

Abstract—Today’s technology is heavily dependent on web

applications. Web applications are being accepted by users at a very
rapid pace. These have made our work efficient. These include
webmail, online retail sale, online gaming, wikis, departure and
arrival of trains and flights and list is very long. These are developed
in different languages like PHP, Python, C#, ASP.NET and many
more by using scripts such as HTML and JavaScript. Attackers
develop tools and techniques to exploit web applications and
legitimate websites. This has led to rise of web application security;
which can be broadly classified into Declarative Security and
Program Security. The most common attacks on the applications are
by SQL Injection and XSS which give access to unauthorized users
who totally damage or destroy the system. This paper presents a
detailed literature description and analysis on Web Application
Security, examples of attacks and steps to mitigate the vulnerabilities.

Keywords—Attacks, Injection, JavaScript, SQL, Vulnerability,

XSS.

I. INTRODUCTION
EB application security deals with the protection of web
services, web applications, websites and all other

benefits of web. In 1995 NETSCAPE launched a script called
JavaScript [2]. The major drawback of this script was that it
didn’t send information to server to get full web page, instead
an embedded script of a downloaded page would perform
tasks like input authentication and displaying parts of page. In
1996 Macromedia launched Flash to build animations in
browser, and later in 1999 web application construction began
with JavaScript [2]. With the progression of HTML versions
(currently HTML5) it has been possible to develop
applications with graphics and multimedia capabilities. A
client-server environment is one where multiple clients or
application users, using same database, enter information and
server stores this information that needs to be secured. The
web applications use two types of scripts viz. Server side
script and Client side script. The former scripts (ASP, PHP
etc.) include hard stuff i.e., storing and fetching the
information while the latter ones, HTML, JavaScript etc., deal
with the display of information.

The web applications are constructed using different
programming languages such as Python, Ruby, ASP.NET, C#,
VB.NET, Java, PHP, Java EE. During the past year, attacks on
web applications have grown severely. The two significant
techniques of attack are: Structured Query Language (SQL)
Injection and Cross Site Scripting (XSS), both of which

Ayush Chugh is a student of Bachelor of Technology in the Department of

Computer Science and Technology, School of Engineering and Technology,
ITM University, Gurgaon.

Gaurav Gupta is working as an Assistant Professor in the School of
Engineering and Technology, ITM University, Gurgaon (e-mail:
gauravgupta@itmindia.edu).

dominated in 2009. The types of vulnerabilities are shown in
Table I.

TABLE I

TYPES OF VULNERABILITIES [1]
Vulnerability Types Basic Idea

Type 1 No distinction between data types of language.
Type II No attention to type coercion.
Type III Incorrect authorization of user input.

Type IV Current variables are used which leads to delay
in operation analysis till runtime phase.

Several online applications (Google, wikis, online retail

sales), online business-based transactions, browser
applications (online spreadsheets, word processors) are built in
three tier model where a single tier represents a logical chunk
of application. Online payment need to be safe for a
satisfactory user experience. And thus, these applications
require high protection or a single raid would cause severe
loss. The major attack on these applications is through SQL
Injection and XSS, apart from PHP injection, Java injection,
Memory corruption, Path traversal and Remote Command
Execution.

The use of open source frameworks like Ruby on Rails,
Django has made development of web applications versatile.
Nowadays, a substantial part of the population file their
income tax using one these applications. The complexity of
applications varies from a single message board to a
spreadsheet. The applications being developed in this modern
era can run on different platforms (PC, MAC) and these
applications can be explored over the internet from different
operating systems. The best part is that you don’t need to
install them; the updates are always available on the website.
The dependency of people on these applications has never
been so vital. They share important information via these
applications. This information would always be on stake if
there isn’t high security. With the introduction of SaaS
(Software as a Service), [23] the client need not to bother
about the hardware/software compatibility to run any
application. Applications can be used any time as there is
direct access to them.

Attackers are always in search of vulnerable applications.
They invade these applications and get access of confidential
data, cause severe loss to the client and can also damage the
server. There is a rise in concern for security as the
documents; pictures etc. uploaded by you always remain
online. The web application security is needed to prevent raid
by attackers. They can cause demolition in following ways:
[15]
• Access restricted content
• steal account information
• change appearance of website

Web Application Security, Attacks and Mitigation
Ayush Chugh, Gaurav Gupta

W

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

671International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

73
55

.p
df

• change credentials
• insert spam links
• insert malicious content

II. WEB APPLICATION SECURITY
Web Application Security falls under the category of

Information security. The design interfaces, which the user
uses to interact with backend databases, must be secure to
perform the tasks over web applications. A few search links on
Google or some book references can provide information to
attack even the powerful applications such as WordPress,
ZenCart, Joomla!, Drupal and MediaWiki.. In some severe
cases attacker can attain system level permissions and direct
access to database which can harm the server and execute the
commands according to their choice. This accounts for the
need for web application security. Generally, it can be divided
into two parts: Declarative security and Program security.
Both these security measures safeguard the data transferred
over the internet.

A. Declarative Security
It comprises of mechanisms used in an application, and

shown in declarative syntax in a deployment descriptor (DD).
A DD is an .xml file that shows application security structure
including access controls and authorization requirements. The
security information is placed into annotations/metadata by
declarative security syntax. The metadata includes:
• Description of the assembly i.e., identity, name and type.
• Details of types.
• Attributes.
Approaches to Declarative Security:
1) Basic Authentication
2) Form-based Authentication

1. Basic Authentication
This includes a very basic procedure. Firstly put all the

protected/sensitive data in a protected directory such as
xyz.xml. To access this information there you would be
required to enter a username and password as asked by server
through a pop up window. The steps [25] involved are:
1. Create a list of users, password and roles in the .xml file as
shown:

<user username=”adm” password=”password”
roles=”admin”/>

3. Specify the use of BASIC Authentication
<login-config>
<auth-method>BASIC</auth-method>
<realm-name>BASIC Validation
</realm-name></login-config>
4. Specify URLs that should be password protected.
5. List all the possible roles.
6. List all the URLs that need SSL (Secure Sockets Layer).
SSL apply private and public key to encrypt data passed

over SSL connection. The disadvantage of basic
authentication is user defined GUI can’t be constructed, and
hence, no modification.

2. Form-Based Authentication
The server collects information about user through a login

page which is necessary to identify a single user among
millions of user. The following are the steps for Form-based
authentication:
• Set the all possible users, their password and role.
• List the user of Form Based Authentication using a

different tag.
• Create a login page demanding username and password.
• Similarly, create a login failure page.
• Specify all password protected file paths.
• List all the other different roles granted access to

privileges.
• List all URLs require SSL.

TABLE II

BASIC VS. FORM-BASED [25]
Basic Form-based

Credentials are entered in browser
provided dialog box.

Credentials are entered using a
customized page.

Credentials can only be collected. Customized data can be collected.
HTTP Authentication header is
used to convey credentials.

Form data is used to convey the
credentials.

B. Program Security
In this security technique, user has full control on

authentication and access control. This is because it is done
through programs. Consequently, it makes all the components
portable as there is involvement of server related components.
Also, there is no need to create configuration files. The
programs can be written according to the need. For better
authentication and user friendly experience, a customized
program can be made. The steps [25] involved in
Programming Security are:
• Use a data structure to store usernames and passwords. Use

a function to match these credentials.
• Use sessions to keep a check on currently logged in users.

For Example: String loginName = request.getParameter
(“username”).

• Enable SSL by using https instead of http. Use request
secure to check working of SSL. It will return either true or
false.

While designing the program one should always remember
that user inputs may act as your enemy. All measures are to be
taken in consideration so that there is no attack on database via
SQL injections. Each JSP (Java Server Page) needs to be
authenticated before proceeding further. In Java EE, a java
class named Servlet is responsible for responding to HTTP.

In the program you need to direct the request to https URL
so that SSL can protect data over the network. Due to this, a
unique connection is built between client and server. Entire
information is passed in a private mode. Though this
communication is slow, it is a safe process. The programs give
a flexible experience in the development of web applications.
All these aspects help in building dynamic web pages whose
content varies according to the arguments passed. Thus you
can build a secure login page using servlet code [6].

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

672International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

73
55

.p
df

III. SQL INJECTION
SQL stands for Structured Query Language. Here Injection

refers to insertion of SQL query through the input data from
client to application and is executed by back end database.
SQL Injection attack (SQLIA) is one of the top 10 web
application vulnerabilities and the reason behind it is the
inadequate authentication of input [13] i.e., adding malicious
keywords into an SQL query [7]. It can assist an attacker to
access all the high privileged data which was hidden earlier.
Today a number of websites are susceptible to SQL Injection
vulnerabilities. The attacker’s input is an SQL query which
becomes a SQL code [3]-[9] i.e., by injecting a SQL statement
with help of escape characters like’)’OR’1’=’1’; which is
always true, an attacker can intrude the web application and
can update/delete/modify the database and even perform
administrative tasks.

A successful SQL Injection attack is due to defective coding
of web applications. All the features such as forums, login
page, search pages, user credentials can be exploited via SQL
Injection. This caused by the non-validation of input
parameters by applications. This can be explained by an
example: username “Scott” and password “tiger” are the
default credentials in oracle. An attacker can pass “grant dbato
Scott” as a parameter in one of the SQL queries which in first
go gives error but actually, database has already gone ahead
and granted permission [4]. Now “Scott” who was earlier a
low privileged user is now granted administrative privileges.
Another way of raiding is by the use of tools whose
perquisites are that you just need to know the URL and the
database to be attached and then you are on the go. In a few
seconds an attacker can carry out desired proceedings. Now
the question is how to write the SQL queries which would
betray the database. The required query is:

 select * from users where username = ’ ‘ OR ‘z’ =
‘z’;‘z’=’z’ guarantees truth, regardless of the first part.
Similarly another login query can be written as “select
profile from users where username = ‘anything’ and
password = ‘anything’ OR ‘1’ = ‘1’;”

Another way of bypassing the authentication of a login page
would be by use of escape character in username section.
When you open a specific website you need to provide
username and password to login. In order to gain unauthorized
access attacker may enter ‘test’ or 1=1-- which will open the
id profile of the first user on the top of the list [8]. Tools like
Burp Suite can be used for extraction of rows from database
automatically.

A. Blind SQL Injection
It is used when a web application is vulnerable to SQLIA

but the results are not apparent to attacker. The resultant page
would depend on the statement entered with the corresponding
SQL query. This may demand new query for every new bit.
This can be encountered by the use of a tool which will
automate the whole attack. For example [18]:

 select * from employee where dept=’5’ AND ‘1’=’1’;
 select * from employee where dept=’5’ AND ‘1’=’3’;

If ‘1’=’1’, it returns the original page and if ‘1’=’3’, error or
blank page is returned. Thus the website is prone to the attack.
There can be problems of incorrect type handling in which the
attacker appends the SQL query with the desired query taking
help of data types. It is known that age is a numeric data. Then
to perform an administrative task,[10] “Scott” user can
perform as:

<?php
$sqlStatement=”Select * from ‘users’ where age=30;
truncate table ‘users’”;
?>
{/code}

The value would always be an integer. If the programmer
doesn’t check if the value is really an integer, then the attacker
can add one or more statements and ultimately harm your
database. The various schemes [1] related to SQL injection
are: Amnesia [5], SQLrand [11], Automated approaches [5],
SQLDOM [17], webSSAR [13], [21], [22], SQLIPA [26],
DIWeDa [14], SQLGuard [19], CANDID [19].

B. Mitigation of SQL Injection
1. Use Parameterized Query:You should not supply the

values directly, instead the values can be passed as
parameters as shown below.

2. Automatic and Dynamic Access Control List
profiling:This should be preferred so as to continuously
monitor the application behavior and adapt to the
application changes.

3. Take steps to discard invalid input:You can use the
following code to discard non-integer value [10]:

if(!eregi("^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-
]+)*(\.[a-z]{2,3})$", $email))

4. This will allow only an integer value to be entered.

Hence, it does not give chance to attacker to hamper the
database.

5. Use quote blocking function:The function will not allow
attackers to intrude inside the database [24]. A check is
maintained on the values given by user.

6. Avoid detailed error message:The error message can
provide the attacker hint regarding the parameters.
Though not descriptive, a detailed error message is
sufficient for a skilled attacker. So turn off the error
reporting or just type something in error message which is
of no use to attacker.

7. Impart limited permissions to users:There is no need to
give extra privileges to people who don’t need them. All
the irrelevant privileges should be removed and granted
later if the need be.

8. Use firewalls:dotDefender can be used to detect intrusion
and keep the network secure.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

673International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

73
55

.p
df

IV. CROSS SITE SCRIPTING (XSS/CSS)
It is one of the most common application layer hacking

techniques. XSS attacks have been taking place since 1990s.
The major websites which are targeted are social networking
websites such as Facebook, Twitter, and Orkut. It is a four
stage process:
1. Attacker inserts client side script into vulnerable web

server or web pages.
2. A user (victim) visits this server.
3. The code enters the victim’s browser.
4. The code executes with web server privileges.

The visitor is tricked as the web application looks
legitimate. This confirms XSS attack taking place when data
enters an application via a suspicious source and data is sent to
web user along with the dynamic content. The web
applications are dynamic nowadays. The content changes after
a few seconds which gives enough privileges for an attacker to
attack on the application. The applications get data from a
number of sources and after that this data is filtered to produce
the resultant webpage. It contains pictures, text, scripts. The
most common way used by attacker is to write script in the
comment section. Every visitor who sees this script will
download it and execute it on the browser. This will cause
undesirable results. For example if there is link in your Gmail
inbox, then it may show undesirable behavior if not filtered by
Gmail server. The links, if not filtered, can contain malicious
content which will give access to the cookies of the user to the
attacker and he can now login to the website as a legitimate
user. The credentials might be changed or misused leading to
severe results. The types of XSS [12], [20] are:

A. Reflected XSS
This occurs when data supplied by a web client in the form

of HTML query parameters or HTML form submission, is not
filtered and can be used by server directly to scan and display
a set of resultant pages. Not very unlike when you enter
something in the search engine and the result is the items
which contain your keywords and also the vector representing
what you are searching for. It is also called Non-persistent
XSS. The URL which you receive in your e-mail might
contain a XSS vector.

B. Persistent XSS
This occurs when the script provided by an attacker is

stored by server and passed to the logged in user during
browsing session. Therefore it is also known as Stored XSS. It
is the most significant of all XSS as there is no involvement of
third part website to direct the user to it. Take an example of
the Facebook Timeline section. If you have posted a new
photograph then attacker can comment on it and write a
malicious script which is invisible to you. This script executes
when you visit the comment section.

C. Document Object Model Based
Dom-based vulnerabilities occur due to changes in DOM

environment of victims’ browser. Scripts can be inserted in the

error messages supplied to the user. HTTP response remains
the same but client code runs unexpectedly.

Aspects of XSS Attacks [12]
1) Stealing Cookies: Cookies are parts of text which are

saved by the websites in your browser. The attacker
injects the script that reads the cookies of a specific
website. These scripts send desired information to the
attacker. The attacker can log in on the website by
knowing the credentials of victim, thus performing tasks
at the name of the victim.

//JavaScript code
<script>
varimg = new Image();
img.src=”http://xyz.com/log_cookie.php?”+
document.cookie
</script>

2) Defacement: Attacker injects the script which changes
the appearance of a specific website. The script takes
victims to another website. Religious and government
website are usually targeted by attacker. Script example:

//JavaScript code
<script>
document.location=”http://xyz.com”;
</script>

3) Phishing: Attacker creates his own page which is the
exact copy of the webpage with which the victim is
familiar. The user is trapped when he enters the
credentials on the fake login page. The data is sent to the
attacker as written in the injected script.

4) Run Exploits: Exploit is a tool run by attackers on the
system to perform offensive attacks to exploit the
weakness in software over internet. Zero-Day is a
common type of exploit. Due to this, a malware is
installed on user’s system and then attacker can again
render your security useless.

5) Privacy Violation: The attacker’s script can provide the
list of websites visited by the victim. This would allow
attacker to select the websites asking for the credentials
from victim. Now, the attacker can make a duplicate
website and perform phishing attacks.

Mitigation: To mitigate XSS attack, you must prefer
escaping of string input. The script should include the location
of the unwanted strings to be placed in a HTML document.
The tools, which look like OWASP (Open Web Application
Security Project) antisamy, [16] can be used to secure the
application against faulty HTML input. You must employ
additional security measures when running a website
functioning on cookie based authentication. Use plug-ins
which could block untrusted websites. Blocking the scripts
would be beneficial if you have knowledge about them. Many
defensive technologies are available which guarantees
minimum XSS. Those technologies are Mozilla’s Content

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

674International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

73
55

.p
df

Security Policy, JavaScript Sandbox and Auto-escaping
templates.

V. CONCLUSION
Web application security is the demand of the hour. It

cannot be neglected; it is a serious issue like network security.
With the advancement of technologies, it has spread like wild
fire. Online business is most affected by web application
vulnerabilities. Due to lack of security, attackers always prefer
to attack web applications.

The main problem is that most of the web applications don’t
have testing of desktop software. Therefore there is always a
growing concern for security. These applications must support
all different browsers and operating systems which demand
high security and better code writing. You have to be cautious
about the data you enter in an application as it has the
probability of getting copied or misused. The development of
web applications is a long term task as they are very complex.
You must include security in your coding and never assume
that you would always get the correct input. There must be a
way to deal with the unexpected input from a browser,
unhandled error messages, unchecked database call. You can
use content management system like Joomla! to construct a
website with dynamic content. For the e-commerce security
you can rely upon either Zencart or Magento. There can also
be a way to prevent injections which is to avoid characters
which have a distinct meaning in SQL. Single quote (‘) can be
replaced by two single quotes (‘‘) to form an accurate SQL
string literal. You must assign limited permissions to the
database and extend these when the need arises.

Unnecessary privileges can cause serious threats to your
database. You must prefer PHP over any other language as
PHP is moving towards object oriented architecture and there
is use of PDO classes which give privilege to make prepared
statements to prevent SQL Injections. You will find more code
built in Open Source world using PHP. All major CMS
(Content Management System) like Drupal and Joomla! are
built in PHP. You can also use Aspect-Oriented Programming
(AOP) Paradigm to mitigate SQL Injection and XSS attacks.
AOP focuses on making a relation between user requests. Its
remote address acts as an AOP advice where advice is the
additional code you want to apply to your existing model like
a log code process of users who executed the update
statement.

In order to secure your web applications you must be aware
about the above said attacks and should be prepared for any
kind of new attacks. Thus, you must have knowledge about
progression of technologies. Use web application vulnerability
evaluation tools in order to check the current security level of
your web application or website. Educate developers, security
professionals, testers regarding the risks and steps to mitigate
the attacks. You must be sure how you pass the data and don’t
expose your logic. A single loop hole can lead to the
destruction of your whole database. You must always have a
backup and keep it safe.

ACKNOWLEDGMENT
We greatly acknowledge the research assistance provided

by Mr. Bhavyanshu Parasher.

REFERENCES
[1] Diallo Abdoulaye Kindy and Al-Sakib Khan Pathan, A Detailed Survey

on Various Aspects of SQL Injection: Vulnerabilities, Innovative
Attacks, and Remedies.

[2] http://en.wikipedia.org/wiki/Web_application.
[3] Tajpour, A., Masrom, M., Heydari, M.Z., and Ibrahim, S., “SQL

injection detection and prevention tools assessment,” in Proc. 3rd IEEE
International Conference on Computer Science and Information
Technology, China, 2010, pp. 518-522.

[4] http://www.youtube.com/watch?v=M2N-uDMCot4&feature=pyv
[5] Junjin, M., “An Approach for SQL Injection Vulnerability Detection.

Sixth International Conference on Information Technology,” in Proc.
New Generations, 27-29 April (2009), pp. 1411-1414.

[6] http://stackoverflow.com/questions/10981191/create-a-sample-login-
page-using-servlet-and-jsp.

[7] Kindy, D.A. and Pathan, A.-S.K., “A Survey on SQL Injection:
Vulnerabilities, Attacks, and Prevention Techniques” in Proc. 15th IEEE
Symposium on ConsumerElectronics,Singapore, 2011, pp. 468-471.

[8] http://www.youtube.com/watch?v=PB7hWlqTSqs.
[9] https://www.owasp.org/index.php/SQL_Injection.
[10] http://www.tanzilo.com/2008/11/14/sql-injection-prevention-protection-

in-php-mysql-with-example/.
[11] Boyd S.W. and Keromytis, A.D., “SQLrand: Preventing SQL Injection

Attacks,” in Proc. 2nd Applied Cryptography and Network Security
Conference, China, 2004, pp. 292–302.

[12] https://it.ucsb.edu/system/files/websecurity.ppt.
[13] Halfond W. G., Viegas, J., and Orso, A., “A Classification of SQL-

Injection Attacks and Countermeasures” in Proc. of the Intl. Symposium
on Secure Software Engineering,U.SA, 2006, pp.

[14] Roichman, A., and Gudes, E., DIWeDa - Detecting Intrusions in Web
Databases. Atluri, V. (ed.) DAS 2008. LNCS, vol. 5094, Springer,
Heidelberg (2008), pp. 313-329.

[15] http://www.applicure.com/solutions/web-application-security.
[16] https://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project
[17] McClure, R.A. and Kruger, I.H., “SQL DOM: Compile time checking of

dynamic SQL statements,”in Proc. 27th International Conference on
Software Engineering, St. Louis, MO, U.S.A, 2005, pp. 88- 96.

[18] http://en.wikipedia.org/wiki/SQL_Injection.
[19] Buehrer, G., Weide, B.W., and Sivilotti, P.A.G., “Using Parse Tree

Validation to PreventSQL Injection Attacks” in Proc. 5th International
Workshop on Software Engineering and Middleware, Portugal, 2005,pp.
106–113.

[20] http://en.wikipedia.org/wiki/Cross-site_scripting.
[21] Ruse, M., Sarkar, T., and Basu. S., “Analysis & Detection of SQL

Injection Vulnerabilitiesvia Automatic Test Case Generation of
Programs” in Proc. 10th Annual International Symposium on
Applications and the Internet, Seoul, Korea,2010, pp.31-37.

[22] Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T., and Kuo, S.-Y.,
“Securing Web Application Code by Static Analysis and Runtime
Protection,”inProc. 13th International Conference on World Wide Web,
New York,2004, pp. 40-52.

[23] http://www.pssuk.com/AdvantagesWebApplications.htm.
[24] http://www.helpspot.com/helpdesk/index.php?pg=kb.page&id=186
[25] http://www.cs.cityu.edu.hk/~jia/cs4273/L10_SecurityProgramming.ppt
[26] Ali, S., Shahzad, S.K., and Javed, H., “SQLIPA: An Authentication

Mechanism AgainstSQL Injection,” European Journal of Scientific
Research, vol. 38, no. 4,pp. 604-611, 2009.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

675International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

73
55

.p
df

