Search results for: adaptive neuro-fuzzy inference system
8692 Recursive Least Squares Adaptive Filter a better ISI Compensator
Authors: O. P. Sharma, V. Janyani, S. Sancheti
Abstract:
Inter-symbol interference if not taken care off may cause severe error at the receiver and the detection of signal becomes difficult. An adaptive equalizer employing Recursive Least Squares algorithm can be a good compensation for the ISI problem. In this paper performance of communication link in presence of Least Mean Square and Recursive Least Squares equalizer algorithm is analyzed. A Model of communication system having Quadrature amplitude modulation and Rician fading channel is implemented using MATLAB communication block set. Bit error rate and number of errors is evaluated for RLS and LMS equalizer algorithm, due to change in Signal to Noise Ratio (SNR) and fading component gain in Rician fading Channel.
Keywords: Least mean square (LMS), Recursive least squares(RLS), Adaptive equalization, Bit error rate (BER), Rician fading channel, Quadrature Amplitude Modulation (QAM), Signal to noiseratio (SNR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30768691 Effect of Network Communication Overhead on the Performance of Adaptive Speculative Locking Protocol
Authors: Waqar Haque, Pai Qi
Abstract:
The speculative locking (SL) protocol extends the twophase locking (2PL) protocol to allow for parallelism among conflicting transactions. The adaptive speculative locking (ASL) protocol provided further enhancements and outperformed SL protocols under most conditions. Neither of these protocols consider the impact of network latency on the performance of the distributed database systems. We have studied the performance of ASL protocol taking into account the communication overhead. The results indicate that though system load can counter network latency, it can still become a bottleneck in many situations. The impact of latency on performance depends on many factors including the system resources. A flexible discrete event simulator was used as the testbed for this study.
Keywords: concurrency control, distributed database systems, speculative locking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16968690 Performance Analysis of a Series of Adaptive Filters in Non-Stationary Environment for Noise Cancelling Setup
Authors: Anam Rafique, Syed Sohail Ahmed
Abstract:
One of the essential components of much of DSP application is noise cancellation. Changes in real time signals are quite rapid and swift. In noise cancellation, a reference signal which is an approximation of noise signal (that corrupts the original information signal) is obtained and then subtracted from the noise bearing signal to obtain a noise free signal. This approximation of noise signal is obtained through adaptive filters which are self adjusting. As the changes in real time signals are abrupt, this needs adaptive algorithm that converges fast and is stable. Least mean square (LMS) and normalized LMS (NLMS) are two widely used algorithms because of their plainness in calculations and implementation. But their convergence rates are small. Adaptive averaging filters (AFA) are also used because they have high convergence, but they are less stable. This paper provides the comparative study of LMS and Normalized NLMS, AFA and new enhanced average adaptive (Average NLMS-ANLMS) filters for noise cancelling application using speech signals.Keywords: AFA, ANLMS, LMS, NLMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19348689 Optimization of the Control Scheme for Human Extremity Exoskeleton
Authors: Yang Li, Xiaorong Guan, Cheng Xu
Abstract:
In order to design a suitable control scheme for human extremity exoskeleton, the interaction force control scheme with traditional PI controller was presented, and the simulation study of the electromechanical system of the human extremity exoskeleton was carried out by using a MATLAB/Simulink module. By analyzing the simulation calculation results, it was shown that the traditional PI controller is not very suitable for every movement speed of human body. So, at last the fuzzy self-adaptive PI controller was presented to solve this problem. Eventually, the superiority and feasibility of the fuzzy self-adaptive PI controller was proved by the simulation results and experimental results.
Keywords: Human extremity exoskeleton, interaction force control scheme, simulation study, fuzzy self-adaptive pi controller, man-machine coordinated walking, bear payload.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9988688 Adaptive PID Controller based on Reinforcement Learning for Wind Turbine Control
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
A self tuning PID control strategy using reinforcement learning is proposed in this paper to deal with the control of wind energy conversion systems (WECS). Actor-Critic learning is used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network is used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for WECS and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.Keywords: Wind energy conversion systems, reinforcementlearning; Actor-Critic learning; adaptive PID control; RBF network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49348687 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems
Authors: Rajamani Doraiswami, Lahouari Cheded
Abstract:
Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.Keywords: Keywords—Identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13008686 Adaptive Impedance Control for Unknown Non-Flat Environment
Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura
Abstract:
This paper presents a new adaptive impedance control strategy, based on Function Approximation Technique (FAT) to compensate for unknown non-flat environment shape or time-varying environment location. The target impedance in the force controllable direction is modified by incorporating adaptive compensators and the uncertainties are represented by FAT, allowing the update law to be derived easily. The force error feedback is utilized in the estimation and the accurate knowledge of the environment parameters are not required by the algorithm. It is shown mathematically that the stability of the controller is guaranteed based on Lyapunov theory. Simulation results presented to demonstrate the validity of the proposed controller.Keywords: Adaptive impedance control, Function Approximation Technique (FAT), impedance control, unknown environment position.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15828685 A Multi-Agent Intelligent System for Monitoring Health Conditions of Elderly People
Authors: Ayman M. Mansour
Abstract:
In this paper, we propose a multi-agent intelligent system that is used for monitoring the health conditions of elderly people. Monitoring the health condition of elderly people is a complex problem that involves different medical units and requires continuous monitoring. Such expert system is highly needed in rural areas because of inadequate number of available specialized physicians or nurses. Such monitoring must have autonomous interactions between these medical units in order to be effective. A multi-agent system is formed by a community of agents that exchange information and proactively help one another to achieve the goal of elderly monitoring. The agents in the developed system are equipped with intelligent decision maker that arms them with the rule-based reasoning capability that can assist the physicians in making decisions regarding the medical condition of elderly people.
Keywords: Fuzzy Logic, Inference system, Monitoring system, Multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22828684 Crisis In/Out, Emergent, and Adaptive Urban Organisms
Authors: Y. Hadjichristou, A. Swiny, M. Georgiou
Abstract:
This paper focuses on the questions raised through the work of Unit 5: ‘In/Out Crisis, emergent and adaptive’; an architectural research-based studio at [ARC] University of Nicosia. Students were asked to delve into state of Art Technologies in order to propose sustainable Emergent and Adaptive Architectures and Urbanities, the resulting unprecedented spatial conditions and atmospheres of the emergent new ways of living are deemed to be the ultimate aim of the investigation. Students explored a variety of sites and crisis conditions seen through their primary ingredient identified as soil, water and air and their paired combination. Within this methodology, crisis is seen as a mechanism for allowing an emergence of new and fascinating ultimate sustainable future cultures and cities by taking advantage of the primary materiality of the sites.
Keywords: Adaptive built environments, crisis as opportunity, emergent urbanities, forces for inventions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17938683 Joint Adaptive Block Matching Search (JABMS) Algorithm
Authors: V.K.Ananthashayana, Pushpa.M.K
Abstract:
In this paper a new Joint Adaptive Block Matching Search (JABMS) algorithm is proposed to generate motion vector and search a best match macro block by classifying the motion vector movement based on prediction error. Diamond Search (DS) algorithm generates high estimation accuracy when motion vector is small and Adaptive Rood Pattern Search (ARPS) algorithm can handle large motion vector but is not very accurate. The proposed JABMS algorithm which is capable of considering both small and large motions gives improved estimation accuracy and the computational cost is reduced by 15.2 times compared with Exhaustive Search (ES) algorithm and is 1.3 times less compared with Diamond search algorithm.Keywords: Adaptive rood pattern search, Block matching, Diamond search, Joint Adaptive search, Motion estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16918682 Convergence Analysis of a Prediction based Adaptive Equalizer for IIR Channels
Authors: Miloje S. Radenkovic, Tamal Bose
Abstract:
This paper presents the convergence analysis of a prediction based blind equalizer for IIR channels. Predictor parameters are estimated by using the recursive least squares algorithm. It is shown that the prediction error converges almost surely (a.s.) toward a scalar multiple of the unknown input symbol sequence. It is also proved that the convergence rate of the parameter estimation error is of the same order as that in the iterated logarithm law.Keywords: Adaptive blind equalizer, Recursive leastsquares, Adaptive Filtering, Convergence analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14538681 Embedding a Large Amount of Information Using High Secure Neural Based Steganography Algorithm
Authors: Nameer N. EL-Emam
Abstract:
In this paper, we construct and implement a new Steganography algorithm based on learning system to hide a large amount of information into color BMP image. We have used adaptive image filtering and adaptive non-uniform image segmentation with bits replacement on the appropriate pixels. These pixels are selected randomly rather than sequentially by using new concept defined by main cases with sub cases for each byte in one pixel. According to the steps of design, we have been concluded 16 main cases with their sub cases that covere all aspects of the input information into color bitmap image. High security layers have been proposed through four layers of security to make it difficult to break the encryption of the input information and confuse steganalysis too. Learning system has been introduces at the fourth layer of security through neural network. This layer is used to increase the difficulties of the statistical attacks. Our results against statistical and visual attacks are discussed before and after using the learning system and we make comparison with the previous Steganography algorithm. We show that our algorithm can embed efficiently a large amount of information that has been reached to 75% of the image size (replace 18 bits for each pixel as a maximum) with high quality of the output.Keywords: Adaptive image segmentation, hiding with high capacity, hiding with high security, neural networks, Steganography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19888680 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm
Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew
Abstract:
The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.
Keywords: Indirect Vector Control, Induction Motor, Adaptive Tabu Search, Control Design, Artificial Intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19338679 An Adaptive ARQ – HARQ Method with Two RS Codes
Authors: Michal Martinovič, Jaroslav Polec, Kvetoslava Kotuliaková
Abstract:
In this paper we proposed multistage adaptive ARQ/HARQ/HARQ scheme. This method combines pure ARQ (Automatic Repeat reQuest) mode in low channel bit error rate and hybrid ARQ method using two different Reed-Solomon codes in middle and high error rate conditions. It follows, that our scheme has three stages. The main goal is to increase number of states in adaptive HARQ methods and be able to achieve maximum throughput for every channel bit error rate. We will prove the proposal by calculation and then with simulations in land mobile satellite channel environment. Optimization of scheme system parameters is described in order to maximize the throughput in the whole defined Signal-to- Noise Ratio (SNR) range in selected channel environment.Keywords: Signal-to-noise ratio, throughput, forward error correction (FEC), pure and hybrid automatic repeat request (ARQ).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19688678 Adaptive Noise Reduction Algorithm for Speech Enhancement
Authors: M. Kalamani, S. Valarmathy, M. Krishnamoorthi
Abstract:
In this paper, Least Mean Square (LMS) adaptive noise reduction algorithm is proposed to enhance the speech signal from the noisy speech. In this, the speech signal is enhanced by varying the step size as the function of the input signal. Objective and subjective measures are made under various noises for the proposed and existing algorithms. From the experimental results, it is seen that the proposed LMS adaptive noise reduction algorithm reduces Mean square Error (MSE) and Log Spectral Distance (LSD) as compared to that of the earlier methods under various noise conditions with different input SNR levels. In addition, the proposed algorithm increases the Peak Signal to Noise Ratio (PSNR) and Segmental SNR improvement (ΔSNRseg) values; improves the Mean Opinion Score (MOS) as compared to that of the various existing LMS adaptive noise reduction algorithms. From these experimental results, it is observed that the proposed LMS adaptive noise reduction algorithm reduces the speech distortion and residual noise as compared to that of the existing methods.
Keywords: LMS, speech enhancement, speech quality, residual noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28058677 Torque Ripple Minimization in Switched Reluctance Motor Using Passivity-Based Robust Adaptive Control
Authors: M.M. Namazi, S.M. Saghaiannejad, A. Rashidi
Abstract:
In this paper by using the port-controlled Hamiltonian (PCH) systems theory, a full-order nonlinear controlled model is first developed. Then a nonlinear passivity-based robust adaptive control (PBRAC) of switched reluctance motor in the presence of external disturbances for the purpose of torque ripple reduction and characteristic improvement is presented. The proposed controller design is separated into the inner loop and the outer loop controller. In the inner loop, passivity-based control is employed by using energy shaping techniques to produce the proper switching function. The outer loop control is employed by robust adaptive controller to determine the appropriate Torque command. It can also overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. A 4KW 8/6 SRM with experimental characteristics that takes magnetic saturation into account is modeled, simulation results show that the proposed scheme has good performance and practical application prospects.Keywords: Switched Reluctance Motor, Port HamiltonianSystem, Passivity-Based Control, Torque Ripple Minimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16798676 Influence of Noise on the Inference of Dynamic Bayesian Networks from Short Time Series
Authors: Frank Emmert Streib, Matthias Dehmer, Gökhan H. Bakır, Max Mühlhauser
Abstract:
In this paper we investigate the influence of external noise on the inference of network structures. The purpose of our simulations is to gain insights in the experimental design of microarray experiments to infer, e.g., transcription regulatory networks from microarray experiments. Here external noise means, that the dynamics of the system under investigation, e.g., temporal changes of mRNA concentration, is affected by measurement errors. Additionally to external noise another problem occurs in the context of microarray experiments. Practically, it is not possible to monitor the mRNA concentration over an arbitrary long time period as demanded by the statistical methods used to learn the underlying network structure. For this reason, we use only short time series to make our simulations more biologically plausible.Keywords: Dynamic Bayesian networks, structure learning, gene networks, Markov chain Monte Carlo, microarray data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16108675 Adaptive Fourier Decomposition Based Signal Instantaneous Frequency Computation Approach
Authors: Liming Zhang
Abstract:
There have been different approaches to compute the analytic instantaneous frequency with a variety of background reasoning and applicability in practice, as well as restrictions. This paper presents an adaptive Fourier decomposition and (α-counting) based instantaneous frequency computation approach. The adaptive Fourier decomposition is a recently proposed new signal decomposition approach. The instantaneous frequency can be computed through the so called mono-components decomposed by it. Due to the fast energy convergency, the highest frequency of the signal will be discarded by the adaptive Fourier decomposition, which represents the noise of the signal in most of the situation. A new instantaneous frequency definition for a large class of so-called simple waves is also proposed in this paper. Simple wave contains a wide range of signals for which the concept instantaneous frequency has a perfect physical sense. The α-counting instantaneous frequency can be used to compute the highest frequency for a signal. Combination of these two approaches one can obtain the IFs of the whole signal. An experiment is demonstrated the computation procedure with promising results.Keywords: Adaptive Fourier decomposition, Fourier series, signal processing, instantaneous frequency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23578674 The Application of Adaptive Tabu Search Algorithm and Averaging Model to the Optimal Controller Design of Buck Converters
Authors: T. Sopapirm, K-N. Areerak, K-L. Areerak, A. Srikaew
Abstract:
The paper presents the applications of artificial intelligence technique called adaptive tabu search to design the controller of a buck converter. The averaging model derived from the DQ and generalized state-space averaging methods is applied to simulate the system during a searching process. The simulations using such averaging model require the faster computational time compared with that of the full topology model from the software packages. The reported model is suitable for the work in the paper in which the repeating calculation is needed for searching the best solution. The results will show that the proposed design technique can provide the better output waveforms compared with those designed from the classical method.Keywords: Buck converter, adaptive tabu search, DQ method, generalized state-space averaging method, modeling and simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18418673 Efficient Antenna Array Beamforming with Robustness against Random Steering Mismatch
Authors: Ju-Hong Lee, Ching-Wei Liao, Kun-Che Lee
Abstract:
This paper deals with the problem of using antenna sensors for adaptive beamforming in the presence of random steering mismatch. We present an efficient adaptive array beamformer with robustness to deal with the considered problem. The robustness of the proposed beamformer comes from the efficient designation of the steering vector. Using the received array data vector, we construct an appropriate correlation matrix associated with the received array data vector and a correlation matrix associated with signal sources. Then, the eigenvector associated with the largest eigenvalue of the constructed signal correlation matrix is designated as an appropriate estimate of the steering vector. Finally, the adaptive weight vector required for adaptive beamforming is obtained by using the estimated steering vector and the constructed correlation matrix of the array data vector. Simulation results confirm the effectiveness of the proposed method.
Keywords: Adaptive beamforming, antenna array, linearly constrained minimum variance, robustness, steering vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6978672 A Modified Speech Enhancement Using Adaptive Gain Equalizer with Non linear Spectral Subtraction for Robust Speech Recognition
Authors: C. Ganesh Babu, P. T. Vanathi
Abstract:
In this paper we present an enhanced noise reduction method for robust speech recognition using Adaptive Gain Equalizer with Non linear Spectral Subtraction. In Adaptive Gain Equalizer method (AGE), the input signal is divided into a number of subbands that are individually weighed in time domain, in accordance to the short time Signal-to-Noise Ratio (SNR) in each subband estimation at every time instant. Instead of focusing on suppression the noise on speech enhancement is focused. When analysis was done under various noise conditions for speech recognition, it was found that Adaptive Gain Equalizer method algorithm has an obvious failing point for a SNR of -5 dB, with inadequate levels of noise suppression for SNR less than this point. This work proposes the implementation of AGE when coupled with Non linear Spectral Subtraction (AGE-NSS) for robust speech recognition. The experimental result shows that out AGE-NSS performs the AGE when SNR drops below -5db level.
Keywords: Adaptive Gain Equalizer, Non Linear Spectral Subtraction, Speech Enhancement, and Speech Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17018671 Data Oriented Modeling of Uniform Random Variable: Applied Approach
Authors: Ahmad Habibizad Navin, Mehdi Naghian Fesharaki, Mirkamal Mirnia, Mohamad Teshnelab, Ehsan Shahamatnia
Abstract:
In this paper we introduce new data oriented modeling of uniform random variable well-matched with computing systems. Due to this conformity with current computers structure, this modeling will be efficiently used in statistical inference.Keywords: Uniform random variable, Data oriented modeling, Statistical inference, Prodigraph, Statistically complete tree, Uniformdigital probability digraph, Uniform n-complete probability tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16308670 A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS
Authors: Jian Shi, Baoguo Yu, Haonan Jia, Meng Liu, Ping Huang
Abstract:
Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation.
Keywords: Air alignment, fine alignment, inertial navigation system, integrated navigation system, UKF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5418669 Adaptive MPC Using a Recursive Learning Technique
Authors: Ahmed Abbas Helmy, M. R. M. Rizk, Mohamed El-Sayed
Abstract:
A model predictive controller based on recursive learning is proposed. In this SISO adaptive controller, a model is automatically updated using simple recursive equations. The identified models are then stored in the memory to be re-used in the future. The decision for model update is taken based on a new control performance index. The new controller allows the use of simple linear model predictive controllers in the control of nonlinear time varying processes.
Keywords: Adaptive control, model predictive control, dynamic matrix control, online model identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17768668 An Efficient Technique for Extracting Fuzzy Rulesfrom Neural Networks
Authors: Besa Muslimi, Miriam A. M. Capretz, Jagath Samarabandu
Abstract:
Artificial neural networks (ANN) have the ability to model input-output relationships from processing raw data. This characteristic makes them invaluable in industry domains where such knowledge is scarce at best. In the recent decades, in order to overcome the black-box characteristic of ANNs, researchers have attempted to extract the knowledge embedded within ANNs in the form of rules that can be used in inference systems. This paper presents a new technique that is able to extract a small set of rules from a two-layer ANN. The extracted rules yield high classification accuracy when implemented within a fuzzy inference system. The technique targets industry domains that possess less complex problems for which no expert knowledge exists and for which a simpler solution is preferred to a complex one. The proposed technique is more efficient, simple, and applicable than most of the previously proposed techniques.
Keywords: fuzzy rule extraction, fuzzy systems, knowledgeacquisition, pattern recognition, artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15808667 Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production
Authors: Mohamed Abdallah, Mostafa Warith, Roberto Narbaitz, Emil Petriu, Kevin Kennedy
Abstract:
Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.
Keywords: Adaptive neural fuzzy inference system (ANFIS), gas production, landfill
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24128666 A Variable Structure MRAC for a Class of MIMO Systems
Authors: Ardeshir Karami Mohammadi
Abstract:
A Variable Structure Model Reference Adaptive Controller using state variables is proposed for a class of multi input-multi output systems. Adaptation law is of variable structure type and switching functions is designed based on stability requirements. Global exponential stability is proved based on Lyapunov criterion. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time.Keywords: Adaptive control, Model reference, Variablestructure, MIMO system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15798665 Adaptive Square-Rooting Companding Technique for PAPR Reduction in OFDM Systems
Authors: Wisam F. Al-Azzo, Borhanuddin Mohd. Ali
Abstract:
This paper addresses the problem of peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. It also introduces a new PAPR reduction technique based on adaptive square-rooting (SQRT) companding process. The SQRT process of the proposed technique changes the statistical characteristics of the OFDM output signals from Rayleigh distribution to Gaussian-like distribution. This change in statistical distribution results changes of both the peak and average power values of OFDM signals, and consequently reduces significantly the PAPR. For the 64QAM OFDM system using 512 subcarriers, up to 6 dB reduction in PAPR was achieved by square-rooting technique with fixed degradation in bit error rate (BER) equal to 3 dB. However, the PAPR is reduced at the expense of only -15 dB out-ofband spectral shoulder re-growth below the in-band signal level. The proposed adaptive SQRT technique is superior in terms of BER performance than the original, non-adaptive, square-rooting technique when the required reduction in PAPR is no more than 5 dB. Also, it provides fixed amount of PAPR reduction in which it is not available in the original SQRT technique.Keywords: complementary cumulative distribution function(CCDF), OFDM, peak-to-average power ratio (PAPR), adaptivesquare-rooting PAPR reduction technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22028664 Ontology-Navigated Tutoring System for Flipped-Mastery Model
Authors: Masao Okabe
Abstract:
Nowadays, in Japan, variety of students get into a university and one of the main roles of introductory courses for freshmen is to make such students well prepared for subsequent intermediate courses. For that purpose, the flipped-mastery model is not enough because videos usually used in a flipped classroom is not adaptive and does not fit all freshmen with different academic performances. This paper proposes an ontology-navigated tutoring system called EduGraph. Using EduGraph, students can prepare for and review a class, in a more flexibly personalizable way than by videos. Structuralizing learning materials by its ontology, EduGraph also helps students integrate what they learn as knowledge, and makes learning materials sharable. EduGraph was used for an introductory course for freshmen. This application suggests that EduGraph is effective.
Keywords: Adaptive e-learning, flipped classroom, mastery learning, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9958663 Applications of Prediction and Identification Using Adaptive DCMAC Neural Networks
Authors: Yu-Lin Liao, Ya-Fu Peng
Abstract:
An adaptive dynamic cerebellar model articulation controller (DCMAC) neural network used for solving the prediction and identification problem is proposed in this paper. The proposed DCMAC has superior capability to the conventional cerebellar model articulation controller (CMAC) neural network in efficient learning mechanism, guaranteed system stability and dynamic response. The recurrent network is embedded in the DCMAC by adding feedback connections in the association memory space so that the DCMAC captures the dynamic response, where the feedback units act as memory elements. The dynamic gradient descent method is adopted to adjust DCMAC parameters on-line. Moreover, the analytical method based on a Lyapunov function is proposed to determine the learning-rates of DCMAC so that the variable optimal learning-rates are derived to achieve most rapid convergence of identifying error. Finally, the adaptive DCMAC is applied in two computer simulations. Simulation results show that accurate identifying response and superior dynamic performance can be obtained because of the powerful on-line learning capability of the proposed DCMAC.Keywords: adaptive, cerebellar model articulation controller, CMAC, prediction, identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400