Search results for: The Kernel density estimate.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1921

Search results for: The Kernel density estimate.

1711 Compressive Strength and Capillary Water Absorption of Concrete Containing Recycled Aggregate

Authors: Yeşim Tosun, Remzi Şahin

Abstract:

This paper presents results of compressive strength, capillary water absorption, and density tests conducted on concrete containing recycled aggregate (RCA) which is obtained from structural waste generated by the construction industry in Turkey. In the experiments, 0%, 15%, 30%, 45% and 60% of the normal (natural) coarse aggregate was replaced by the recycled aggregate. Maximum aggregate particle sizes were selected as 16 mm, 22,4 mm and 31,5 mm; and 0,06%, 0,13% and 0,20% of air-entraining agent (AEA) were used in mixtures. Fly ash and superplasticizer were used as a mineral and chemical admixture, respectively. The same type (CEM I 42.5) and constant dosage of cement were used in the study. Water/cement ratio was kept constant as 0.53 for all mixture. It was concluded that capillary water absorption, compressive strength, and density of concrete decreased with increasing RCA ratio. Increasing in maximum aggregate particle size and amount of AEA also affect the properties of concrete significantly.

Keywords: Capillary water absorption, compressive strength, density, recycled concrete aggregates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
1710 Compton Scattering of Annihilation Photons as a Short Range Quantum Key Distribution Mechanism

Authors: Roman Novak, Matjaz Vencelj

Abstract:

The angular distribution of Compton scattering of two quanta originating in the annihilation of a positron with an electron is investigated as a quantum key distribution (QKD) mechanism in the gamma spectral range. The geometry of coincident Compton scattering is observed on the two sides as a way to obtain partially correlated readings on the quantum channel. We derive the noise probability density function of a conceptually equivalent prepare and measure quantum channel in order to evaluate the limits of the concept in terms of the device secrecy capacity and estimate it at roughly 1.9 bits per 1 000 annihilation events. The high error rate is well above the tolerable error rates of the common reconciliation protocols; therefore, the proposed key agreement protocol by public discussion requires key reconciliation using classical error-correcting codes. We constructed a prototype device based on the readily available monolithic detectors in the least complex setup.

Keywords: Compton scattering, gamma-ray polarization, quantumcryptography, quantum key distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
1709 A Novel Recursive Multiplierless Algorithm for 2-D DCT

Authors: V.K.Ananthashayana, Geetha.K.S

Abstract:

In this paper, a recursive algorithm for the computation of 2-D DCT using Ramanujan Numbers is proposed. With this algorithm, the floating-point multiplication is completely eliminated and hence the multiplierless algorithm can be implemented using shifts and additions only. The orthogonality of the recursive kernel is well maintained through matrix factorization to reduce the computational complexity. The inherent parallel structure yields simpler programming and hardware implementation and provides log 1 2 3 2 N N-N+ additions and N N 2 log 2 shifts which is very much less complex when compared to other recent multiplierless algorithms.

Keywords: DCT, Multilplerless, Ramanujan Number, Recursive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
1708 Evaluating the Response of Rainfed-Chickpea to Population Density in Iran, Using Simulation

Authors: Manoochehr Gholipoor

Abstract:

The response of growth and yield of rainfed-chickpea to population density should be evaluated based on long-term experiments to include the climate variability. This is achievable just by simulation. In this simulation study, this evaluation was done by running the CYRUS model for long-term daily weather data of five locations in Iran. The tested population densities were 7 to 59 (with interval of 2) stands per square meter. Various functions, including quadratic, segmented, beta, broken linear, and dent-like functions, were tested. Considering root mean square of deviations and linear regression statistics [intercept (a), slope (b), and correlation coefficient (r)] for predicted versus observed variables, the quadratic and broken linear functions appeared to be appropriate for describing the changes in biomass and grain yield, and in harvest index, respectively. Results indicated that in all locations, grain yield tends to show increasing trend with crowding the population, but subsequently decreases. This was also true for biomass in five locations. The harvest index appeared to have plateau state across low population densities, but decreasing trend with more increasing density. The turning point (optimum population density) for grain yield was 30.68 stands per square meter in Isfahan, 30.54 in Shiraz, 31.47 in Kermanshah, 34.85 in Tabriz, and 32.00 in Mashhad. The optimum population density for biomass ranged from 24.6 (in Tabriz) to 35.3 stands per square meter (Mashhad). For harvest index it varied between 35.87 and 40.12 stands per square meter.

Keywords: Rainfed-chickpea, biomass, harvest index, grain yield, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
1707 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.

Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646
1706 On the outlier Detection in Nonlinear Regression

Authors: Hossein Riazoshams, Midi Habshah, Jr., Mohamad Bakri Adam

Abstract:

The detection of outliers is very essential because of their responsibility for producing huge interpretative problem in linear as well as in nonlinear regression analysis. Much work has been accomplished on the identification of outlier in linear regression, but not in nonlinear regression. In this article we propose several outlier detection techniques for nonlinear regression. The main idea is to use the linear approximation of a nonlinear model and consider the gradient as the design matrix. Subsequently, the detection techniques are formulated. Six detection measures are developed that combined with three estimation techniques such as the Least-Squares, M and MM-estimators. The study shows that among the six measures, only the studentized residual and Cook Distance which combined with the MM estimator, consistently capable of identifying the correct outliers.

Keywords: Nonlinear Regression, outliers, Gradient, LeastSquare, M-estimate, MM-estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3125
1705 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning

Authors: Masaki Omata, Shumma Hosokawa

Abstract:

An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.

Keywords: E-learning, physiological index, physiological signal, state of learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
1704 Assessing the Ways of Improving the Power Saving Modes in the Ore-Grinding Technological Process

Authors: Baghdasaryan Marinka

Abstract:

Monitoring the distribution of electric power consumption in the technological process of ore grinding is conducted. As a result, the impacts of the mill filling rate, the productivity of the ore supply, the volumetric density of the grinding balls, the specific density of the ground ore, and the relative speed of the mill rotation on the specific consumption of electric power have been studied. The power and technological factors affecting the reactive power generated by the synchronous motors, operating within the technological scheme are studied. A block diagram for evaluating the power consumption modes of the technological process is presented, which includes the analysis of the technological scheme, the determination of the place and volumetric density of the ore-grinding mill, the evaluation of the technological and power factors affecting the energy saving process, as well as the assessment of the electric power standards.

Keywords: Electric power standard, factor, ore grinding, power consumption, reactive power, technological.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
1703 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network

Authors: Nasrin Bakhshizadeh, Ashkan Forootan

Abstract:

A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.

Keywords: Polyethylene, polymerization, density, melt index, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 642
1702 Certain Estimates of Oscillatory Integrals and Extrapolation

Authors: Hussain Al-Qassem

Abstract:

In this paper we study the boundedness properties of certain oscillatory integrals with polynomial phase. We obtain sharp estimates for these oscillatory integrals. By the virtue of these estimates and extrapolation we obtain Lp boundedness for these oscillatory integrals under rather weak size conditions on the kernel function.

Keywords: Fourier transform, oscillatory integrals, Orlicz spaces, Block spaces, Extrapolation, Lp boundedness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
1701 Unsupervised Feature Selection Using Feature Density Functions

Authors: Mina Alibeigi, Sattar Hashemi, Ali Hamzeh

Abstract:

Since dealing with high dimensional data is computationally complex and sometimes even intractable, recently several feature reductions methods have been developed to reduce the dimensionality of the data in order to simplify the calculation analysis in various applications such as text categorization, signal processing, image retrieval, gene expressions and etc. Among feature reduction techniques, feature selection is one the most popular methods due to the preservation of the original features. In this paper, we propose a new unsupervised feature selection method which will remove redundant features from the original feature space by the use of probability density functions of various features. To show the effectiveness of the proposed method, popular feature selection methods have been implemented and compared. Experimental results on the several datasets derived from UCI repository database, illustrate the effectiveness of our proposed methods in comparison with the other compared methods in terms of both classification accuracy and the number of selected features.

Keywords: Feature, Feature Selection, Filter, Probability Density Function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
1700 Adaptive Notch Filter for Harmonic Current Mitigation

Authors: T. Messikh, S. Mekhilef, N. A. Rahim

Abstract:

This paper presents an effective technique for harmonic current mitigation using an adaptive notch filter (ANF) to estimate current harmonics. The proposed filter consists of multiple units of ANF connected in parallel structure; each unit is governed by two ordinary differential equations. The frequency estimation is carried out based on the output of these units. The simulation and experimental results show the ability of the proposed tracking scheme to accurately estimate harmonics. The proposed filter was implemented digitally in TMS320F2808 and used in the control of hybrid active power filter (HAPF). The theoretical expectations are verified and demonstrated experimentally.

Keywords: Adaptive notch filter, Active power filter, harmonic filtering, Time varying frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3022
1699 Self-evolving Neural Networks Based On PSO and JPSO Algorithms

Authors: Abdussamad Ismail, Dong-Sheng Jeng

Abstract:

A self-evolution algorithm for optimizing neural networks using a combination of PSO and JPSO is proposed. The algorithm optimizes both the network topology and parameters simultaneously with the aim of achieving desired accuracy with less complicated networks. The performance of the proposed approach is compared with conventional back-propagation networks using several synthetic functions, with better results in the case of the former. The proposed algorithm is also implemented on slope stability problem to estimate the critical factor of safety. Based on the results obtained, the proposed self evolving network produced a better estimate of critical safety factor in comparison to conventional BPN network.

Keywords: Neural networks, Topology evolution, Particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
1698 The Effect of Harmonic Power Fluctuation for Estimating Flicker

Authors: Jin-Lung Guan, Ming-Ta Yang, Jhy-Cherng Gu, Hsin-Hung Chang, Chin-Lung Huang

Abstract:

Voltage flicker problems have long existed in several of the distribution areas served by the Taiwan Power Company. In the past, those research results indicating that the estimated ΔV10 value based on the conventional method is significantly smaller than the survey value. This paper is used to study the relationship between the voltage flicker problems and harmonic power variation for the power system with electric arc furnaces. This investigation discussed thought the effect of harmonic power fluctuation with flicker estimate value. The method of field measurement, statistics and simulation is used. The survey results demonstrate that 10 ΔV estimate must account for the effect of harmonic power variation.

Keywords: Voltage Flicker, Harmonic Power, EAF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
1697 Single-Camera EKF-vSLAM

Authors: ML. Benmessaoud, A. Lamrani, K. Nemra, AK. Souici

Abstract:

This paper presents an Extended Kaman Filter implementation of a single-camera Visual Simultaneous Localization and Mapping algorithm, a novel algorithm for simultaneous localization and mapping problem widely studied in mobile robotics field. The algorithm is vision and odometry-based, The odometry data is incremental, and therefore it will accumulate error over time, since the robot may slip or may be lifted, consequently if the odometry is used alone we can not accurately estimate the robot position, in this paper we show that a combination of odometry and visual landmark via the extended Kalman filter can improve the robot position estimate. We use a Pioneer II robot and motorized pan tilt camera models to implement the algorithm.

Keywords: Mobile Robot, Navigation, vSLAM, EKF, monocular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
1696 Scatterer Density in Edge and Coherence Enhancing Nonlinear Anisotropic Diffusion for Medical Ultrasound Speckle Reduction

Authors: Ahmed Badawi, J. Michael Johnson, Mohamed Mahfouz

Abstract:

This paper proposes new enhancement models to the methods of nonlinear anisotropic diffusion to greatly reduce speckle and preserve image features in medical ultrasound images. By incorporating local physical characteristics of the image, in this case scatterer density, in addition to the gradient, into existing tensorbased image diffusion methods, we were able to greatly improve the performance of the existing filtering methods, namely edge enhancing (EE) and coherence enhancing (CE) diffusion. The new enhancement methods were tested using various ultrasound images, including phantom and some clinical images, to determine the amount of speckle reduction, edge, and coherence enhancements. Scatterer density weighted nonlinear anisotropic diffusion (SDWNAD) for ultrasound images consistently outperformed its traditional tensor-based counterparts that use gradient only to weight the diffusivity function. SDWNAD is shown to greatly reduce speckle noise while preserving image features as edges, orientation coherence, and scatterer density. SDWNAD superior performances over nonlinear coherent diffusion (NCD), speckle reducing anisotropic diffusion (SRAD), adaptive weighted median filter (AWMF), wavelet shrinkage (WS), and wavelet shrinkage with contrast enhancement (WSCE), make these methods ideal preprocessing steps for automatic segmentation in ultrasound imaging.

Keywords: Nonlinear anisotropic diffusion, ultrasound imaging, speckle reduction, scatterer density estimation, edge based enhancement, coherence enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
1695 An Experimental Study of Structural, Optical and Magnetic Properties of Lithium Ferrite

Authors: S. Malathi, P. Seenuvasakumaran

Abstract:

Nanomaterials ferrites have applications in making permanent magnets, high density information devices, color imaging etc. In the present examination, lithium ferrite is synthesized by sol-gel process. The x-ray diffraction (XRD) result shows that the structure of lithium ferrite is monoclinic structure. The average particle size 22 nm is calculated by Scherer formula. The lattice parameters and dislocation density (δ) are calculated from XRD data. Strain (ε) values are evaluated from Williamson – hall plot. The FT-IR study reveals the formation of ferrites showing the significant absorption bands. The VU-VIS spectroscopic data is used to calculate direct and indirect optical band gap (Eg) of 1.57eV and 1.01eV respectively for lithium ferrite by using Tauc plot at the edge of the absorption band. The energy dispersive x-ray analysis spectra showed that the expected elements exist in the material. The magnetic behaviour of the materials studied using vibrating sample magnetometer (VSM).

Keywords: Sol-gel, dislocation density, energy band gap, VSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
1694 Suitability of Newsprint and Kraft Papers as Materials for Cement Bonded Ceiling Board

Authors: J. M. Owoyemi, O. S. Ogunrinde

Abstract:

The suitability of Newsprint and Kraft papers for the production of cement bonded ceiling board was investigated. Sample boards were produced from newsprint paper (100%), mixture of newsprint and Kraft paper (50:50) and Kraft paper (100%) at 1:1, 2:1 and 3:1 cement/paper mixing ratio respectively with 3% additive concentration of calcium chloride (CaCl2). Density, flexural and thickness swelling properties of the boards were investigated. The effects of paper type and mixing ratio on the physical and mechanical properties were also examined. The bending properties of the board which include Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) increased linearly with increase in density. Modulus of rupture of boards increased as the density and mixing ratio increased. The thickness swelling property for the two paper types decreased as the board density and mixing ratio increased. Boards made from Kraft paper recorded higher strength values than the ones made from recycled newsprint paper while the mixture of kraft and newsprint papers had the best surface finish. The result of the study will help in managing the large quality of waste from paper converting/carton industry and that the ceiling boards produced could be installed with clout nails or used with suspended ceiling fittings.

Keywords: Cement, Kraft paper, Mixing ratio, Newsprint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3715
1693 Heritability Estimates of Lactation Traits in Maltese Goat

Authors: R. Pesce Delfino, M. Selvaggi, G. V. Celano, C. Dario

Abstract:

Data on 657 lactation from 163 Maltese goat, collected over a 5-year period were analyzed by a mixed model to estimate the variance components for heritability. The considered lactation traits were: milk yield (MY) and lactation length (LL). Year, parity and type of birth (single or twin) were significant sources of variation for lactation length; on the other hand milk yield was significantly influenced only by the year. The average MY was 352.34 kg and the average LL was 230 days. Estimates of heritability were 0.21 and 0.15 for MY and LL respectively. These values suggest there is low correlation between genotype and phenotype so it may be difficult to evaluate animals directly on phenotype. So, the genetic improvement of this breed may be quite slow without the support of progeny test aimed to select Maltese breeders.

Keywords: Heritability estimate, lactation traits, Maltese goat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
1692 The Effect of Surface Modifiers on the Mechanical and Morphological Properties of Waste Silicon Carbide Filled High-Density Polyethylene

Authors: R. Dangtungee, A. Rattanapan, S. Siengchin

Abstract:

Waste silicon carbide (waste SiC) filled high-density polyethylene (HDPE) with and without surface modifiers were studied. Two types of surface modifiers namely; high-density polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The composites were produced using a two roll mill, extruder and shaped in a hydraulic compression molding machine. The mechanical properties of polymer composites such as flexural strength and modulus, impact strength, tensile strength, stiffness and hardness were investigated over a range of compositions. It was found that, flexural strength and modulus, tensile modulus and hardness increased, whereas impact strength and tensile strength decreased with the increasing in filler contents, compared to the neat HDPE. At similar filler content, the effect of both surface modifiers increased flexural modulus, impact strength, tensile strength and stiffness but reduced the flexural strength. Morphological investigation using SEM revealed that the improvement in mechanical properties was due to enhancement of the interfacial adhesion between waste SiC and HDPE.

Keywords: High-density polyethylene, HDPE-g-MA, mechanical properties, morphological properties, silicon carbide, waste silicon carbide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
1691 Silicone on Blending Vegetal Petrochemical Based Polyurethane

Authors: Flora E. Firdaus

Abstract:

Polyurethane foam (PUF) is formed by a chemical reaction of polyol and isocyanate. The aim is to understand the impact of Silicone on synthesizing polyurethane in differentiate volume of molding. The method used was one step process, which is simultaneously caried out a blending polyol (petroleum polyol and soybean polyol), a TDI (2,4):MDI (4,4-) (80:20), a distilled water, and a silicone. The properties of the material were measured via a number of parameters, which are polymer density, compressive strength, and cellular structures. It is found that density of polyurethane using silicone with volume of molding either 250 ml or 500 ml is lower than without using silicone.

Keywords: soybean, petro, silicone, polyurethane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
1690 Effects of Axial Loads and Soil Density on Pile Group Subjected to Triangular Soil Movement

Authors: Ihsan Al-Abboodi, Tahsin Toma-Sabbagh

Abstract:

Laboratory tests have been carried out to investigate the response of 2x2 pile group subjected to triangular soil movement. The pile group was instrumented with displacement and tilting devices at the pile cap and strain gauges on two piles of the group. In this paper, results from four model tests were presented to study the effects of axial loads and soil density on the lateral behavior of piles. The responses in terms of bending moment, shear force, soil pressure, deflection, and rotation of piles were compared. Test results indicate that increasing the soil strength could increase the measured moment, shear, soil pressure, and pile deformations. Most importantly, adding loads to the pile cap induces additional moment to the head of front-pile row unlike the back-pile row which was influenced insignificantly.

Keywords: Pile group, passive piles, lateral soil movement, soil density, axial loads.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
1689 Characterization of Microroughness Parameters in Cu and Cu2O Nanoparticles Embedded in Carbon Film

Authors: S.Solaymani, T.Ghodselahi, N.B.Nezafat, H.Zahrabi, A.Gelali

Abstract:

The morphological parameter of a thin film surface can be characterized by power spectral density (PSD) functions which provides a better description to the topography than the RMS roughness and imparts several useful information of the surface including fractal and superstructure contributions. Through the present study Nanoparticle copper/carbon composite films were prepared by co-deposition of RF-Sputtering and RF-PECVD method from acetylene gas and copper target. Surface morphology of thin films is characterized by using atomic force microscopy (AFM). The Carbon content of our films was obtained by Rutherford Back Scattering (RBS) and it varied from .4% to 78%. The power values of power spectral density (PSD) for the AFM data were determined by the fast Fourier transform (FFT) algorithms. We investigate the effect of carbon on the roughness of thin films surface. Using such information, roughness contributions of the surface have been successfully extracted.

Keywords: Atomic force microscopy, Fast Fourier transform, Power spectral density, RBS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2441
1688 Noise Performance of Millimeter-wave Silicon Based Mixed Tunneling Avalanche Transit Time(MITATT) Diode

Authors: Aritra Acharyya, Moumita Mukherjee, J. P. Banerjee

Abstract:

A generalized method for small-signal simulation of avalanche noise in Mixed Tunneling Avalanche Transit Time (MITATT) device is presented in this paper where the effect of series resistance is taken into account. The method is applied to a millimeter-wave Double Drift Region (DDR) MITATT device based on Silicon to obtain noise spectral density and noise measure as a function of frequency for different values of series resistance. It is found that noise measure of the device at the operating frequency (122 GHz) with input power density of 1010 Watt/m2 is about 35 dB for hypothetical parasitic series resistance of zero ohm (estimated junction temperature = 500 K). Results show that the noise measure increases as the value of parasitic resistance increases.

Keywords: Noise Analysis, Silicon MITATT, Admittancecharacteristics, Noise spectral density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1687 The Study of the Intelligent Fuzzy Weighted Input Estimation Method Combined with the Experiment Verification for the Multilayer Materials

Authors: Ming-Hui Lee, Tsung-Chien Chen, Tsu-Ping Yu, Horng-Yuan Jang

Abstract:

The innovative intelligent fuzzy weighted input estimation method (FWIEM) can be applied to the inverse heat transfer conduction problem (IHCP) to estimate the unknown time-varying heat flux of the multilayer materials as presented in this paper. The feasibility of this method can be verified by adopting the temperature measurement experiment. The experiment modular may be designed by using the copper sample which is stacked up 4 aluminum samples with different thicknesses. Furthermore, the bottoms of copper samples are heated by applying the standard heat source, and the temperatures on the tops of aluminum are measured by using the thermocouples. The temperature measurements are then regarded as the inputs into the presented method to estimate the heat flux in the bottoms of copper samples. The influence on the estimation caused by the temperature measurement of the sample with different thickness, the processing noise covariance Q, the weighting factor γ , the sampling time interval Δt , and the space discrete interval Δx , will be investigated by utilizing the experiment verification. The results show that this method is efficient and robust to estimate the unknown time-varying heat input of the multilayer materials.

Keywords: Multilayer Materials, Input Estimation Method, IHCP, Heat Flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
1686 3D Liver Segmentation from CT Images Using a Level Set Method Based on a Shape and Intensity Distribution Prior

Authors: Nuseiba M. Altarawneh, Suhuai Luo, Brian Regan, Guijin Tang

Abstract:

Liver segmentation from medical images poses more challenges than analogous segmentations of other organs. This contribution introduces a liver segmentation method from a series of computer tomography images. Overall, we present a novel method for segmenting liver by coupling density matching with shape priors. Density matching signifies a tracking method which operates via maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Density matching controls the direction of the evolution process and slows down the evolving contour in regions with weak edges. The shape prior improves the robustness of density matching and discourages the evolving contour from exceeding liver’s boundaries at regions with weak boundaries. The model is implemented using a modified distance regularized level set (DRLS) model. The experimental results show that the method achieves a satisfactory result. By comparing with the original DRLS model, it is evident that the proposed model herein is more effective in addressing the over segmentation problem. Finally, we gauge our performance of our model against matrices comprising of accuracy, sensitivity, and specificity.

Keywords: Bhattacharyya distance, distance regularized level set (DRLS) model, liver segmentation, level set method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
1685 Stochastic Subspace Modelling of Turbulence

Authors: M. T. Sichani, B. J. Pedersen, S. R. K. Nielsen

Abstract:

Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical cross spectral density function for the along-wind turbulence component over the wind field area is taken as the starting point. The spectrum is spatially discretized in terms of a Hermitian cross-spectral density matrix for the turbulence state vector which turns out not to be positive definite. Since the succeeding state space and ARMA modelling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.

Keywords: Turbulence, wind turbine, complex coherence, state space modelling, ARMA modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
1684 Simulation of Acoustic Properties of Borate and Tellurite Glasses

Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi

Abstract:

Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.

Keywords: Glasses, ultrasonic wave velocities, elastic moduli, Makishima and Mackenzie model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
1683 Estimating Frequency, Amplitude and Phase of Two Sinusoids with Very Close Frequencies

Authors: Jayme G. A. Barbedo, Amauri Lopes

Abstract:

This paper presents an algorithm to estimate the parameters of two closely spaced sinusoids, providing a frequency resolution that is more than 800 times greater than that obtained by using the Discrete Fourier Transform (DFT). The strategy uses a highly optimized grid search approach to accurately estimate frequency, amplitude and phase of both sinusoids, keeping at the same time the computational effort at reasonable levels. The proposed method has three main characteristics: 1) a high frequency resolution; 2) frequency, amplitude and phase are all estimated at once using one single package; 3) it does not rely on any statistical assumption or constraint. Potential applications to this strategy include the difficult task of resolving coincident partials of instruments in musical signals.

Keywords: Closely spaced sinusoids, high-resolution parameter estimation, optimized grid search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
1682 Density Functional Calculations of N-14 andB-11 NQR Parameters in the H-capped (5, 5)Single-Wall BN Nanotube

Authors: Ahmad Seif, Karim Zare, Asadallah Boshra, Mehran Aghaie

Abstract:

Density functional theory (DFT) calculations were performed to compute nitrogen-14 and boron-11 nuclear quadrupole resonance (NQR) spectroscopy parameters in the representative model of armchair boron nitride nanotube (BNNT) for the first time. The considered model consisting of 1 nm length of H-capped (5, 5) single-wall BNNT were first allowed to fully relax and then the NQR calculations were carried out on the geometrically optimized model. The evaluated nuclear quadrupole coupling constants and asymmetry parameters for the mentioned nuclei reveal that the model can be divided into seven layers of nuclei with an equivalent electrostatic environment where those nuclei at the ends of tubes have a very strong electrostatic environment compared to the other nuclei along the length of tubes. The calculations were performed via Gaussian 98 package of program.

Keywords: Armchair Nanotube, Density Functional Theory, Nuclear Quadrupole Resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748