Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31532
An Experimental Study of Structural, Optical and Magnetic Properties of Lithium Ferrite

Authors: S. Malathi, P. Seenuvasakumaran


Nanomaterials ferrites have applications in making permanent magnets, high density information devices, color imaging etc. In the present examination, lithium ferrite is synthesized by sol-gel process. The x-ray diffraction (XRD) result shows that the structure of lithium ferrite is monoclinic structure. The average particle size 22 nm is calculated by Scherer formula. The lattice parameters and dislocation density (δ) are calculated from XRD data. Strain (ε) values are evaluated from Williamson – hall plot. The FT-IR study reveals the formation of ferrites showing the significant absorption bands. The VU-VIS spectroscopic data is used to calculate direct and indirect optical band gap (Eg) of 1.57eV and 1.01eV respectively for lithium ferrite by using Tauc plot at the edge of the absorption band. The energy dispersive x-ray analysis spectra showed that the expected elements exist in the material. The magnetic behaviour of the materials studied using vibrating sample magnetometer (VSM).

Keywords: Sol-gel, dislocation density, energy band gap, VSM.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333


[1] N. M. Deraz and S. Shaban, “Optimization of catalytic, surface and magnetic properties of nanocrystalline manganese ferrite”, Journal of Analytical and Applied Pyrolysis, 86(1), 2009, pp.173-179.
[2] NM Deraz, MK El-Aiash and SA Ali, “Novel Preparation and Physicochemical Characterization of a Nanocrystalline Cobalt Ferrite System”, Adsorption Science & Technology 27 (8), 2009, pp.797-810.
[3] N.M. Deraz, S.A. Shaban and A. Alarifi, “Removal of sulfur from commercial kerosene using nanocrystalline NiFe 2 O4 based sorbents”, Journal of Saudi Chemical Society, 14 (4), 2010, pp.,357-362.
[4] Y Köseoğlu, A Baykal, F Gözüak and H Kavas, “Structural and magnetic properties of CoxZn 1−xFe 2 O 4 nanocrystals synthesized by microwave method”, Polyhedron, 28 (14), 2009, pp.2887-2892.
[5] Shao -Wen Cao, Ying-Jie Zhu, Guo-Feng Cheng, Yue-Hong Huang and J. Hazard. Mater, ‘ZnFe2O4 nanoparticles: Microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol”, Journal of hazardous materials, 171,2009, pp. 431-435.
[6] Z. H. Zhou, J. M. Xue, J. Wang, H.S.O. Chan, T. Yu and Z. X. Shen, “NiFe2O4 nanoparticles formed in situ in silica matrix by mechanical activation”, J. Appl. Phys. 91(9), 2002, pp.6015-6015, 2002.
[7] Y. Koseoglu, F. F. Yildiz, G.S. Alvarez, M. Toprak, M. Muhammed, B. Aktas, Phys.Status Solidi (b) 42, vol.1712, 2005.
[8] Watanabe A. Yamamura H. Moriyoshi Y and Shirasaki S, In Ferrites: Proc. Of the Third Int. Conf. (Tokyo center for Academic publications) 1982, pp. 170.
[9] N. K. Gill and R. K. Puri, “D.C. resistivity of Cr3+ substituted lithium ferrites,” Journal of Materials Science Letters, vol. 4, 1985, pp. 396–398.
[10] PV Reddy, MB Reddy, VN Muley, KB Reddy andYV Ramana, “Elasticity of lithium-titanium mixed ferrites”, Journal of materials science letters 7 (11), 1988,pp.1243-1244.
[11] Wang W, G u B, Liang L, Hamilton WA, Wesolowski DJ. “Synthesis of Rutile (-TiO2) Nanocrystals with Controlled Size and Shape by Low-Temperature Hydrolysis: Effects of Solvent Composition”. J. Phys. Chem. B. 108 (39),2004, pp.14789-14792.
[12] PK Roy and J Bera, “Characterization of nanocrystalline NiCuZn ferrite powders synthesized by sol–gel auto-combustion method”, Journal of materials processing technology,197 (1), 2008, pp.279-283.
[13] B. D. Cullity, “Elements of X-ray Diffraction”, Addison -Wesley Publishing Co. Inc. 1976.
[14] Ilmārs Zālīte, Gundega Heidemane, Māris Kodols, Jānis Grabis and Mikhail Maiorov, “The Synthesis, Characterization and Sintering of Nickel and Cobalt Ferrite Nanopowders”, Materials Science 18(1), 2012.
[15] Shama Rehman, A. Mumtaz and S. K. Hasanain, “Size effects on the magnetic and optical properties of CuO Nanoparticles”, J Nanopart Res. 13, 2011, pp.2497–2507 DOI 10.1007/s11051-010-0143-8.