Search results for: temperature effect.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6356

Search results for: temperature effect.

6146 Determination of Temperature and Velocity Fields in a Corridor at a Central Interim Spent Fuel Storage Facility Using Numerical Simulation

Authors: V. Salajka, J. Kala, P. Hradil

Abstract:

The presented article deals with the description of a numerical model of a corridor at a Central Interim Spent Fuel Storage Facility (hereinafter CISFSF). The model takes into account the effect of air flows on the temperature of stored waste. The computational model was implemented in the ANSYS/CFX programming environment in the form of a CFD task solution, which was compared with an approximate analytical calculation. The article includes a categorization of the individual alternatives for the ventilation of such underground systems. The aim was to evaluate a ventilation system for a CISFSF with regard to its stability and capacity to provide sufficient ventilation for the removal of heat produced by stored casks with spent nuclear fuel.

Keywords: Temperature fields, Spent Fuel, Interim storage facility, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
6145 3D Numerical Simulation on Annular Diffuser Temperature Distribution Enhancement by Different Twist Arrangement

Authors: Ehan Sabah Shukri, Wirachman Wisnoe

Abstract:

The influence of twist arrangement on the temperature distribution in an annular diffuser fitted with twisted rectangular hub is investigated. Different pitches (Y = 120 mm, 100 mm, 80 mm, and 60 mm) for the twist arrangements are simulated to be compared. The geometry of the annular diffuser and the inlet condition for the hub arrangements are kept constant. The result reveals that using twisted rectangular hub insert with different pitches will force the temperature to distribute in a circular direction. However, temperature distribution will be enhanced with the length pitch increases.

Keywords: Numerical simulation, twist arrangement, annular diffuser, temperature distribution, swirl flow, pitches.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
6144 Controlling Water Temperature during the Electrocoagulation Process Using an Innovative Flow Column-Electrocoagulation Reactor

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, Montserrat Ortoneda Pedrola

Abstract:

A flow column has been innovatively used in the design of a new electrocoagulation reactor (ECR1) that will reduce the temperature of water being treated; where the flow columns work as a radiator for the water being treated. In order to investigate the performance of ECR1 and compare it to that of traditional reactors; 600 mL water samples with an initial temperature of 350C were pumped continuously through these reactors for 30 min at current density of 1 mA/cm2. The temperature of water being treated was measured at 5 minutes intervals over a 30 minutes period using a thermometer. Additional experiments were commenced to investigate the effects of initial temperature (15-350C), water conductivity (0.15 – 1.2 S) and current density (0.5 -3 mA/cm2) on the performance of ECR1. The results obtained demonstrated that the ECR1, at a current density of 1 mA/cm2 and continuous flow model, reduced water temperature from 350C to the vicinity of 280C during the first 15 minutes and kept the same level till the end of the treatment time. While, the temperature increased from 28.1 to 29.80C and from 29.8 to 31.90C in the batch and the traditional continuous flow models respectively. In term of initial temperature, ECR1 maintained the temperature of water being treated within the range of 22 to 280C without the need for external cooling system even when the initial temperatures varied over a wide range (15 to 350C). The influent water conductivity was found to be a significant variable that affect the temperature. The desirable value of water conductivity is 0.6 S. However, it was found that the water temperature increased rapidly with a higher current density.

Keywords: Water temperature, flow column, electrocoagulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350
6143 Study of Aero-thermal Effects with Heat Radiation in Optical Side Window

Authors: Chun-Chi Li, Da-Wei Huang, Yin-Chia Su, Liang-Chih Tasi

Abstract:

In hypersonic environments, the aerothermal effect makes it difficult for the optical side windows of optical guided missiles to withstand high heat. This produces cracking or breaking, resulting in an inability to function. This study used computational fluid mechanics to investigate the external cooling jet conditions of optical side windows. The turbulent models k-ε and k-ω were simulated. To be in better accord with actual aerothermal environments, a thermal radiation model was added to examine suitable amounts of external coolants and the optical window problems of aero-thermodynamics. The simulation results indicate that when there are no external cooling jets, because airflow on the optical window and the tail groove produce vortices, the temperatures in these two locations reach a peak of approximately 1600 K. When the external cooling jets worked at 0.15 kg/s, the surface temperature of the optical windows dropped to approximately 280 K. When adding thermal radiation conditions, because heat flux dissipation was faster, the surface temperature of the optical windows fell from 280 K to approximately 260 K. The difference in influence of the different turbulence models k-ε and k-ω on optical window surface temperature was not significant.

Keywords: aero-optical side window, aerothermal effect, cooling, hypersonic flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3116
6142 Thermophoresis Particle Precipitate on Heated Surfaces

Authors: Rebhi A. Damseh, H. M. Duwairi, Benbella A. Shannak

Abstract:

This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favorable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.

Keywords: Thermophoresis, porous medium, variable surface heat flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
6141 Effect of Gold Loading on CeO2–Fe2O3 for Oxidative Steam Reforming of Methanol

Authors: Umpawan Satitthai, Apanee Luengnaruemitchai, Erdogan Gulari

Abstract:

In this study, oxidative steam reforming of methanol (OSRM) over a Au/CeO2–Fe2O3 catalyst prepared by a depositionprecipitation (DP) method was studied to produce hydrogen in order to feed a Proton Exchange Membrane Fuel Cell (PEMFC). The support (CeO2, Fe2O3, and CeO2–Fe2O3) were prepared by precipitation and co-precipitation methods. The impact of the support composition on the catalytic performance was studied by varying the Ce/(Ce+Fe) atomic ratio, it was found that the 1%Au/CF(0.25) calcined at 300 °C exhibited the highest catalytic activity in the whole temperature studied. In addition, the effect of Au content was investigated and 3%Au/CF(0.25) exhibited the highest activity under the optimum condition in the temperature range of 200 °C to 400 °C. The catalysts were characterized by various techniques: XRD, TPR, XRF, and UV-vis.

Keywords: CeO2, Fe2O3, Gold catalyst, Hydrogen production, Methanol, Oxidative steam reforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
6140 Effect of Sewing Speed on the Physical Properties of Firefighter Sewing Threads

Authors: Adnan Mazari, Engin Akcagun, Antonin Havelka, Funda Buyuk Mazari, Pavel Kejzlar

Abstract:

This article experimentally investigates various physical properties of special fire retardant sewing threads under different sewing speeds. The aramid threads are common for sewing the fire-fighter clothing due to high strength and high melting temperature. 3 types of aramid threads with different linear densities are used for sewing at different speed of 2000 to 4000 r/min. The needle temperature is measured at different speeds of sewing and tensile properties of threads are measured before and after the sewing process respectively. The results shows that the friction and abrasion during the sewing process causes a significant loss to the tensile properties of the threads and needle temperature rises to nearly 300oC at 4000 r/min of machine speed. The Scanning electron microscope images are taken before and after the sewing process and shows no melting spots but significant damage to the yarn. It is also found that machine speed of 2000r/min is ideal for sewing firefighter clothing for higher tensile properties and production.

Keywords: Kevlar, needle temperature, Nomex, sewing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
6139 Hydrogen Production from Dehydrogenation of Ethanol over Ag-Based Catalysts

Authors: S. Totong, K. Faungnawakij, N. Laosiripojana

Abstract:

The development of alternative energy is interesting in the present especially, hydrogen production because it is an important energy resource in the future. This paper studied the hydrogen production from catalytic dehydrogenation of ethanol through via low temperature (<500°C) reaction. Copper (Cu) and silver (Ag) supported on fumed silica (SiO2) were selected in the present work; in addition, bimetallic material; Ag-Cu supported on SiO2 was also investigated. The catalysts were prepared by the incipient wetness impregnation method and characterized via X-ray diffraction (XRD), temperature-programmed reduction (TPR)and nitrogen adsorption measurements. The catalytic dehydrogenation of ethanol was carried out in a fixed bed continuous flow reactor at atmospheric pressure. The effect of reaction temperature between 300-375°C was studied in order to maximize the hydrogen yield. It was found that Ag-Cu/SiO2 exhibited the highest hydrogen yield compared to Ag/SiO2 and Cu/SiO2 at low reaction temperature (300°C) with full ethanol conversion. The highest hydrogen yield observed was 40% and will be further used as a reactant in fuel cells to generate electricity or feedstock of chemical production. 

Keywords: Catalyst, dehydrogenation, ethanol, hydrogen production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3519
6138 Application of Phase Change Materials (PCMs) in Maintaining Comfort Temperature inside an Automobile

Authors: A. Jamekhorshid, S. M. Sadrameli

Abstract:

This paper presents the modeling results of an innovative system for the temperature control in the interior compartment of a stationary automobile facing the solar energy from the sun. A very thin layer of PCM inside a pouch placed in the ceiling of the car in which the heating energy is absorbed and release with melting and solidification of phase change materials. As a result the temperature of the car interior is maintained in the comfort condition. The amount of required PCM has been calculated to be about 755 g. The PCM-temperature controlling system is simple and has a potential to be implemented as a practical solution to prevent undesirable heating of the automobile-s cabin.

Keywords: Phase Change Material (PCM), automobile's cabin, temperature control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4139
6137 Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect

Authors: B. Akturk, N. Yuzer, N. Kabay

Abstract:

High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH, as a sustainable material, instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined.

Keywords: High temperature, high strength concrete, polypropylene fiber, raw rice husk, thermo-physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
6136 Increase of Heat Index over Bangladesh: Impact of Climate Change

Authors: Mohammad Adnan Rajib, Md.Rubayet Mortuza, Saranah Selmi, Asif Khan Ankur, Md. Mujibur Rahman

Abstract:

Heat Index describes the combined effect of temperature and humidity on human body. This combined effect is causing a serious threat to the health of people because of the changing climate. With climate change, climate variability and thus the occurrence of heat waves is likely to increase. Evidence is emerging from the analysis of long-term climate records of an increase in the frequency and duration of extreme temperature events in all over Bangladesh particularly during summer. Summer season has prolonged while winters have become short in Bangladesh. Summers have become hotter and thus affecting the lives of the people engaged in outdoor activities during scorching sun hours. In 2003 around 62 people died due to heat wave across the country. In this paper Bangladesh is divided in four regions and heat index has been calculated from 1960 to 2010 in these regions of the country. The aim of this paper is to identify the spots most vulnerable to heat strokes and heat waves due to high heat index. The results show upward trend of heat index in almost all the regions of Bangladesh. The highest increase in heat index value has been observed in areas of South-west region and North-west Region. The highest change in average heat index has been found in Jessore by almost 5.50C.

Keywords: Anomaly, Heat index, Relative humidity, Temperature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3022
6135 Effect of Applied Voltage Frequency on Electrical Treeing in 22 kV Cross-linked Polyethylene Insulated Cable

Authors: R. Thiamsri, N. Ruangkajonmathee, A. Oonsivilaiand B. Marungsri

Abstract:

This paper presents the experimental results on effect of applied voltage stress frequency to the occurrence of electrical treeing in 22 kV cross linked polyethylene (XLPE) insulated cable.Hallow disk of XLPE insulating material with thickness 5 mm taken from unused high voltage cable was used as the specimen in this study. Stainless steel needle was inserted gradually into the specimen to give a tip to earth plane electrode separation of 2.50.2 mm at elevated temperature 105-110°C. The specimen was then annealed for 5 minute to minimize any mechanical stress build up around the needle-plane region before it was cooled down to room temperature. Each specimen were subjected to the same applied voltage stress level at 8 kV AC rms, with various frequency, 50, 100, 500, 1000 and 2000 Hz. Initiation time, propagation speed and pattern of electrical treeing were examined in order to study the effect of applied voltage stress frequency. By the experimental results, initial time of visible treeing decreases with increasing in applied voltage frequency. Also, obviously, propagation speed of electrical treeing increases with increasing in applied voltage frequency.Furthermore, two types of electrical treeing, bush-like and branch-like treeing were observed.The experimental results confirmed the effect of voltage stress frequency as well.

Keywords: Voltage stress frequency, cross-linked polyethylene, electrical treeing, treeing propagation, treeing pattern

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
6134 The Effect of Molybdate on Corrosion Behaviour of AISI 316Ti Stainless Steel in Chloride Environment

Authors: Viera Zatkalíková, Lenka Markovičová, Aneta Tor-Swiatek

Abstract:

The effect of molybdate addition to chloride environment on resistance of AISI 316Ti stainless steel to pitting corrosion was studied. Potentiodynamic polarisation tests were performed in 1 M and 0.1 M chloride acidified solutions with various additions of sodium molybdate at room temperature. The presented results compare the effect of molybdate anions on quality of passive film (expressed by the pitting potential) in both chloride solutions. The pitting potential increases with the increase inhibitor concentration. The inhibitive effect of molybdate ions is stronger in chloride solution of lower aggressiveness (0.1M).

Keywords: AISI 316Ti steel, molybdate inhibitor, pitting corrosion, pitting potential, potentiodynamic polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
6133 Elasto-Visco-Plastic-Damage Model for Pre-Strained 304L Stainless Steel Subjected to Low Temperature

Authors: Jeong-Hyeon Kim, Ki-Yeob Kang, Myung-Hyun Kim, Jae-Myung Lee

Abstract:

Primary barrier of membrane type LNG containment system consist of corrugated 304L stainless steel. This 304L stainless steel is austenitic stainless steel which shows different material behaviors owing to phase transformation during the plastic work. Even though corrugated primary barriers are subjected to significant amounts of pre-strain due to press working, quantitative mechanical behavior on the effect of pre-straining at cryogenic temperatures are not available. In this study, pre-strain level and pre-strain temperature dependent tensile tests are carried to investigate mechanical behaviors. Also, constitutive equations with material parameters are suggested for a verification study.

Keywords: Constitutive equation, corrugated sheet, pre-strain effect, elasto-visco-plastic-damage model, 304L stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
6132 Design and Analysis of a Solar Refrigeration System with a Rotating Generator

Authors: K. Bouhadef, S. Chikh, A. Boumedien, A. Benabdesselam

Abstract:

A solar refrigeration system based on the adsorptiondesorption phenomena is designed and analyzed. An annular tubular generator filled with silica gel adsorbent and with a perforated inner cylinder is integrated within a flat solar collector. The working fluid in the refrigeration cycle is water. The thermodynamic analysis and because of the temperature level that could be attained with a flat solar collector it is required that the system operates under vacuum conditions. In order to enhance the performance of the system and to get uniform temperature in the silica gel and higher desorbed mass, an apparatus for rotation of the generator is incorporated in the system. Testing is carried out and measurements are taken on the designed installation. The effect of rotation is checked on the temperature distribution and on the performance of this machine and compared to the flat solar collector with fixed generator.

Keywords: Refrigeration cycle, solar energy, rotating collector, adsorption, silica gel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
6131 Thermo-Mechanical Characterization of MWCNTs-Modified Epoxy Resin

Authors: M. Dehghan, R. Al-Mahaidi, I. Sbarski

Abstract:

An industrial epoxy adhesive used in Carbon Fiber Reinforced Polymer (CFRP) strengthening systems was modified by dispersing multi-walled carbon nanotubes (MWCNTs). Nanocomposites were fabricated using the solvent-assisted dispersion method and ultrasonic mixing. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and tensile tests were conducted to study the effect of nanotubes dispersion on the thermal and mechanical properties of the epoxy composite. Experimental results showed a substantial enhancement in the decomposition temperature and tensile properties of epoxy composite, while, the glass transition temperature (Tg) was slightly reduced due to the solvent effect. The morphology of the epoxy nanocomposites was investigated by SEM. It was proved that using solvent improves the nanotubes dispersion. However, at contents higher than 2 wt. %, nanotubes started to re-bundle in the epoxy matrix which negatively affected the final properties of epoxy composite.

Keywords: Carbon Fiber Reinforced Polymer, Epoxy, Multi-Walled Carbon Nanotube, Glass Transition Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3355
6130 Estimation of the Spent Fuel Pool Water Temperature at a Loss-of-Pool-Cooling Accident

Authors: Chan Hee Park, Arim Lee, Jung Min Lee, Joo Hyun Moon

Abstract:

Accident in spent fuel pool (SFP) of Fukushima Daiichi Unit 4 showed the importance of continuous monitoring of the key environmental parameters such as water temperature, water level, and radiation level in the SFP at accident conditions. Because the SFP water temperature is one of the key parameters indicating SFP conditions, its behavior at accident conditions shall be understood to prepare appropriate measures. This study estimated temporal change in the SFP water temperature at Kori Unit 1 with 587 MWe for 1 hour after initiation of a loss-of-pool-cooling accident. For the estimation, ANSYS CFX 13.0 code was used. The estimation showed that the increasing rate of the water temperature was 3.90C per hour and the SFP water temperature could reach 1000C in 25.6 hours after the initiation of loss-of-pool-cooling accident.

Keywords: Spent fuel pool, water temperature, Kori Unit 1, a loss-of-pool-cooling accident.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
6129 Anomalous Thermal Behavior of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) for LTCC Substrate

Authors: Jyotirmayee Satapathy, M. V. Ramana Reddy

Abstract:

LTCC (Low Temperature Co-fired Ceramics) being the most advantageous technology towards the multilayer substrates for various applications, demands an extensive study of its raw materials. In the present work, a series of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) has been prepared using sol-gel synthesis route and sintered at a temperature of 900°C to study its applicability for LTCC technology as the firing temperature is 900°C in this technology. The phase formation has been confirmed using X-ray Diffraction. Thermal properties like thermal conductivity and thermal expansion being very important aspect as the former defines the heat flow to avoid thermal instability in layers and the later provides the dimensional congruency of the dielectric material and the conductors, are studied here over high temperature up to the firing temperature. Although the values are quite satisfactory from substrate requirement point view, results have shown anomaly over temperature. The anomalous thermal behavior has been further analyzed using TG-DTA.

Keywords: Niobates, LTCC, Thermal conductivity, Thermal expansion, TG-DTA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
6128 Sous Vide Packaging Technology Application for Salad with Meat in Mayonnaise Shelf Life Extension

Authors: Vita Levkane, Sandra Muizniece-Brasava, Lija Dukalska

Abstract:

Experiments have been carried out at the Latvia University of Agriculture Department of Food Technology. The aim of this work was to assess the effect of sous vide packaging during the storage time of salad with meat in mayonnaise at different storage temperature. Samples were evaluated at 0, 1, 3, 7, 10, 15, 18, 25, 29, 42, and 52 storage days at the storage temperature of +4±0.5 ºC and +10±0.5 ºC. Experimentally the quality of the salad with meat in mayonnaise was characterized by measuring colour, pH and microbiological properties. The sous vide packaging was effective in protecting the product from physical, chemical, and microbial quality degradation. The sous vide packaging significantly reduces microbial growth at storage temperature of +4±0.5 ºC and +10±0.5 ºC. Moreover, it is possible to extend the product shelf life to 52 days even when stored at +10±0.5 ºC.

Keywords: salad with meat in mayonnaise, shelf life, sous videpackaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
6127 Pyrolysis of Rice Husk in a Fixed Bed Reactor

Authors: Natarajan. E, Ganapathy Sundaram. E

Abstract:

Fixed-bed slow pyrolysis experiments of rice husk have been conducted to determine the effect of pyrolysis temperature, heating rate, particle size and reactor length on the pyrolysis product yields. Pyrolysis experiments were performed at pyrolysis temperature between 400 and 600°C with a constant heating rate of 60°C/min and particle sizes of 0.60-1.18 mm. The optimum process conditions for maximum liquid yield from the rice husk pyrolysis in a fixed bed reactor were also identified. The highest liquid yield was obtained at a pyrolysis temperature of 500°C, particle size of 1.18-1.80 mm, with a heating rate of 60°C/min in a 300 mm length reactor. The obtained yield of, liquid, gas and solid were found be in the range of 22.57-31.78 %, 27.75-42.26 % and 34.17-42.52 % (all weight basics) respectively at different pyrolysis conditions. The results indicate that the effects of pyrolysis temperature and particle size on the pyrolysis yield are more significant than that of heating rate and reactor length. The functional groups and chemical compositions present in the liquid obtained at optimum conditions were identified by Fourier Transform-Infrared (FT-IR) spectroscopy and Gas Chromatography/ Mass Spectroscopy (GC/MS) analysis respectively.

Keywords: Slow pyrolysis, Rice husk, Recycling, Biomass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3915
6126 Improving the Optoacoustic Signal by Monitoring the Changes of Coupling Medium

Authors: P. Prasannakumar, L. Myoung Young, G. Seung Kye, P. Sang Hun, S. Chul Gyu

Abstract:

In this paper, we discussed the coupling medium in the optoacoustic imaging. The coupling medium is placed between the scanned object and the ultrasound transducers. Water with varying temperature was used as the coupling medium. The water temperature is gradually varied between 25 to 40 degrees. This heating process is taken with care in order to avoid the bubble formation. Rise in the photoacoustic signal is noted through an unfocused transducer with frequency of 2.25 MHz as the temperature increases. The temperature rise is monitored using a NTC thermistor and the values in degrees are calculated using an embedded evaluation kit. Also the temperature is transmitted to PC through a serial communication. All these processes are synchronized using a trigger signal from the laser source.

Keywords: Embedded, optoacoustic, ultrasound, unfocused transducer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717
6125 Investigation of Temperature-Dependent Electrical Properties of Tc-CuPc: PCBM Bulk Heterojunction (BHJ) under Dark Conditions

Authors: Shahid M. Khan, Muhammad H. Sayyad

Abstract:

An organic bulk heterojunction (BHJ) was fabricated using a blended film containing Copper (II) tetrakis(4-acumylphenoxy) phthalocyanine (Tc-CuPc) along with [6,6]-Phenyl C61 butyric acid methyl ester (PCBM). Weight ratio between Tc-CuPc and PCBM was 1:1. The electrical properties of Tc-CuPc: PCBM BHJ were examined. Rectifying nature of the BHJ was displayed by current-voltage (I-V) curves, recorded in dark and at various temperatures. At low voltages, conduction was ohmic succeeded by space-charge limiting current (SCLC) conduction at higher voltages in which exponential trap distribution was dominant. Series resistance, shunt resistance, ideality factor, effective barrier height and mobility at room temperature were found to be 526 4, 482 k4, 3.7, 0.17 eV and 2×10-7 cm2V-1s-1 respectively. Temperature effect towards different BHJ parameters was observed under dark condition.

Keywords: Bulk heterojunction, PCBM, phthalocyanine, spin coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
6124 Effect of Operating Conditions on Forward Osmosis for Nutrient Rejection Using Magnesium Chloride as a Draw Solution

Authors: Yatnanta Padma Devia, Tsuyoshi Imai, Takaya Higuchi, Ariyo Kanno, Koichi Yamamoto, Masahiko Sekine

Abstract:

Advanced treatments such as forward osmosis (FO) can be used to separate or reject nutrients from secondary treated effluents. Forward osmosis uses the chemical potential across the membrane, which is the osmotic pressure gradient, to induce water to flow through the membrane from a feed solution (FS) into a draw solution (DS). The performance of FO is affected by the membrane characteristics, composition of the FS and DS, and operating conditions. The aim of this study was to investigate the optimum velocity and temperature for nutrient rejection and water flux performance in FO treatments. MgCl2 was used as the DS in the FO process. The results showed that higher cross flow velocities yielded higher water fluxes. High rejection of nutrients was achieved by using a moderate cross flow velocity at 0.25 m/s. Nutrient rejection was insensitive to temperature variation, whereas water flux was significantly impacted by it. A temperature of 25°C was found to be good for nutrient rejection.

Keywords: Cross flow velocity, forward osmosis, magnesium chloride, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2677
6123 The Effect of Electric Field Distributions on Grains and Insect for Dielectric Heating Applications

Authors: S. Santalunai, T. Thosdeekoraphat, C. Thongsopa

Abstract:

This paper presents the effect of electric field distribution which is an electric field intensity analysis. Consideration of the dielectric heating of grains and insects, the rice and rice weevils are utilized for dielectric heating analysis. Furthermore, this analysis compares the effect of electric field distribution in rice and rice weevil. In this simulation, two copper plates are used to generate the electric field for dielectric heating system and put the rice materials between the copper plates. The simulation is classified in two cases, which are case I one rice weevil is placed in the rice and case II two rice weevils are placed at different position in the rice. Moreover, the probes are located in various different positions on plate. The power feeding on this plate is optimized by using CST EM studio program of 1000 watt electrical power at 39 MHz resonance frequency. The results of two cases are indicated that the most electric field distribution and intensity are occurred on the rice and rice weevils at the near point of the probes. Moreover, the heat is directed to the rice weevils more than the rice. When the temperature of rice and rice weevils are calculated and compared, the rice weevils has the temperature more than rice is about 41.62 Celsius degrees. These results can be applied for the dielectric heating applications to eliminate insect.

Keywords: Copper plates, Electric field distribution, Dielectric heating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2339
6122 Information Theoretical Analysis of Neural Spiking Activity with Temperature Modulation

Authors: Young-Seok Choi

Abstract:

This work assesses the cortical and the sub-cortical neural activity recorded from rodents using entropy and mutual information based approaches to study how hypothermia affects neural activity. By applying the multi-scale entropy and Shannon entropy, we quantify the degree of the regularity embedded in the cortical and sub-cortical neurons and characterize the dependency of entropy of these regions on temperature. We study also the degree of the mutual information on thalamocortical pathway depending on temperature. The latter is most likely an indicator of coupling between these highly connected structures in response to temperature manipulation leading to arousal after global cerebral ischemia.

Keywords: Spiking activity, entropy, mutual information, temperature modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
6121 Interaction of Elevated Carbon Dioxide and Temperature on Strawberry (Fragaria × ananassa) Growth and Fruit Yield

Authors: Himali N. Balasooriya, Kithsiri B. Dassanayake, Saman Seneweera, Said Ajlouni

Abstract:

Increase in atmospheric CO2 concentration [CO2] and ambient temperature associated with changing climatic conditions will have significant impacts on agriculture crop productivity and quality. Independent effects of the above two environmental variables on the growth, yield and quality of strawberry were well documented. Higher temperatures over the optimum range (20-25ºC) lead to crop failures, while elevated [CO2] stimulated plant growth and yield but compromised the physical quality of fruits. However, there is very limited understanding of the interaction between these variables on the plant growth, yield and quality. Therefore, this study was designed to investigate the interactive effect of high temperature and elevated [CO2] on growth, yield and quality of strawberries. Strawberry cultivars ‘Albion’ and ‘San Andreas’ were grown under six different combinations of two temperatures (25 and 30ºC) and three [CO2] (400, 650 and 950 µmol mol-1) in controlled-environmental growth chambers. Plant growth measurements such as plant height, canopy area, number of flowers, and fruit yield were measured during phonological development. Photosynthesis and transpiration, the ratio of intercellular to atmospheric [CO2] (Ci/Ca) were measured to estimate the physiological adjustment to climate stress. The impact of temperature and [CO2] interaction on growth and yield of strawberry was significant (p < 0.05). Across both cultivars, highest fruit yields were observed at 650 µmol mol-1 [CO2], which was particularly clear at 25°C. The fruit yield gradually decreased at 30°C under all the treatment combinations. However, photosynthesis rates were highest at 650 µmol mol-1 [CO2] but no increment was found at 900 µmol mol-1 [CO2]. Interestingly, Ci/Ca ratio increased with increasing atmospheric [CO2] which was predominant at high temperature. Similarly, fruit yield was substantially reduced at high [CO2] under high temperature. Our findings suggest that increased Ci/Ca ratio at high temperature is likely reduces the photosynthesis and thus yield response to elevated [CO2].

Keywords: Atmospheric [CO2], fruit yield, strawberry, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
6120 Effect of Oxygen on Biochar Yield and Properties

Authors: Ramlan Zailani, Halim Ghafar, Mohamad Sofian So'aib

Abstract:

Air infiltration in mass scale industrial applications of bio char production is inevitable. The presence of oxygen during the carbonization process is detrimental to the production of biochar yield and properties. The experiment was carried out on several wood species in a fixed-bed pyrolyser under various fractions of oxygen ranging from 0% to 11% by varying nitrogen and oxygen composition in the pyrolysing gas mixtures at desired compositions. The bed temperature and holding time were also varied. Process optimization was carried out by Response Surface Methodology (RSM) by employing Central Composite Design (CCD) using Design Expert 6.0 Software. The effect of oxygen ratio and holding time on biochar yield within the range studied were statistically significant. From the analysis result, optimum condition of 15.2% biochar yield of mangrove wood was predicted at pyrolysis temperature of 403 oC, oxygen percentage of 2.3% and holding time of two hours. This prediction agreed well with the experiment finding of 15.1% biochar yield.

Keywords: Mangrove wood, slow pyrolysis, oxygen infiltration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3447
6119 Application of Model Free Adaptive Control in Main Steam Temperature System of Thermal Power Plant

Authors: Khaing Yadana Swe, Lillie Dewan

Abstract:

At present, the cascade PID control is widely used to control the superheating temperature (main steam temperature). As Main Steam Temperature has the characteristics of large inertia, large time-delay and time varying, etc., conventional PID control strategy cannot achieve good control performance. In order to overcome the bad performance and deficiencies of main steam temperature control system, Model Free Adaptive Control (MFAC) - P cascade control system is proposed in this paper. By substituting MFAC in PID of the main control loop of the main steam temperature control, it can overcome time delays, non-linearity, disturbance and time variation.

Keywords: Model free Adaptive Control, Cascade Control, Adaptive Control, PID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801
6118 Modeling of Temperature Fields of Gas Turbine Blades by Considering Heat Flow and Specified Temperature

Authors: C. Ardil

Abstract:

A new mathematical model for calculating the temperature field of the profile part of the cooled blades of gas turbines is developed. The theoretical substantiation of the method is based on the application of the method of potential theory (the method of boundary integral equations). The effectiveness of the implementation of the developed mathematical model is confirmed on the basis of a computational experiment.

Keywords: Modeling of temperature fields, gas turbine blades, integral methods, cooled blades, gas turbines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
6117 A New Algorithm for Solving Isothermal Carbonization of Wood Particle

Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri

Abstract:

A new algorithm based on the lattice Boltzmann method (LBM) is proposed as a potential solver for one-dimensional heat and mass transfer for isothermal carbonization of wood particles. To check the validity of this algorithm, the LBM results have been compared with the published data and a good agreement is obtained. Then, the model is used to study the effect of reactor temperature and particle size on the evolution of the local temperature and mass loss inside the wood particle.

Keywords: Lattice Boltzmann Method, pyrolysis, conduction, carbonization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632