
Security Strengths and Weaknesses of Blockchain
Smart Contract System: A Survey

Malaw Ndiaye, Karim Konate

Abstract—Smart contracts are computer protocols that facilitate,
verify, and execute the negotiation or execution of a contract,
or that render a contractual term unnecessary. Blockchain and
smart contracts can be used to facilitate almost any financial
transaction. Thanks to these smart contracts, the settlement of
dividends and coupons could be automated. Smart contracts have
become lucrative and profitable targets for attackers because they
can hold a great amount of money. Smart contracts, although widely
used in blockchain technology, are far from perfect due to security
concerns. Although a series of attacks are listed, there is a lack
of discussions and proposals on improving security. This survey
takes stock of smart contract security from a more comprehensive
perspective by correlating the level of vulnerability and systematic
review of security levels in smart contracts.

Keywords—Blockchain, bitcoin, smart Contract, criminal smart
contract, security.

I. INTRODUCTION

ASmart contract is a collection of promises in digital

form and protocols within which the parties execute

those promises [1], [2]. It may enforce specific activities such

as addressing financial fraud, e-voting, bug bounty and the

blockchain-Internet of things (IoT) combination. Moreover,

it can be applied to cloud computing to enforce payments.

However, smart contracts may cause significant damage if they

are targeted by criminals [3], [4]. The importance of smart

contract integration of blockchain technology become a focus

area to develop because it gives peer to peer transaction and

database can be maintained publicly in a secure way, in a

trustful environment [5].

Smart contracts, although widely used, are far from perfect

because of potential security issues. Although there are some

recent studies on smart contracts security [6], [7], [8], [9],

none of them perform a systematic examination on the strength

and weakness of security on smart contracts. From security

programming perspective, their is to analyze the security

vulnerabilities of Ethereum smart contracts, and provide a

taxonomy of common programming pitfalls that may lead to

vulnerabilities. However a series of related attacks on smart

contracts are listed, there is a lack of discussion on security.

This survey focuses on the security of smart contracts from

more comprehensive perspectives. The main contributions of

this paper are as follows:

• We perform a vulnerability analysis to show the security

weaknesses of smart contracts by giving a taxonomy

of vulnerabilities (vulnerabilities related to platforms,

programming languages and virtual machines)

Malaw Ndiaye and Karim Konate are with Cheikh Anta Diop University,
Senegal (e-mail: malaw.ndiaye@ucad.edu.sn, karim.konate@ucad.edu.sn).

• To our knowledge, we perform the first systematic review

of smart contracts security levels.

• Then, we propose solutions to completely solve the

problem of the immutability of smart contracts in order

to offer them the possibility of being corrected even once

deployed.

The last part of this paper is organized as follows: Section II

introduces the smart contracts main technologies used in

blockchain systems. Section III systematically examines the

security of smart contracts by highlighting security flaws

and surveys the smart contracts security level on blockchain

systems. After, we discuss a few future directions in

Section IV. Finally, we conclude the paper.

II. OVERVIEW OF SMART CONTRACTS TECHNOLOGIES

In this section, we give an overview of smart contracts.

First, we make a brief introduction to smart contracts, and

then present the Smart Contracts technology.

A. Overview

1) What are Smart Contracts?: Smart contracts can be

defined as custom logic and code deployed and run on

blockchain platform. Smart contracts are digitized and codified

transaction rules between accounts [10]. They facilitate the

transfer of digital assets between accounts as an atomic

transaction. Smart contracts can store data, and that can be

used to record information, facts, balances, and any other

information needed to implement real-world contract logic

[10], [11], [12]. Smart contracts can be used to automate

many different processes in areas such as insurance, real estate,

supply chains, data management, identity management and

voting. With the growth of the IoT, smart contracts could also

play a central role in machine interactions [13], [14], [15].

2) Why Smart Contracts?: Although variations of smart

contracts existed in the 1990s, lack of the requisite

technology prevented widespread implementation. Prior to

blockchain, smart contracts were computer programs which

facilitated negotiation, verified and enforced performance on

a centralized server [16]. Financial institutions used a form of

pre-blockchain smart contracts when they eased bookkeeping

transactions and option contracts by implementing computer

code. However, general uncertainty and concern from users,

combined with issues of identity and transaction verification

ultimately hindered the use of smart contracts. Blockchain

technology confronted these obstructions and has since molded

the use of smart contracts [11], [16]. Once developed,

blockchain streamlined the use of smart contracts, serving

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:16, No:5, 2022

134International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
53

7.
pd

f

as its technological framework and providing security and

accuracy:

• First, blockchains and other distributed ledgers can

maintain an immutable record of data and effectively

mitigate single points of failure.

• Second, since smart contracts inherit the encryption

pseudonymity of blockchains, even with the code and

data accessible to everybody, smart contracts are able to

prevent unwanted monitoring and tracking [11].

• Third, thanks to the flexibility of programming languages,

smart contracts also have a good interoperability among

multiple instances and are able to tackle modification

better [11].

B. Smart Contracts Technologies

The importance of smart contracts integration of blockchain

technology become a focus area to develop because it gives

peer to peer transaction and database can be maintained

publicly in a secure way and a trustful environment. Fig.1

shows the structure of a smart contract. It includes a set of

executable functions and state variables. The contract code is

executed on each node participating in the network as part of

the verification of new blocks [17]. Fig. 2 shows the smart

contract mechanisms.

There are deterministic and non-deterministic smart

contracts. A deterministic smart contract does not need any

information from an external party (outside of the blockchain).

A non-deterministic smart contract depends on oracles or

data flows from an external party. [12]. So, smart contract

technology is based on three things: the platform, the

programming language and the execution environment (the

virtual machine).

• Smart Contract Platform: is a group of technologies

that are used as a base upon which smart contracts,

other processes or technologies are developed [18]

[19]. However, each also has its specific characteristics,

opportunities, and challenges, which can quickly change

over time. Table I illustrates a study of the top 5 platforms

and their characteristics [20], [21], [22].

• Smart Contract programming language: programming

language is a formal language, which comprises a set

of instructions that produce various kinds of output [23],

[24].

• Smart Contract runtime environment: A runtime

environment is the execution environment provided to

an application or software by the operating system [25].

Since we have talked a bit about the informal framework for

evaluating smart contracts platforms and their technologies,

we can look at some facts and figures that might be sobering

on the competitive landscape. The first most direct way to

see which networks have the greatest developer activity, and

are therefore used and worked on, is by comparing their

activity (Table I). Finally, based on indicators such as market

capitalization, development activity, daily active addresses and

the number of transactions on chain (Figs. 3-5), we can not

say that Ethereum is better or not. But we can conclude that

Fig. 1 Smart contract structure [5]

Fig. 2 A prototype of smart contracts mechanism

today the most used smart contracts platform in this regard is

Ethereum [26].

III. SMART CONTRACT SECURITY

This section first covers the related work on research

papers and other articles that analyze/identify and provide

an overview of security vulnerabilities in smart contracts.

Moreover, each vulnerability is explained, in order to have

a better understanding of the attacks and incidents that will

be mentioned. This allows us to measure the risks that exist

on smart contracts in order to propose solutions for risk

TABLE I
TOP 5 OF MOST POPULAR SMART CONTRACTS PLATFORM [27]

Platforms Programming languages Runtime Environment
Ethereum Solidity EVM (Ethereum)
EOS C/C++ (compiles to

WASM)
WVM(web assembly
virtual machine)

TRON Solidity TRON Virtual Machine
(TVM)

Cardano Plutus IELE VM/KEVM
Waves Ride JRE

Fig. 3 Smart contracts market cap

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:16, No:5, 2022

135International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
53

7.
pd

f

TABLE II
SMART CONTRACTS PLATFORM STATISTICS [28], [29], [30], [31]

Smart Contracts Market cap Development Activity Daily Active Addresses
Ethereum $19 029 890 302 143,93 238981,03

EOS $271 533 407 83,53 137589,07
TRON $1 006 896 557 31,80 0

Cardano $211 023 781 353,87 No data
Trezo $631 547 290 0 No data
NEO $674 880 181 17,83 No data
NEM $361 491 491 0 No data

Ontology $558 061 960 8.83 No data
VeChain $294 975 765 1,77 0

Qtum $165 701 334 10,27 No data
Algorand $754 758628 26,40 No data

Waves $81 537 817 106,67 No data

Fig. 4 Daily active addresses

Fig. 5 Development activity

management. Secondly, our analysis focuses on security level

evoked in related works and we try to show their limits because

we know that, in safety, the level zero risk does not exist.

A. Smart Contracts’ Vulnerabilities

A vulnerability or flaw is a weakness in a computer system

that allows an attacker to compromise the integrity of that

system, that is, its normal operation, the confidentiality, or the

integrity of the data that it contains [32]. These vulnerabilities

are the result of weaknesses in the design, implementation,

or use of a hardware or software component of the system,

but they are often software anomalies related to programming

errors or bad practices.

Using smart contracts necessarily involves digitising the

entirety of the transaction between the parties, which arguably

exposes them to greater risk of sensitive information being

compromised [33]. The particularity of a smart contract is

to be immutable once deployed. If the correction of smart

contracts is therefore a major lock, it is important to note

that most attacks were caused by bugs or vulnerabilities

of the execution platform [34], the programming language

and the virtual machine [23], [6]. To go beyond a proof of

concept, it will be appropriate to consider the development

of smart contracts with precautions similar to those we take

for the development of critical codes. A platform for critical

applications would, from a technical point of view, need a

verifiable input language as well as a proven compiler chain

and a secure runtime environment. Aware of the security

challenges and the problems encountered on smart contracts,

we will address the following points: Platforms vulnerabilities,

programming languages vulnerabilities and virtual machines

vulnerabilities.

1) Platforms’ vulnerabilities: The objective is to make

an empirical evaluation of vulnerabilities on smart contract

platforms (Table III). The conclusion of Section II-B shows

clearly that Ethereum is the most used platform. Despite its

popularity, surveys in [24], [7][21] show that Ethereum is

the most vulnerable platform (Fig. 6) with its language and

execution environment(EVM).

Ethereum two-version platform: A significant attack on one

of the biggest smart contracts ever deployed, the DAO, led

to notable damage to the idea of immutability and Ethereum

in general. Since, The DAO attack had an enormous negative

impact on Ethereum . However, simply said, a hacker was

able to steal $80 million worth of Ether [35] from a complex

smart contract. As a result, the community was split in

now two platforms, the new Ethereum branch and the old

Ethereum branch now called Ethereum Classic. It is worth

mentioning that these platforms now, function as completely

two separated platforms with their own cryptocurrency and

community. Whereas, Ethereum (the new branch), except

for the disadvantage of not staying true to the notion of

immutability, everything else, such as the exponential growth

and the constant updates and modifications, are considered to

be advantageous [7].

2) Programming Languages’ vulnerabilities: After having

reviewed several articles on smart contracts programming

languages, we realize that even the most experienced

developers are not immune to vulnerabilities. For example

in [23], in November 2017, a developer whilst fixing a

bug that let attackers steal 32 million USD from a few

multi-signature wallets accidentally left a second bug in the

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:16, No:5, 2022

136International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
53

7.
pd

f

Fig. 6 Vulnerability rate in all implemented contracts

Fig. 7 Number of vulnerabilities per year

system that allowed one user to become the sole owner

of every single multi-signature wallet. The above incidents

show that even the most experienced developers can leave

behind security vulnerabilities and bugs that are exploitable

and failure prone. It is important to differentiate vulnerability

defined in Section III and bug. Table IV presents a portrait

of the vulnerabilities and bug related to smart contracts

programming languages.

Despite its high degree of vulnerability, Solidity offers more

advantages than other smart contract programming languages.

Among these advantages, we can mention its compatibility

with other platforms such as Quorum, Wanchain, Aeternity,

Rootstock (RSK), Qtum, DFINITY etc. [27], [36]. We also

can mention the usability of the language which is expressed

with a rate of 80% [23].

3) Virtual Machines’ Vulnerabilities: Virtual Machine is the

run-time environment for smart contracts and its vulnerabilities

may lead to serious problems to the platform ecosystem [43].

With lots of techniques being continuously developed for the

validation of smart contracts, the testing of Virtual Machine

remains challenging because of the special test input format

[44]. Despite the scarcity of virtual machine analysis tools,

some vulnerabilities have been discovered on the Ethereum

virtual machine (EVM) and Webassembly virtual machine

(WAVM). Table V shows the list of vulnerabilities for EVM

and WAVM.

B. Smart Contracts’ Security Level

Computer security is the set of technical, organizational,

legal and human means necessary for the establishment of

means to prevent the unauthorized use, modification or misuse

of the information system [48]. Integrity is defined as the

assurance that information is not altered or modified except

by properly authorized individuals [49]. It is in the wake

of strengthening the security of transactions in the chain

that smart contracts technology has been put in place. These

smart contracts are themselves victims of many vulnerabilities.

Unfortunately in many articles, the security of smart contracts

has not received much attention, although several anecdotal

incidents of smart contracts malfunctioning have recently been

reported, including contracts that do not execute as expected

[50]. Outside the consensus mechanisms, the analysis of

the previous works [51], [52], [53], [54], [55] allows us to

highlight that different security components make it possible

to ensure the resistance to attacks of smart contracts. These

components are grouped into two categories, static checks

and dynamic checks. The static verification is interested in

checking the code before it is executed by the system. The

dynamic verification ensures safety during the execution of

the application [56]. In this subsection we will discuss the

security offered by formal verification, vulnerability detection

and access control.

1) Formal verification methods: Formal methods are

special types of mathematical techniques for the specification,

development and verification of software and hardware

systems [57]. Formal methods are used in the design of

software and hardware. This use is motivated by the hope

that performing an appropriate mathematical analysis can

contribute to the reliability and robustness of a design [58].

A software test is made up of validation and verification.

Validation consists of determining whether the product meets

the requirements and verification consists of verifying whether

or not the product meets specifications [59]. There are several

different methods for formal verification such as structure

checking, type checking, model checking, theorem checking,

etc., each with their own strengths and weaknesses. The most

used in the field of smart contracts are theorem proving

and model checking [56], [14], [54]. So Table VI shows

a comparative study of some formal verification algorithms

proposed in [50], [51], [52], [60], [53], [61], [54].

2) Vulnerabilities’ Detection: The significant or even

catastrophic impact of vulnerabilities or flaws or bugs in a

system has led users to increase their efforts for the definition

of methods and the development of tools for the detection

and elimination of these types of programming errors from

the early stages of software design. Among the techniques

and tools relatively used in the field of blockchain, we can

mention formal methods, verification and validation as well

as static and dynamic code analyzers [26].

Given the immutability of smart contracts, the detection on

intrusion via tools will allow developers to correct flaws in

future smart contracts. Vulnerabilities detection tools cited in

[67], [68], [69], [55], [44], [8], [7] have either static analyzer

characteristics or dynamic analyzer characteristics. Certainly,

vulnerability detection is a very important element in the

security but detection must be accompanied by correction.

Table VIII provides an overview of tools and methods of

analysis.

3) Access Control Mechanism: Access control is a way

to protect security by detecting, preventing unauthorized

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:16, No:5, 2022

137International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
53

7.
pd

f

TABLE III
TAXONOMY OF VULNERABILITIES ON SMART CONTRACTS PLATFORMS [26], [7], [37], [38], [39]

Platform name Vulnerability name Vulnerability Type(s) Published date

Ethereum

Allocation of Resources Without Limits or
Throttling

DoS 2018

NULL Pointer Dereference DoS 2018
Deserialization of Untrusted Data DoS 2019
Out-of-bounds Read DoS+Inf 2018
Out-of-bounds Read DoS 2018
Incorrect Authorization Bypass 2018
Re-entrancy problem The DAO attack 2016
Transaction ordering No Data No data
Block timestamp dependency No Data
Exception handling The DAO attack, Integer Over/Under flow attack, King of

Ether Throne attack
2016

Call stack depth limitation no data no data
Integer overflow/underflow Integer Over/Under flow attack No data
Unchecked and failed send The DAO attack 2016
Destroyable / suicidal contract Parity Multisig Wallet attack No data
Unsecured balance Integer Over/The DAO attack, Parity Multisig Wallet attack 2016
Misuse of ORIGIN no data No data
No restricted write Parity Multisig wallet attack 2017
No restricted transfer ”The DAO attack, Parity Multisig wallet attack” 2016
Non-validated arguments IInteger Over/Under flow attack 2018
Greedy contract Parity Multisig Wallet attack 2017
Prodigal contract The DAO attack 2016
Gas overspent Contract code execution consumes more gas unnecessarily No data

EOS

Improper Restriction of Operations within
the Bounds of a Memory Buffer

Overflow 2018

False Top-Up No data 2019
Numerical Overflow Numerical Overflow 2018
Authorization Check No data 2018
Apply Check No data 2018
Transfer Error Prompt No data 2018
Random Number Practice No data 2018
Rollback Attack No data 2018

TRON
Urgent/11 IP stack 2019
DOS attack by consuming all CPU and
using all available memory

DoS 2019

Cardano fake stake PoS 2018

Qtum
qtum through 0.16 Remote DoS 2019
Block Flood Attack DoS 2019
’Fake Stake’ Attack PoSV3 2019

Waves No data No data No data
NEO Runtime Serialize Calls DoS DoS 2018

access and preventing unauthorized access and allowing

authorized access in an automated system. An access control

mechanism includes hardware or software functionalities,

operating procedures, management procedures and various

combinations of these functionalities [70]. There are two

different types of access control mechanisms: user-based

and host-based. The access control mechanism is based on

two elements: authentication and authorization [64], [71].

Authentication is the process of verifying the identity of

a user by obtaining some kind of credentials and using

these credentials to verify the identity of the user. After the

authentication, the authorization determines the permission

to access on the objects. The access control mechanisms

used by smart contracts [63], [62], [64], [66], [65] are

based on mathematical and cryptographic principles to ensure

confidentiality and integrity of the system. Table VII shows the

analysis done on some papers on access control mechanisms.

IV. DISCUSSION AND OPEN ISSUES

Now that we have talked about smart contracts, their

strengths and security weaknesses, we can discuss some

facts and figures that could guide our reflexion about the

major challenges of blockchain technology, especially smart

contracts [73].The statistics in Section III-A1 show that

Ethereum is one of the most used smart contract platforms.

This thesis is demonstrated by its market capitalization (79%),

by the development activity and the daily activity address rate.

Ethereum popularity can be explained by its compatibility

with other smart contracts programming languages and this

domination gives it a higher average vulnerability rate

(69%).The vulnerability of smart contracts operating on three

levels (platform, virtual machine and programming language)

is a weak link on the security of the blockchain technology.

We are out of 21,270 vulnerable contracts worth a total of

3,088,102 ETH, merely 49 contracts containing Ether may

have been exploited for an amount of 9,066 ETH, which

represents as little as 0.29% of the total amount at stake.

Even if the rate is low, vulnerability always is a gateway for

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:16, No:5, 2022

138International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
53

7.
pd

f

TABLE IV
TAXONOMY OF PROGRAMMING LANGUAGE VULNERABILITIES [8], [40], [41], [42]

Languages Name Vulnerabilities Name Category

Solidity

Constant optimizer subtraction EC recover malformed input

Operational
ExpExponent Cleanup Lopping through externally manipulated mappings or

arrays
Send fails for zero ether Costly loop
Dynamic allocation infinite loop Clean bytes higher order bits
Delegate call return value Event struct wrong data

Functional

Floating point, unchecked division Nested array function call decoder
Overflow/Underflow Public lib functions do not return nested
Gasless send Locked money
Libraries not callable from payable
functions

Owner operations

Optimizer stale knowledge about SHA-3
Race condition Transaction ordering dependence

Security

Ether lost in transfer Transfer forward all gas
Tx.origin Unchecked external call
Identity precompile return ignored Timestamp dependence
False randomness Re-entrancy
External contract referencing Uninitialized storage parameters
Array access clean higher order bits High order byte clean storage
Optimizer clear state on code path join Optimizer state knowledge not reset for jumpdest
Ancient compiler Default visibility

DevelopmentalIncorrect Interface One of two constructors skipped
TypeCast/ Inference Token API violation
Unpredictable state Delegate call Security /

Funtional
constructors with Care Block Timestamp Manipulation

NA
Denial Of Service(DOS) Entropy Illusion
Short Address / Parameter Attack Unchecked CALL Return Values
Floating Points and Numerical Precision

C++

custom dispatcher Dependence of transferring funds

NA
persistent data on RAM remote code execution
Buffer overflows Dangling pointer references
Integer errors Unchecked indirect calls
Denial of service attacks NA

Plutus No Data NA NA
Ride NA NA NA
Liquidity NA NA NA
Sophia NA NA NA
Kotlin NA NA NA

TABLE V
VIRTUAL MACHINE BUGS AND VULNERABILITIES [44], [45], [34], [46], [47]

Virtual Machine CVE-ID/Name Published date Vulnerability type

EVM

CVE-2018-18920 2018-11-03 No Data
CVE-2018-19183 2018-11-11 DoS
CVE-2018-19184 2018-11-11 DoS
CVE-2018-19330 2018-11-17 No Data
CVE-2019-7710 2019-02-10 No Data
CVE-2017-14457 2018-01-19 DoS +Info
Immutable bugs No Data No Data
Ether lost in trasfer No Data No Data
Stack size limit No Data No Data

WAVM

CVE-2018-16770 2018-07-26 DoS
CVE-2018-16769 2018-07-26 DoS
CVE-2018-16768 2018-07-26 DoS Overflow
CVE-2018-16767 2018-07-26 DoS Overflow
CVE-2018-16766 2018-07-26 DoS
CVE-2018-16765 2018-07-26 DoS Overflow
CVE-2018-16764 2018-07-26 DoS

Tron VM No Data No Data No Data
LLVM Stack Clash 2017 DoS
Functional Typed Warded Virtual Machine
(FTWVM)

No Data No Data No Data

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:16, No:5, 2022

139International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
53

7.
pd

f

TABLE VI
COMPARATIVE TABLE ON FORMAL VERIFICATION [14]

Formal model name Verification Method Compatibility Conclusions

F* Framework [53]
Translation and type
checking

Not for all smart contracts,
syntax limitation

Promising if it is expanded to work for more of the syntax.
At the moment, only 46 out of 396 smart contracts were
successfully verified.

Isabelle/HOL Framework [61] Theorem proving
Not for all smart contracts,
syntax limitation

Promising framework for use with a theorem prover, but does
not support all Solidity syntax.

Model-Checking [54] Model checking
Not for all smart contracts,
syntax limitation

Promising approach that also models the blockchain
environment itself. However, the modelling language can not
translate all Solidity syntax.

Formal verification based
on users and blockchain
behaviours models [51]

Model checking

Not for all smart contracts,
mostly relevant to
contracts with human
interaction or influence

Presents a new way to model smart contracts. This method is
applied successfully to a specific contract, but it is uncertain
if it is also applicable to other kinds of contracts.

Validation of DSC Through
Game Theory and Formal
Methods [52]

Model checking

Not for all smart contracts,
mostly relevant to
contracts with human
interaction or influence

The addition of game theory enables the modeling of user
behaviour in smart contracts, and adds a dimension to the
formal verification. However, this approach is only focused
on contracts that require human interaction.

Formal Verication of Deed
Contract in Ethereum Name
Service [60]

Symbolic execution For all smart contracts
This approach proved the existence of security bugs, but
did not formally verify their absence. Out of 19,366 smart
contracts, 8,833 had the vulnerabilities that were tested for.

TABLE VII
OVERVIEW OF SMART CONTRACT ACCESS CONTROL MECHANISM

Mechanisms Types Algorithm-based Model-based
Privacy based decentralized Public Key
Infrastructure (PKI) [62]

authentication PKI User Based

Town Crier (TC): Authenticated Data Feed
system [63]

Authentication / Authorization Mathematical calculation Data Based

Federated Identity Management without Third
Party Authentication Services [64]

Authentication PKI User Based

Role-Based Access Control (RBAC) framework
[65]

Authentication / Authorization Mathematical calculation User and Data Based

Enforcing Private Data Usage Control [1] Authentication / Authorization Mathematical calculation User and Data Based
Multi-Authority Attribute-Based Access Control
[66]

Authentication / Authorization
Mathematical / cryptographic
calculation

User and Data Based

attacks. The aggravating factor of the problem of security is

the immutability [74] of the application of blockchain and to

this is added the phenomenon of the criminal smart contracts.

Many solutions have been proposed for the security

of smart contracts, ranging from better development

environments to better programming languages to formal

verification and symbolic execution, and such tools are

being developed. Advances in smart contract security will

necessarily be layered, incremental, and necessarily dependent

on defense-in-depth. There will be other bugs, and other

lessons will be learned; there will not be a single magic

technology that will solve everything [73]. To solve the

security problem related to smart contracts it is important to

find answers to these questions:

Q1: What are the solutions to correct vulnerabilities on an

already deployed smart contracts?

Certainly the detection of vulnerabilities is of great

importance for future smart contracts, the strong point of

detection is correction. So far there is no deployed smart

contract correction system . So we recommend future work on

the vulnerability correction mechanisms of deployed contracts.

To solve the problem of contracts already deployed, additional

work could be carried out to revolutionize blockchain

technology, that is to say, move to a new version (blockchain

3.0) which will allow us to go from a static state to a

dynamic state of smart contract. This new state of smart

contracts (i.e. dynamic) will make the task easier, it can either

enable the sending of update of vulnerabilities correction of

smart contracts or the evolution of vulnerability detection

tools by integrating the correcting function after detecting

vulnerabilities.

Q2: What technologies are likely to provide answers to the

security problems of blockchain and transactions in general?

In addition, we have briefly discussed security levels on

smart contract systems in general to classify them. Future

project could consist in integrating into the blockchain,

technologies such as artificial intelligence, deep learning or

machine learning [75] and ontology [76].

Q3: Can advances in artificial intelligence be beneficial

to blockchain and cryptocurrencies in terms of data and

transaction security?

So far, cybersecurity systems using artificial intelligence have

proven to be the most effective in protecting blockchain.

V. CONCLUSION

The prime objective of smart contracts is to strengthen

the security of transactions on the blockchain but the fact

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:16, No:5, 2022

140International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
53

7.
pd

f

TABLE VIII
OVERVIEW OF ALL VULNERABILITIES DETECTING TOOLS INDICATING CODE LEVEL, TYPE AND ANALYSIS METHOD [55] [72]

Level Type Analysis method

B
y
te

co
d
e

S
o
li

d
it

y
co

d
e

S
ta

ti
c

an
al

y
si

s

D
y
n
am

ic
an

al
y
si

s

C
o
d
e

in
st

ru
m

en
ta

ti
o
n

S
y
m

b
o
li

c
ex

ec
u
ti

o
n

C
o
n
st

ra
in

t
so

lv
in

g

A
b
st

ra
ct

in
te

rp
re

ta
ti

o
n

H
o
rn

lo
g
ic

M
o
d
el

ch
ec

k
in

g

Tools
contractLarva � � � � � � � � � �
E-EVM � � � � � � � � � �
Erays � � � � � � � � � �
EthIR � � � � � � � � � �
EtherTrust � � � � � � � � � �
FSolidM form.spec � � � � � � � �
KEVM � � � � � � � � � �
MAIAN � � � � � � � � � �
Manticore � � � � � � � � � �
Mythril � � � � � � � � � �
Osiris � � � � � � � � � �
Oyente � � � � � � � � � �
Porosity � � � � � � � � � �
Rattle � � � � � � � � � �
Remix-IDE � � � � � � � � � �
Securify � � � � � � � � � �
SmartCheck � � � � � � � � � �
Solgraph � � � � � � � � � �
SolMet � � � � � � � � � �
Vandal � � � � � � � � � �
Ether � � � � � � � � � �
Gasper � � � � � � � � � �
ReGuard � � � � � � � � � �
SASC � � � � � � � � � �
sCompile � � � � � � � � � �
teEther � � � � � � � � � �
Zeus � � � � � � � � � �

is that smart contracts are often a source of problems. This

survey presents an analysis of the security of smart contracts

by studying the strengths and weaknesses. Our analysis is

done based on academic literature, contribution to Internet

blogs and discussion forums about Smart Contracts, and our

experience on security. The paper highlights that the factor

responsible for weak points in the security of smart contracts

is the vulnerability factor that is the gateway to attacks. In

addition to vulnerabilities, one of the common causes of smart

contracts insecure is the difficulty of detecting inconsistencies

between smart contract behavior and that of criminal smart

contract. Although analysis and verification tools, and method

based on Q-learning to invalidate criminal smart contracts [3]

and the smart contract repairing framework [77] can help in

this direction but are far from solving the problem. We expect

editable smart contracts after deployment and this will make

it easier for us to fix vulnerabilities.

Our future work will focus on setting up an intrusion

detection system. The objective is to propose a consensus

mechanism based on transaction behavior, the principle of

which will be based either on the prototype of attacks linked

to known vulnerabilities or on the normal behavior of a

transaction. The idea is to propose a consensus algorithm

that will prohibit nodes from responding to any transaction

whose prototype is that of an attack or from responding to

any transactions whose behavior is different from the normal

behavior of a smart contract.

REFERENCES

[1] F. Glatz. (2014) What are smart contracts?
https://heckerhut.medium.com/whats-a-smart-contract-in-search-of-a-
consensus-c268c830a8ad.

[2] S. D. Levi and A. B. Lipton, An Introduction to Smart
Contracts and Their Potential and Inherent Limitations, 2018,
https://corpgov.law.harvard.edu/2018/05/26/an-introduction-to-smart-
contracts-and-their-potential-and-inherent-limitations/.

[3] L. Zhang, Y. Wang, F. Li, Y. Hu, and M. H. Au, “A game-theoretic
method based on q-learning to invalidate criminal smart contracts,”
Information Sciences, vol. 498, pp. 144–153, 2019.

[4] H. T. Le, N. T. T. Le, N. N. Phien, and N. Duong-Trung, “Introducing
multi shippers mechanism for decentralized cash on delivery system,”
money, vol. 10, no. 6, 2019.

[5] B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of
smart contract and use cases in blockchain technology,” in 2018
9th International Conference on Computing, Communication and
Networking Technologies (ICCCNT). IEEE, 2018, pp. 1–4.

[6] D. Perez and B. Livshits, “Smart contract vulnerabilities: Does anyone
care?” arXiv preprint arXiv:1902.06710, 2019.

[7] A. Dika, “Ethereum smart contracts: Security vulnerabilities and security
tools,” Master’s thesis, NTNU, 2017.

[8] W. Dingman, A. Cohen, N. Ferrara, A. Lynch, P. Jasinski, P. E.
Black, and L. Deng, “Defects and vulnerabilities in smart contracts,
a classification using the nist bugs framework,” International Journal

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:16, No:5, 2022

141International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
53

7.
pd

f

of Networked and Distributed Computing, vol. 7, no. 3, pp. 121–132,
2019.

[9] J. J. Xu, “Are blockchains immune to all malicious attacks?” Financial
Innovation, vol. 2, no. 1, p. 25, 2016.

[10] R. Modi, Solidity Programming Essentials: A beginner’s guide to build
smart contracts for Ethereum and blockchain. Packt Publishing Ltd,
2018.

[11] Y. Hu, M. Liyanage, A. Mansoor, K. Thilakarathna, G. Jourjon,
A. Seneviratne, and M. Ylianttila, “The use of smart contracts and
challenges,” arXiv preprint arXiv:1810.04699, 2018.

[12] M. Alharby and A. van Moorsel, “Blockchain-based smart contracts: A
systematic mapping study,” arXiv preprint arXiv:1710.06372, 2017.

[13] R. Rawat, R. Chougule, S. Singh, S. Dixit, and G. B.-P. A. Kadam,
“Smart contracts using blockchain,” International Research Journal of
Engineering and Technology (IRJET), 2019.

[14] Y. Murray and D. A. Anisi, “Survey of formal verification methods
for smart contracts on blockchain,” in 2019 10th IFIP International
Conference on New Technologies, Mobility and Security (NTMS). IEEE,
2019, pp. 1–6.

[15] C. Dannen, Introducing Ethereum and Solidity. Springer, 2017.
[16] M. N. Temte, “Blockchain challenges traditional contract law: Just how

smart are smart contracts,” Wyo. L. Rev., vol. 19, p. 87, 2019.
[17] A. Bahga and V. K. Madisetti, “Blockchain platform for industrial

internet of things,” Journal of Software Engineering and Applications,
vol. 9, no. 10, p. 533, 2016.

[18] T. Sameeh. (2018) An overview of the most
reliable cryptocurrency smart contract platforms.
https://www.cointelligence.com/content/smart-contract-platforms-guide/.

[19] Kryptographe. (2018) Which are the top 5
smart blockchain based smart contract platforms?
https://www.kryptographe.com/top-5-smart-blockchain-based-smart-
contract-platforms/.

[20] R. Jackson. (2019) The top 5 smart contract development platforms.
https://hackernoon.com/top-5-smart-contract-platforms-to-check-out-in-
2019-1igc3w1m.

[21] A. Davies. (2019) 5 best smart contract platforms for
2019. https://www.devteam.space/blog/5-best-smart-contract-
platforms-for-2019/.

[22] N. Myers. (2019) The essential list of smart contract platform resources.
https://www.freestartupkits.com/articles/technology/coding/the-essential-
list-of-smart//-contract-platforms/.

[23] R. M. Parizi, A. Dehghantanha et al., “Smart contract programming
languages on blockchains: An empirical evaluation of usability and
security,” in International Conference on Blockchain. Springer, 2018,
pp. 75–91.

[24] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, p. 37, 2014.

[25] Techopedia. (2019) Runtime environment (rte).
https://www.techopedia.com/definition/5466/runtime-environment-rte.

[26] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, “Security analysis
methods on ethereum smart contract vulnerabilities: A survey,” arXiv
preprint arXiv:1908.08605, 2019.

[27] S. Rouhani and R. Deters, “Security, performance, and applications
of smart contracts: A systematic survey,” IEEE Access, vol. 7, pp.
50 759–50 779, 2019.

[28] K. Kovalenko. (2019) Investing in smart contract platforms.
https://www.blog.nomics.com/essays/investing-in-smart-contract-platforms/
platform-usage.

[29] Sanbase. (2019) All assets. https://https://www.app.santiment.net/assets/all/.
[30] T. Sameeh. (2019) Dapps statistics.

https://www.stateofthedapps.com/stats/platform/ethereum/new/.
[31] M. brings transparency. (2019) Dapps statistics.

https://messari.io/screener.
[32] M. Academic. (2020 (accessed 2020)) Vulnerability (computing).

https://academic.microsoft.com/.
[33] M. Giancaspro, “Is a ’smart contract’really a smart idea? insights from

a legal perspective,” Computer law & security review, vol. 33, no. 6, pp.
825–835, 2017.

[34] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International Conference on Principles of
Security and Trust. Springer, 2017, pp. 164–186.

[35] K. Chatterjee, A. K. Goharshady, and Y. Velner, “Quantitative analysis of
smart contracts,” in European Symposium on Programming. Springer,
Cham, 2018, pp. 739–767.

[36] V. Saini. (2018) Contractpedia: An
encyclopedia of 40+ smart contract platforms.

https://hackernoon.com/contractpedia-an-encyclopedia-of-40-smart-
contract-platforms-4867f66da1e5.

[37] C. Details. (2019) The ultimate security vulnerability datasource.
https://www.cvedetails.com/vulnerability-list.php/.

[38] M. Gogan. (2018) Smart contract security: What are
the weak spots of ethereum, eos, and neo networks?
https://www.technative.io/smart-contract-security-what-are-the-weak-
spots-of-ethereum-eos-and-neo-networks/.

[39] K. Jing. (2019) Eos smart contract development security best practices.
https://github.com/slowmist/eos-smart-contract-security-best-practices/
blob/master/.

[40] NIST. (2019) The bugs framework (bf).
https://samate.nist.gov/BF/Classes/KMN.html.

[41] Github. (2018) Comprehensive list of known
attack vectors and common anti-patterns.
https://github.com/sigp/solidity-security-blog/precision-vuln.

[42] F. Junis, F. M. W. Prasetya, F. I. Lubay, and A. K. Sari, “A
revisit on blockchain-based smart contract technology,” arXiv preprint
arXiv:1907.09199, 2019.

[43] Y. Fu, M. Ren, F. Ma, Y. Jiang, H. Shi, and J. Sun, “Evmfuzz:
Differential fuzz testing of ethereum virtual machine,” arXiv preprint
arXiv:1903.08483, 2019.

[44] Y. Fu, M. Ren, F. Ma, H. Shi, X. Yang, Y. Jiang, H. Li, and X. Shi,
“Evmfuzzer: detect evm vulnerabilities via fuzz testing,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
ACM, 2019, pp. 1110–1114.

[45] C. Details. (2018) Webassembly virtual machine project : Security
vulnerabilities. https://www.cvedetails.com/vulnerability-list/.

[46] M. Larabel. (2019) Llvm stack clash compiler protection is under review.
https://www.phoronix.com/.

[47] S. blog. (2017 (accessed december 14, 2019))
Decentralized application security project.
https://steemit.com/blockchain/@aetrnty/aeternity-s-smart-contracts.

[48] D. Schatz, R. Bashroush, and J. Wall, “Towards a more representative
definition of cyber security,” Journal of Digital Forensics, Security and
Law, vol. 12, no. 2, pp. 53–74, 2017.

[49] G. O. Karame and E. Androulaki, Bitcoin and blockchain security.
Artech House, 2016.

[50] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. ACM, 2016, pp. 254–269.

[51] T. Abdellatif and K.-L. Brousmiche, “Formal verification of smart
contracts based on users and blockchain behaviors models,” in 2018
9th IFIP International Conference on New Technologies, Mobility and
Security (NTMS). IEEE, 2018, pp. 1–5.

[52] G. Bigi, A. Bracciali, G. Meacci, and E. Tuosto, “Validation of
decentralised smart contracts through game theory and formal methods,”
in Programming Languages with Applications to Biology and Security.
Springer, 2015, pp. 142–161.

[53] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, A. Rastogi, T. Sibut-Pinote, N. Swamy,
and S. Zanella-Béguelin, “Short paper: Formal verification of smart
contracts,” in Proceedings of the 11th ACM Workshop on Programming
Languages and Analysis for Security (PLAS), in conjunction with ACM
CCS, 2016, pp. 91–96.

[54] Z. Nehai, P.-Y. Piriou, and F. Daumas, “Model-checking of smart
contracts,” in 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData). IEEE, 2018, pp. 980–987.

[55] M. Di Angelo and G. Salzer, “A survey of tools for analyzing
ethereum smart contracts,” in 2019 IEEE International Conference on
Decentralized Applications and Infrastructures (DAPPCON). IEEE,
2019.

[56] J.-L. Lanet, “Détection de vulnérabilités appliquéea la vérification de
code intermédiaire de java card,” Ph.D. dissertation, UNIVERSITÉ DE
LIMOGES, 2016.

[57] NASA. (2020) What is formal methods?
https://shemesh.larc.nasa.gov/fm/fm-what.html.

[58] C. M. Holloway, “Why engineers should consider formal methods,” in
16th DASC. AIAA/IEEE digital avionics systems conference. Reflections
to the future. Proceedings, vol. 1. IEEE, 1997, pp. 1–3.

[59] B. CURRAN, How Formal Verification Can Reduce
Bugs & Vulnerabilities in Smart Contracts, 2018,
https://blockonomi.com/formal-verification-smart-contracts/.

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:16, No:5, 2022

142International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
53

7.
pd

f

[60] Y. Hirai, “Formal verification of deed contract in ethereum
name service,” November-2016.[Online]. Available: https://yoichihirai.
com/deed. pdf, 2016.

[61] S. Amani, M. Bégel, M. Bortin, and M. Staples, “Towards verifying
ethereum smart contract bytecode in isabelle/hol,” in Proceedings of the
7th ACM SIGPLAN International Conference on Certified Programs and
Proofs. ACM, 2018, pp. 66–77.

[62] P. Sivakumar and K. Singh, “Privacy based decentralized public key
infrastructure (pki) implementation using smart contract in blockchain,”
technical report, 2018.

[63] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” in Proceedings of the 2016
aCM sIGSAC conference on computer and communications security.
ACM, 2016, pp. 270–282.

[64] P. Mell, J. Dray, and J. Shook, “Smart contract federated identity
management without third party authentication services,” arXiv preprint
arXiv:1906.11057, 2019.

[65] J. P. Cruz, Y. Kaji, and N. Yanai, “Rbac-sc: Role-based access control
using smart contract,” IEEE Access, vol. 6, pp. 12 240–12 251, 2018.

[66] H. Guo, E. Meamari, and C.-C. Shen, “Multi-authority attribute-based
access control with smart contract,” in Proceedings of the 2019
International Conference on Blockchain Technology. ACM, 2019, pp.
6–11.

[67] R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, and A. Singh, “Empirical
vulnerability analysis of automated smart contracts security testing
on blockchains,” in Proceedings of the 28th Annual International
Conference on Computer Science and Software Engineering. IBM
Corp., 2018, pp. 103–113.

[68] H. Wang, Y. Li, S.-W. Lin, L. Ma, and Y. Liu, “Vultron: catching
vulnerable smart contracts once and for all,” in Proceedings of the
41st International Conference on Software Engineering: New Ideas and
Emerging Results. IEEE Press, 2019, pp. 1–4.

[69] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 259–269.

[70] USLegal, Access Control Mechanism National
Security Law and Legal Definition, 2019,
https://definitions.uslegal.com/a/access-control-mechanism-national-security/.

[71] M. Thakur et al., “Authentication, authorization and accounting with
ethereum blockchain,” Master’s thesis, Helsingfors universitet, 2017.

[72] A. Dika and M. Nowostawski, “Security vulnerabilities in ethereum
smart contracts,” in 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData). IEEE, 2018, pp.
955–962.

[73] V. Buterin. (2016) Thinking about smart contract security.
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/.

[74] W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng, Z. Chen,
and B. Xu, “Smart contract development: Challenges and opportunities,”
IEEE Transactions on Software Engineering, 2019.

[75] F. Scicchitano, A. Liguori, M. Guarascio, E. Ritacco, and G. Manco, “A
deep learning approach for detecting security attacks on blockchain.” in
ITASEC, 2020, pp. 212–222.

[76] H. M. Kim, M. Laskowski, and N. Nan, “A first step in the
co-evolution of blockchain and ontologies: Towards engineering an
ontology of governance at the blockchain protocol level,” arXiv preprint
arXiv:1801.02027, 2018.

[77] L. Y. XIAO, A.-B. OMAR, L. DAVID, and R. ABHIK, “Smart contract
repair,” arXiv preprint arXiv:1912.05823v1, 2019.

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:16, No:5, 2022

143International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
53

7.
pd

f

