolving challenging soil science issues. With the use of this 
cutting-edge technique, historical datasets may be used to 
create data-driven models that can be used to anticipate a 
variety of complicated phenomena, such as soil erosion. 

Numerous studies in the field of fluvial erosion have been 
conducted to calibrate and evaluate the runoff and erosion 
elements with empirical models that are process-based 
models, as documented in the literature [14], [19], [28], [31], 
[39], [41], [49], [51], [54], [62], [63]. For evaluation, many of 
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these empirical models demand significant data and good 
performance [36]. AI is being effectively applied in various 
areas linked to fluvial erosion modelling. It may provide a 
user-friendly alternative or supplement to sophisticated, 
physically based models [32]. 

AI’s popularity has risen in recent decades and rapidly 
expanded into new application sectors. Because it can assess 
multi-source data sets, AI is considered a universal 
approximation [32]. In soil science and geoscience, AI can 
help deal with multivariate and complex difficulties [55]. 
Furthermore, AI predicts soil loss with higher accuracy than 
traditional methods [55]. Also, AI techniques can be used to 
build unique models for identifying degraded areas [55]. Due 
to the insufficiency of empirical predictors, AI techniques 
have become popular as an alternative predictor for predicting 
degraded environments. 

Furthermore, AI can calculate hydrological parameters from 
field or observational data [24]. As a result, using AI 
techniques to estimate soil erosion can help reduce costs and 
study time. Furthermore, AI can estimate soil erosion in real-
time at any location and at any moment [24]. The fundamental 
benefit of employing AI in fluvial erosion modelling is that it 
is data-driven and does not require any constraining 
assumptions about the basic model’s structure [24]. 

AI models are black box models since they learn from the 
studied data and do not require reprogramming. The model 
must be trained, optimised, and tested as part of the AI 
modelling process. Selecting one model from a list of potential 
models is what training the network model entails. The 
process of modifying parameters to get an optimal set of 
parameters without breaching specific limitations is known as 
optimization. Any method used to measure a computer 
network's performance quantitatively is referred to as a 
network performance test [24]. 

IV. GEOSPATIAL METHOD FOR EROSION MAPPING  

The intensity of soil erosion and other aspects can be 
effectively mapped using GIS [24], [29], [34], [64]. 
Estimating and mapping soil erosion and sediment yield has 
been the subject of numerous studies in the past and present 
[10], [26], [30]. AI can estimate soil erosion with great 
accuracy and speed, but it will be challenging for other users 
to apply the results without a specific location [24]. It is 
therefore imperative to consider the use of GIS.  

GIS is a potent technology that can be used to solve 
environmental issues and model soil erosion. Combining the 
AI model with GIS approaches is essential when creating a 
model to mimic soil erosion using AI techniques in a GIS 
setting. Thus, combining AI and GIS can produce findings that 
are accessible to all users and presented in a geo-referenced 
graphic format [18]. 

A. Application of Geospatial Techniques in Erosion 
Mapping 

Geospatial techniques effectively assess and map regions 
susceptible to soil erosion hazards [50]. Reference [33] 
modelled a broad area's identification of its sensitivity to soil 

loss by implementing multi-criteria evaluation in a GIS 
framework. The model's validity was established by 
comparing the predicted soil erosion-prone locations with the 
field's actual erosion and depositional features. Reference [48] 
applied 2D and 3D visualization and spatial analysis of 
geographic data to support the environmental decision-making 
process, which is one of the most significant uses of GIS. Due 
to the location-based nature of 80% of decision-makers' data, 
the spatial analytic capabilities of GIS offered more accurate 
information regarding decision-making circumstances. With 
the overlay procedure in GIS, the decision-maker locates a list 
that meets a predetermined set of criteria. 

Another approach for mapping erosion is an index model. 
Instead of a simple yes or no, [48] used an index model to 
generate an index value for each unit area. The process for 
calculating the index value was the main factor considered 
while creating an index model, whether vector-based or raster-
based. Reference [48] expressed the weighted linear 
combination approach as being the most popular technique for 
determining the index value for each unit area and creating a 
ranking map based on the index values. The index model is 
best suited when there is a risk of information loss and the 
threshold value may not be precise. GIS software was used to 
diagnose the spatial distribution of soil erosion and soil 
nutrient variations under different land uses in two agro-
ecological zones of southern Mali by [50]. The discussion of 
the effect of soil erosion on agricultural land productivity 
emphasised the importance of the empirically derived 
relationship between the RUSLE, in-situ soil data 
measurement, and satellite products. 

The RUSLE is a computer-based model that has greatly 
profited from the rise in computer processing power, and 
much more so with the development of GIS and remote 
sensing technology. As described by [40], although significant 
obstacles still exist despite these technical developments, 
earlier research has proven that these geospatial technologies 
make determining soil erosion and its spatial distribution 
possible at affordable costs and with acceptable accuracy. The 
RUSLE has considerably benefited from recent geospatial 
technology advancements in GIS and remote sensing [40]. The 
RUSLE has expanded the variety of circumstances in which it 
can be used, such as disturbed landscapes, rangelands, and 
forests [3]. Due to the intricate interactions of numerous 
elements, including climate, land cover, soil, topography, and 
human activities, estimating soil erosion loss is frequently 
challenging [33]. Reference [3] cited erosion models as a tool 
for forecasting and reasonable prediction that can help 
comprehend natural events like the transport and deposition of 
silt by overland flow. The RUSLE was first created to estimate 
cropland soil erosion with gently sloping topography. While 
satellite remote sensing is becoming a more important data 
source for all RUSLE characteristics, GIS is still primarily 
used to calculate individual RUSLE parameters [40]. 
Application of the RUSLE model is common among 
agricultural engineers, hydrologists, geomorphologists, and 
soil scientists [26]. Reference [1] employed a developed 
simplicity model in the GIS environment to estimate existing 

World Academy of Science, Engineering and Technology
International Journal of Geological and Environmental Engineering

 Vol:17, No:11, 2023 

159International Scholarly and Scientific Research & Innovation 17(11) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 G
eo

lo
gi

ca
l a

nd
 E

nv
ir

on
m

en
ta

l E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

11
, 2

02
3 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

35
0.

pd
f



and projected soil erosion as influenced by long-term changes 
in LULC [3]. To examine the links between soil erosion risk 
and LULC distribution, [33] created a soil erosion risk map 
with five classifications (very low, low, medium, medium-
high, and high) based on the simplified RUSLE within the GIS 
context. Reference [35] created a RUSLE model that 
evaluated the risk of soil erosion in the Tensift watershed 
using remote sensing (RS) and GIS techniques. RUSLE 
elements like cover management (C), conservation practices 
(P), slope length and steepness (LS), soil erodibility (K), and 
rainfall erosivity (R) help determine how slope, elevation, 
geology, and soil erosion relate to LULC. 

Soil erosion prediction and assessment has been a challenge 
to researchers since the 1930s, and several empirical, 
conceptual, and physical process-based models have been 
designed for specific sets of conditions in particular areas. 
Most of these models need information related to soil type, 
land use, landform, climate, and topography to estimate soil 
loss [48]. To assess the sensitivity to soil erosion, multi-
criteria analysis was applied when producing and combining 
spatial data for describing the causal factors. Analytical 
Hierarchy Process (AHP) Pairwise Comparison Methods are 
used through the Weighted Linear Combination (WLC).  

Reference [6] evaluated the uses of GIS in estimating soil 
erosion, talked about the challenges and restrictions of earlier 
studies, and concluded that GIS offered enormous promise for 
enhancing soil erosion estimation. In order to estimate soil 
erosion loss using geostatistical techniques (i.e., collocated co-
kriging and a joint sequential co-simulation model), [33] used 
a sample ground dataset, Thematic Mapper (TM) images, and 
DEM data. They showed that such methods provided 
significantly better results than traditional methods. Reference 
[48] assessed the sites vulnerable to soil erosion based on 
multi-criteria evaluation in the upper catchment of the 
Markanda River. GIS was used for the derivation, integration, 
and spatial analysis of the geographic layers of each theme. 

The identification of sediment source locations and the 
forecasting of storm sediment yield from catchment areas have 
both been addressed using a GIS-based methodology that has 
been proposed and validated [8]. The goal of this study was to 
use GIS to discretise catchments into tiny grid cells and 
calculate their physical characteristics, including slope, land 
use, and soil type, all of which have an impact on the 
processes of soil erosion and deposition in various catchment 
sub-areas [8]. Further, GIS methods were also used to partition 
the sub-areas into overland and channel types, to estimate the 
soil erosion in individual grid cells, and to determine the 
catchment sediment yield by using the concept of sediment 
delivery ratio. Grid-based discretisation is found to be the 
most reasonable procedure in both process-based models as 
well as in other simple models [9]. The Integrated Land and 
Water Information System (ILWIS) GIS was used for 
discretising the catchments into grid cells, and the Earth 
Resources Data Analysis System (ERDAS) Imagine image 
processor was used for processing satellite data related to land 
cover and soil characteristics. 

B. Advantages of Geospatial Techniques over Classical 
Methods 

According to [40], empirical erosion models like the 
RUSLE offer a reasonably straightforward yet thorough 
framework for evaluating soil erosion and its contributing 
components. According to RUSLE, significant influences on 
soil erosion include rainfall (R), topography (LS), soil 
erodibility (K), cover management (C), and support practices 
(P). According to reports, the utility of RUSLE has benefits, 
including the availability of quantitative data that can be 
compared with qualitative evaluations in erosion studies and 
the fact that the data needed to execute RUSLE are simple to 
get and compatible with GIS, thereby making it easy to 
implement and understand [1]. 

For monitoring and planning land use that will prevent land 
degradation, [33] methodologies and results discussed how 
effective a combination of RUSLE, Remote Sensing, and GIS 
is for understanding the relationship between soil erosion risk 
and LULC classes. The outcome of the model of [50], which 
was based on a multi-criteria GIS evaluation, shows that it is 
necessary to identify places susceptible to soil erosion. Such 
model-based integrated maps can assist us in making 
forecasts, planning the implementation of preventative and 
restorative measures, and prioritising the region based on the 
degree of erosion. Physical survey is the foundation of 
traditional methods for locating erosion potential areas, but 
when the erosion problem is widespread, this process can be 
challenging and time-consuming. As a result, GIS-based 
spatial modelling generates helpful data for solving 
complicated problems by rationally establishing relationships 
among diverse dependent geographic characteristics [15], 
[48]. 

Reference [59] indicated that using remote sensing and GIS 
technologies for erosion risk mapping, based on the 
methodology implemented in the Coordination of Information 
on the Environment (CORINE) model, resulted in an effective 
and accurate assessment of soil erosion in a considerable short 
time and at a low cost for large watersheds; therefore, the 
model can provide decisionmakers with the areas with erosion 
risk so that they can develop soil and water conservation plans 
in general and generate detailed erosion studies for the regions 
of high erosion risk. 

The key benefit of using GIS technology is that it can 
quickly provide information on the anticipated cost of soil loss 
for any area under investigation [27]. The main reasons for 
using a GIS are that runoff and soil erosion processes vary 
spatially, so that cell sizes should be used that allow spatial 
variation to be taken into account. Also, the data for the large 
number of cells required are enormous and cannot easily be 
entered by hand, but can be obtained by using a GIS [17]. The 
possibilities of rapidly producing modified input-maps with 
different land use patterns or conservation measures to 
simulate alternative scenarios, the ability to use very large 
catchments with many pixels, so the catchment can be 
simulated with more detail, and the facility to display the 
results as maps are further advantages of using a GIS [17]. 

GIS has a good ability for erosion control through land use 
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modelling. Land use management provides a good alternative 
way for long term erosion control [53]. 

The techniques for calculating soil loss based on erosion 
plots have significant drawbacks in terms of the cost, 
representativeness, and accuracy of the data they produce. Due 
to the restriction of small samples in complex ecosystems, 
they are unable to offer a spatial distribution of soil erosion 
loss [33]. So, mapping soil erosion in large areas is often very 
difficult using these traditional methods [33]. The ability to 
estimate soil erosion and its spatial distribution with 
acceptable prices and improved accuracy across wider regions 
is made possible by the use of remote sensing and GIS 
techniques [33]. 

V. CONCLUSIONS 

It is evident that fluvial erosion has been and will continue 
to be the subject of numerous research efforts. Appraisal of the 
numerous methods by various researchers reveals that several 
classical, Geospatial, and AI methods have been used to 
identify, map, and model fluvial erosion. However, the 
researchers recommend a hybrid of classical, AI, and 
geospatial methods for effective and efficient modelling of 
fluvial erosion. 
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