Search results for: Double Layer Capacitance
1186 Heat Transfer to Laminar Flow over a Double Backward-Facing Step
Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin
Abstract:
Heat transfer and laminar air flow over a double backward-facing step numerically studied in this paper. The simulations was performed by using ANSYS ICEM for meshing process and using ANSYS fluent 14 (CFD) for solving. The k-ɛ standard model adopted with Reynolds number varied between 98.5 to 512 and three step height at constant heat flux (q=2000 W/m2). The top of wall and bottom of upstream are insulated with bottom of downstream is heated. The results show increase in Nusselt number with increases of Reynolds number for all cases and the maximum of Nusselt number happens at the first step in compared to the second step. Due to increase of cross section area of downstream to generate sudden expansion then Nusselt number decrease but the profile of Nusselt number keep same trend for all cases where increase after the first and second steps. Recirculation region after the first and second steps are denoted by contour of streamline velocity. The higher augmentation of heat transfer rate observed for case 1 at Reynolds number of 512 and heat flux q=2000 W/m2.
Keywords: Laminar flow, Double backward, Separation flow, Recirculation flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35151185 Free Convection Boundary Layer Flow of a Viscoelastic Fluid in the Presence of Heat Generation
Authors: Abdul Rahman Mohd Kasim, Mohd Ariff Admon, Sharidan Shafie
Abstract:
The present paper considers the steady free convection boundary layer flow of a viscoelastics fluid with constant temperature in the presence of heat generation. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group. Computations are performed numerically by using Keller-box method by augmenting an extra boundary condition at infinity and the results are displayed graphically to illustrate the influence of viscoelastic K, heat generation γ , and Prandtl Number, Pr parameters on the velocity and temperature profiles. The results of the surface shear stress in terms of the local skin friction and the surface rate of heat transfer in terms of the local Nusselt number for a selection of the heat generation parameterγ (=0.0, 0.2, 0.5, 0.8, 1.0) are obtained and presented in both tabular and graphical formats. Without effect of the internal heat generation inside the fluid domain for which we take γ = 0.0, the present numerical results show an excellent agreement with previous publication.Keywords: Free Convection, Boundary Layer, CircularCylinder, Viscoelastic Fluid, Heat Generation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19301184 Growth of Non-Polar a-Plane AlGaN Epilayer with High Crystalline Quality and Smooth Surface Morphology
Authors: Abbas Nasir, Xiong Zhang, Sohail Ahmad, Yiping Cui
Abstract:
Non-polar a-plane AlGaN epilayers of high structural quality have been grown on r-sapphire substrate by using metalorganic chemical vapor deposition (MOCVD). A graded non-polar AlGaN buffer layer with variable aluminium concentration was used to improve the structural quality of the non-polar a-plane AlGaN epilayer. The characterisations were carried out by high-resolution X-ray diffraction (HR-XRD), atomic force microscopy (AFM) and Hall effect measurement. The XRD and AFM results demonstrate that the Al-composition-graded non-polar AlGaN buffer layer significantly improved the crystalline quality and the surface morphology of the top layer. A low root mean square roughness 1.52 nm is obtained from AFM, and relatively low background carrier concentration down to 3.9× cm-3 is obtained from Hall effect measurement.
Keywords: Non-polar AlGaN epilayer, Al composition-graded AlGaN layer, root mean square, background carrier concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5381183 Study of the Potential of Raw Sediments and Sediments Treated with Lime or Cement for Use in a Foundation Layer and the Base Layer of a Roadway
Authors: Nor-Edine Abriak, Mahfoud Benzerzour, Mouhamadou Amar, Abdeljalil Zri
Abstract:
In this work, firstly we have studied the potential of raw sediments and sediments treated with lime or cement for use in a foundation layer and the base layer of a roadway. Secondly, we have examined mineral changes caused by the addition of lime or cement in order to explain the mechanical performance of stabilized sediments. After determining the amount of lime and cement required stabilizing the sediments, the compaction characteristics and Immediate Bearing Capacity (IBI) were studied using the Modified Proctor method. Then, the evolution of the three parameters, which are optimum water content, maximum dry density and IBI, were determined. Mechanical performances can be evaluated through resistance to compression, resistance under traction and the elasticity modulus. The resistances of the formulations treated with ROLAC®645 increase with the amount of ROLAC®645. Traction resistance and the elastic modulus were used to evaluate the potential of the formulations as road construction materials using the classification diagram. The results show that all the other formulations with ROLAC®645 can be used in subgrades and foundation layers for roads.
Keywords: Sediment, lime, cement, roadway.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9401182 A Double Referenced Contrast for Blind Source Separation
Authors: Atman Jbari, Abdellah Adib, Driss Aboutajdine
Abstract:
This paper addresses the problem of blind source separation (BSS). To recover original signals, from linear instantaneous mixtures, we propose a new contrast function based on the use of a double referenced system. Our approach assumes statistical independence sources. The reference vectors will be incrusted in the cumulant to evaluate the independence. The estimation of the separating matrix will be performed in two steps: whitening observations and joint diagonalization of a set of referenced cumulant matrices. Computer simulations are presented to demonstrate the effectiveness of the suggested approach.Keywords: Blind source separation, Referenced Cumulant, Contrast, Joint Diagonalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10231181 A Modified Laplace Decomposition Algorithm Solution for Blasius’ Boundary Layer Equation of the Flat Plate in a Uniform Stream
Authors: M. A. Koroma, Z. Chuangyi, A. F., Kamara, A. M. H. Conteh
Abstract:
In this work, we apply the Modified Laplace decomposition algorithm in finding a numerical solution of Blasius’ boundary layer equation for the flat plate in a uniform stream. The series solution is found by first applying the Laplace transform to the differential equation and then decomposing the nonlinear term by the use of Adomian polynomials. The resulting series, which is exactly the same as that obtained by Weyl 1942a, was expressed as a rational function by the use of diagonal padé approximant.
Keywords: Modified Laplace decomposition algorithm, Boundary layer equation, Padé approximant, Numerical solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23801180 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework
Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim
Abstract:
Background modeling and subtraction in video analysis has been widely used as an effective method for moving objects detection in many computer vision applications. Recently, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are the most frequently occurred problems in the practical situation. This paper presents a favorable two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean value of each RGB color channel. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the output of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate very competitive performance compared to previous models.Keywords: Background subtraction, codebook model, local binary pattern, dynamic background, illumination changes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19701179 Effect of a Multiple Stenosis on Blood Flow through a Tube
Authors: Vipin Kumar Verma, Praveen Saraswat
Abstract:
The development of double stenosis in an artery can have serious consequences and can disrupt the normal functioning of the circulatory system. It has been realized that various hydrodynamics effects (i.e. wall shear, pressure distribution etc.) play important role in the development of this disease. Generally in the literature, the cross-section of the artery is assumed to be uniform with a single stenosis. However, in real situation the multiple stenosis develops in series along the length of artery whose cross-section varies slowly. Therefore, the flow of blood is laminar through a small diameter artery with axisymmetric identical double stenosis in series.
Keywords: Wall shear, multiple stenosis, artery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19051178 A Cross-Layer Approach for Cooperative MIMO Multi-hop Wireless Sensor Networks
Authors: Jain-Shing Liu
Abstract:
In this work, we study the problem of determining the minimum scheduling length that can satisfy end-to-end (ETE) traffic demand in scheduling-based multihop WSNs with cooperative multiple-input multiple-output (MIMO) transmission scheme. Specifically, we present a cross-layer formulation for the joint routing, scheduling and stream control problem by incorporating various power and rate adaptation schemes, and taking into account an antenna beam pattern model and the signal-to-interference-and-noise (SINR) constraint at the receiver. In the context, we also propose column generation (CG) solutions to get rid of the complexity requiring the enumeration of all possible sets of scheduling links.Keywords: Wireless Sensor Networks, Cross-Layer Design, CooperativeMIMO System, Column Generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16571177 Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes
Authors: Barun Chakrabarti, Dan Nir, Vladimir Yufit, P. V. Aravind, Nigel Brandon
Abstract:
Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples.Keywords: All-vanadium redox flow batteries, carbon paper electrodes, electrophoretic deposition, reduced graphene oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17491176 Numerical Evaluation of Turbulent Friction on Walls in the Penstock of the Trois-Gorges Dam by the Swamee-Jain Method
Authors: T. Tchawe Moukam, N. Ngongang François, D. Thomas, K. Bienvenu, T. -Toko Dénis
Abstract:
Since the expression of the coefficient of friction by Colebrook-White which turns out to be an implicit equation, equations have been developed to facilitate their applicability. In this work, this equation was applied to the penstock of the Three Gorges dam in order to observe the evolution of the turbulent boundary layer and the friction along the walls. Thus, the study is being carried out using a 3D digital approach in FLUENT in order to take into account the wall effects. It appears that according to the position of the portions, we have a variation in the evolutions of the turbulent friction and of the values of the boundary layer. We also observe that the inclination of the pipe has a significant influence on this turbulent friction; similarly, one could not make a fair evaluation of the latter without specifying the choice and location of the wall.
Keywords: Hydroelectric dam, penstock, turbulent friction, boundary layer, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4791175 Effects of Mixed Convection and Double Dispersion on Semi Infinite Vertical Plate in Presence of Radiation
Authors: A.S.N.Murti, D.R.V.S.R.K. Sastry, P.K. Kameswaran, T. Poorna Kantha
Abstract:
In this paper, the effects of radiation, chemical reaction and double dispersion on mixed convection heat and mass transfer along a semi vertical plate are considered. The plate is embedded in a Newtonian fluid saturated non - Darcy (Forchheimer flow model) porous medium. The Forchheimer extension and first order chemical reaction are considered in the flow equations. The governing sets of partial differential equations are nondimensionalized and reduced to a set of ordinary differential equations which are then solved numerically by Fourth order Runge– Kutta method. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) against various parameters are presented in graphs. The obtained results are checked against previously published work for special cases of the problem and are found to be in good agreement.Keywords: Radiation, Chemical reaction, Double dispersion, Mixed convection, Heat and Mass transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17191174 Layer-by-Layer Deposition of Poly (Ethylene Imine) Nanolayers on Polypropylene Nonwoven Fabric. Electrostatic and Thermal Properties
Authors: Dawid Stawski, Silviya Halacheva, Dorota Zielińska
Abstract:
The surface properties of many materials can be readily and predictably modified by the controlled deposition of thin layers containing appropriate functional groups and this research area is now a subject of widespread interest. The layer-by-layer (lbl) method involves depositing oppositely charged layers of polyelectrolytes onto the substrate material which are stabilized due to strong electrostatic forces between adjacent layers. This type of modification affords products that combine the properties of the original material with the superficial parameters of the new external layers. Through an appropriate selection of the deposited layers, the surface properties can be precisely controlled and readily adjusted in order to meet the requirements of the intended application. In the presented paper a variety of anionic (poly(acrylic acid)) and cationic (linear poly(ethylene imine), polymers were successfully deposited onto the polypropylene nonwoven using the lbl technique. The chemical structure of the surface before and after modification was confirmed by reflectance FTIR spectroscopy, volumetric analysis and selective dyeing tests. As a direct result of this work, new materials with greatly improved properties have been produced. For example, following a modification process significant changes in the electrostatic activity of a range of novel nanocomposite materials were observed. The deposition of polyelectrolyte nanolayers was found to strongly accelerate the loss of electrostatically generated charges and to increase considerably the thermal resistance properties of the modified fabric (the difference in T50% is over 20oC). From our results, a clear relationship between the type of polyelectrolyte layer deposited onto the flat fabric surface and the properties of the modified fabric was identified.
Keywords: Layer-by-layer technique, polypropylene nonwoven, surface modification, surface properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25091173 On the AC-Side Interface Filter in Three-Phase Shunt Active Power Filter Systems
Authors: Mihaela Popescu, Alexandru Bitoleanu, Mircea Dobriceanu
Abstract:
The proper selection of the AC-side passive filter interconnecting the voltage source converter to the power supply is essential to obtain satisfactory performances of an active power filter system. The use of the LCL-type filter has the advantage of eliminating the high frequency switching harmonics in the current injected into the power supply. This paper is mainly focused on analyzing the influence of the interface filter parameters on the active filtering performances. Some design aspects are pointed out. Thus, the design of the AC interface filter starts from transfer functions by imposing the filter performance which refers to the significant current attenuation of the switching harmonics without affecting the harmonics to be compensated. A Matlab/Simulink model of the entire active filtering system including a concrete nonlinear load has been developed to examine the system performances. It is shown that a gamma LC filter could accomplish the attenuation requirement of the current provided by converter. Moreover, the existence of an optimal value of the grid-side inductance which minimizes the total harmonic distortion factor of the power supply current is pointed out. Nevertheless, a small converter-side inductance and a damping resistance in series with the filter capacitance are absolutely needed in order to keep the ripple and oscillations of the current at the converter side within acceptable limits. The effect of change in the LCL-filter parameters is evaluated. It is concluded that good active filtering performances can be achieved with small values of the capacitance and converter-side inductance.Keywords: Active power filter, LCL filter, Matlab/Simulinkmodeling, Passive filters, Transfer function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30231172 Investigating the Impact of the Laundry and Sterilization Process on the Performance of Reusable Surgical Gowns
Authors: N. Khomarloo, F. Mousazadegan, M. Latifi, N. Hemmatinejad
Abstract:
Recently, the utilization of reusable surgical gowns in order to decrease costs, environmental protection and enhance surgeon’s comfort is considered. One of the concerns in applying this kind of medical protective clothing is reduction of their resistance to bacterial penetration especially in wet state, after repeated laundering and sterilizing process. The purpose of this study is to investigate the effect of the laundering and sterilizing process on the reusable surgical gown’s resistance against bacterial wet penetration. To this end, penetration of Staphylococcus aureus bacteria in wet state after 70 washing and sterilizing cycles was evaluated on the two single-layer and three-layer reusable gowns. The outcomes reveal that up to 20 laundering and sterilizing cycles, protective property of samples improves due to fabric shrinkage, after that because of the fabric’s construction opening, the bacterial penetration increase. However, the three-layer gown presents higher protective performance comparing to the single-layer one.
Keywords: Reusable surgical gown, laundry, sterilization, wet bacterial penetration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17591171 Natural Discovery: Electricity Potential from Vermicompost (Waste to Energy)
Authors: R. A. Karim, N. M. A. Ghani, N. N. S. Nasari
Abstract:
Wastages such as grated coconut meat, spent tea and used sugarcane had contributed negative impacts to the environment. Vermicomposting method is fully utilized to manage the wastes towards a more sustainable approach. The worms that are used in the vermicomposting are Eisenia foetida and Eudrillus euginae. This research shows that the vermicompost of wastages has voltage of electrical energy and is able to light up the Light-Emitting Diode (LED) device. Based on the experiment, the use of replicated and double compartments of the component will produce double of voltage. Hence, for conclusion, this harmless and low cost technology of vermicompost can act as a dry cell in order to reduce the usage of hazardous chemicals that can contaminate the environment.
Keywords: Wastages, vermiconpose, worm, voltage, organic cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42521170 Numerical Study of Flow Separation Control over a NACA2415 Airfoil
Authors: M. Tahar Bouzaher
Abstract:
This study involves numerical simulation of the flow around a NACA2415 airfoil, with a 18° angle of attack, and flow separation control using a rod, It involves putting a cylindrical rod - upstream of the leading edge- in vertical translation movement in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, nonstationary flow is simulated using ANSYS FLUENT 13. The rod movement is reproduced using the dynamic mesh technique and an in-house developed UDF (User Define Function). The frequency varies from 75 to 450 Hz and the considered amplitudes are 2%, and 3% of the foil chord. The frequency chosen closed to the frequency of separation. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 61%.
Keywords: CFD, Flow separation, Active control, Boundary layer, rod, NACA 2415.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30071169 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods
Authors: M. Sinecen, M. Makinacı
Abstract:
The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.
Keywords: Artificial neural networks, texture classification, cancer diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16001168 Two Dimensional Simulation of Fluid Flow and Heat Transfer in the Transition Flow Regime using a Lattice Boltzmann Approach
Authors: Mehdi Shamshiri, Mahmud Ashrafizaadeh
Abstract:
The significant effects of the interactions between the system boundaries and the near wall molecules in miniaturized gaseous devices lead to the formation of the Knudsen layer in which the Navier-Stokes-Fourier (NSF) equations fail to predict the correct associated phenomena. In this paper, the well-known lattice Boltzmann method (LBM) is employed to simulate the fluid flow and heat transfer processes in rarefied gaseous micro media. Persuaded by the problematic deficiency of the LBM in capturing the Knudsen layer phenomena, present study tends to concentrate on the effective molecular mean free path concept the main essence of which is to compensate the incapability of this mesoscopic method in dealing with the momentum and energy transport within the above mentioned kinetic boundary layer. The results show qualitative and quantitative accuracy comparable to the solutions of the linearized Boltzmann equation or the DSMC data for the Knudsen numbers of O (1) .Keywords: Fluid flow and Heat transfer, Knudsen layer, Lattice Boltzmann method (LBM), Micro-scale numerical simulation, Transition regime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17671167 Implementation of SSL Using Information Security Component Interface
Authors: Jong-Whoi Shin, Chong-Sun Hwang
Abstract:
Various security APIs (Application Programming Interfaces) are being used in a variety of application areas requiring the information security function. However, these standards are not compatible, and the developer must use those APIs selectively depending on the application environment or the programming language. To resolve this problem, we propose the standard draft of the information security component, while SSL (Secure Sockets Layer) using the confidentiality and integrity component interface has been implemented to verify validity of the standard proposal. The implemented SSL uses the lower-level SSL component when establishing the RMI (Remote Method Invocation) communication between components, as if the security algorithm had been implemented by adding one more layer on the TCP/IP.Keywords: Component Based Design, Application Programming Interface, Secure Socket Layer, Remote Method Invocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15201166 Modeling and Analysis for Effective Capacity of a Cross-Layer Optimized Wireless Networks
Authors: Reham A. El-mayet, Hesham M. El-Badawy, Salwa H. Elramly
Abstract:
New generation mobile communication networks have the ability of supporting triple play. In order that, Orthogonal Frequency Division Multiplexing (OFDM) access techniques have been chosen to enlarge the system ability for high data rates networks. Many of cross-layer modeling and optimization schemes for Quality of Service (QoS) and capacity of downlink multiuser OFDM system were proposed. In this paper, the Maximum Weighted Capacity (MWC) based resource allocation at the Physical (PHY) layer is used. This resource allocation scheme provides a much better QoS than the previous resource allocation schemes, while maintaining the highest or nearly highest capacity and costing similar complexity. In addition, the Delay Satisfaction (DS) scheduling at the Medium Access Control (MAC) layer, which allows more than one connection to be served in each slot is used. This scheduling technique is more efficient than conventional scheduling to investigate both of the number of users as well as the number of subcarriers against system capacity. The system will be optimized for different operational environments: the outdoor deployment scenarios as well as the indoor deployment scenarios are investigated and also for different channel models. In addition, effective capacity approach [1] is used not only for providing QoS for different mobile users, but also to increase the total wireless network's throughput.Keywords: Cross-layer, effective capacity, LTE, OFDM, QoS, resource allocation, wireless networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18021165 Harmonic Analysis and Performance Improvement of a Wind Energy Conversions System with Double Output Induction Generator
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
Wind turbines with double output induction generators can operate at variable speed permitting conversion efficiency maximization over a wide range of wind velocities. This paper presents the performance analysis of a wind driven double output induction generator (DOIG) operating at varying shafts speed. A periodic transient state analysis of DOIG equipped with two converters is carried out using a hybrid induction machine model. This paper simulates the harmonic content of waveforms in various points of drive at different speeds, based on the hybrid model (dqabc). Then the sinusoidal and trapezoidal pulse-width–modulation control techniques are used in order to improve the power factor of the machine and to weaken the injected low order harmonics to the supply. Based on the frequency spectrum, total harmonics distortion, distortion factor and power factor. Finally advantages of sinusoidal and trapezoidal pulse width modulation techniques are compared.Keywords: DOIG, Harmonic Analysis, Wind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18071164 Performance Evaluation of AOMDV-PAMAC Protocols for Ad Hoc Networks
Authors: B. Malarkodi, S. K. Riyaz Hussain, B. Venkataramani
Abstract:
Power consumption of nodes in ad hoc networks is a critical issue as they predominantly operate on batteries. In order to improve the lifetime of an ad hoc network, all the nodes must be utilized evenly and the power required for connections must be minimized. In this project a link layer algorithm known as Power Aware medium Access Control (PAMAC) protocol is proposed which enables the network layer to select a route with minimum total power requirement among the possible routes between a source and a destination provided all nodes in the routes have battery capacity above a threshold. When the battery capacity goes below a predefined threshold, routes going through these nodes will be avoided and these nodes will act only as source and destination. Further, the first few nodes whose battery power drained to the set threshold value are pushed to the exterior part of the network and the nodes in the exterior are brought to the interior. Since less total power is required to forward packets for each connection. The network layer protocol AOMDV is basically an extension to the AODV routing protocol. AOMDV is designed to form multiple routes to the destination and it also avoid the loop formation so that it reduces the unnecessary congestion to the channel. In this project, the performance of AOMDV is evaluated using PAMAC as a MAC layer protocol and the average power consumption, throughput and average end to end delay of the network are calculated and the results are compared with that of the other network layer protocol AODV.Keywords: AODV, PAMAC, AOMDV, Power consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18321163 Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets
Authors: S. Vignesh, N. Vishnu, S. Vigneshwaran, M. Vishnu Anand, Dinesh Kumar Babu, V. R. Sanal Kumar
Abstract:
Numerical studies have been carried out using a validated two-dimensional standard k-omega turbulence model for the design optimization of a thrust vector control system using shock induced self-impinging supersonic secondary double jet. Parametric analytical studies have been carried out at different secondary injection locations to identifying the highest unsymmetrical distribution of the main gas flow due to shock waves, which produces a desirable side force more lucratively for vectoring. The results from the parametric studies of the case on hand reveal that the shock induced self-impinging supersonic secondary double jet is more efficient in certain locations at the divergent region of a CD nozzle than a case with supersonic single jet with same mass flow rate. We observed that the best axial location of the self-impinging supersonic secondary double jet nozzle with a given jet interaction angle, built-in to a CD nozzle having area ratio 1.797, is 0.991 times the primary nozzle throat diameter from the throat location. We also observed that the flexible steering is possible after invoking ON/OFF facility to the secondary nozzles for meeting the onboard mission requirements. Through our case studies we concluded that the supersonic self-impinging secondary double jet at predesigned jet interaction angle and location can provide more flexible steering options facilitating with 8.81% higher thrust vectoring efficiency than the conventional supersonic single secondary jet without compromising the payload capability of any supersonic aerospace vehicle.Keywords: Fluidic thrust vectoring, rocket steering, self-impinging secondary supersonic jet, TVC in aerospace vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26831162 Architectural Stratification and Woody Species Diversity of a Subtropical Forest Grown in a Limestone Habitat in Okinawa Island, Japan
Authors: S. M. Feroz, K. Yoshimura, A. Hagihara
Abstract:
The forest stand consisted of four layers. The species composition between the third and the bottom layers was almost similar, whereas it was almost exclusive between the top and the lower three layers. The values of Shannon-s index H' and Pielou-s index J ' tended to increase from the bottom layer upward, except for H' -value of the top layer. The values of H' and J ' were 4.21 bit and 0.73, respectively, for the total stand. High woody species diversity of the forest depended on large trees in the upper layers, which trend was different from a subtropical evergreen broadleaf forest grown in silicate habitat in the northern part of Okinawa Island. The spatial distribution of trees was overlapped between the third and the bottom layers, whereas it was independent or slightly exclusive between the top and the lower three layers. Mean tree weight of each layer decreased from the top toward the bottom layer, whereas the corresponding tree density increased from the top downward. This relationship was analogous to the process of self-thinning plant populations.Keywords: Canopy multi-layering, limestone habitat, mean tree weight-density relationship, species diversity, subtropical forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12341161 Single Zone Model for HCCI Engine Fueled with n-Heptane
Authors: Thanapiyawanit Bancha, Lu Jau-Huai
Abstract:
In this study, we developed a model to predict the temperature and the pressure variation in an internal combustion engine operated in HCCI (Homogeneous charge compression ignition) mode. HCCI operation begins from aspirating of homogeneous charge mixture through intake valve like SI (Spark ignition) engine and the premixed charge is compressed until temperature and pressure of mixture reach autoignition point like diesel engine. Combustion phase was described by double-Wiebe function. The single zone model coupled with an double-Wiebe function were performed to simulated pressure and temperature between the period of IVC (Inlet valve close) and EVO (Exhaust valve open). Mixture gas properties were implemented using STANJAN and transfer the results to main model. The model has considered the engine geometry and enables varying in fuelling, equivalence ratio, manifold temperature and pressure. The results were compared with the experiment and showed good correlation with respect to combustion phasing, pressure rise, peak pressure and temperature. This model could be adapted and use to control start of combustion for HCCI engine.Keywords: Double-Wiebe function, HCCI, Ignition enhancer, Single zone model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28081160 Daily Global Solar Radiation Modeling Using Multi-Layer Perceptron (MLP) Neural Networks
Authors: Seyed Fazel Ziaei Asl, Ali Karami, Gholamreza Ashari, Azam Behrang, Arezoo Assareh, N.Hedayat
Abstract:
Predict daily global solar radiation (GSR) based on meteorological variables, using Multi-layer perceptron (MLP) neural networks is the main objective of this study. Daily mean air temperature, relative humidity, sunshine hours, evaporation, wind speed, and soil temperature values between 2002 and 2006 for Dezful city in Iran (32° 16' N, 48° 25' E), are used in this study. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data.
Keywords: Multi-layer Perceptron (MLP) Neural Networks;Global Solar Radiation (GSR), Meteorological Parameters, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29911159 Double Diffusive Convection in a Partially Porous Cavity under Suction/Injection Effects
Authors: Y. Outaleb, K. Bouhadef, O. Rahli
Abstract:
Double-diffusive steady convection in a partially porous cavity with partially permeable walls and under the combined buoyancy effects of thermal and mass diffusion was analysed numerically using finite volume method. The top wall is well insulated and impermeable while the bottom surface is partially well insulated and impermeable and partially submitted to constant temperature T1 and concentration C1. Constant equal temperature T2 and concentration C2 are imposed along the vertical surfaces of the enclosure. Mass suction/injection and injection/suction are respectively considered at the bottom of the porous centred partition and at one of the vertical walls. Heat and mass transfer characteristics as streamlines and average Nusselt numbers and Sherwood numbers were discussed for different values of buoyancy ratio, Rayleigh number, and injection/suction coefficient. It is especially noted that increasing the injection factor disadvantages the exchanges in the case of the injection while the transfer is augmented in case of suction. On the other hand, a critical value of the buoyancy ratio was highlighted for which heat and mass transfers are minimized.Keywords: Double diffusive convection, Injection/Extraction, Partially porous cavity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15661158 Mixed Convection Boundary Layer Flow from a Vertical Cone in a Porous Medium Filled with a Nanofluid
Authors: Ezzah Liana Ahmad Fauzi, Syakila Ahmad, Ioan Pop
Abstract:
The steady mixed convection boundary layer flow from a vertical cone in a porous medium filled with a nanofluid is numerically investigated using different types of nanoparticles as Cu (copper), Al2O3 (alumina) and TiO2 (titania). The boundary value problem is solved by using the shooting technique by reducing it into an ordinary differential equation. Results of interest for the local Nusselt number with various values of the constant mixed convection parameter and nanoparticle volume fraction parameter are evaluated. It is found that dual solutions exist for a certain range of mixed convection parameter.Keywords: boundary layer, mixed convection, nanofluid, porous medium, vertical cone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23001157 Silicon-To-Silicon Anodic Bonding via Intermediate Borosilicate Layer for Passive Flow Control Valves
Authors: Luc Conti, Dimitry Dumont-Fillon, Harald van Lintel, Eric Chappel
Abstract:
Flow control valves comprise a silicon flexible membrane that deflects against a substrate, usually made of glass, containing pillars, an outlet hole, and anti-stiction features. However, there is a strong interest in using silicon instead of glass as substrate material, as it would simplify the process flow by allowing the use of well controlled anisotropic etching. Moreover, specific devices demanding a bending of the substrate would also benefit from the inherent outstanding mechanical strength of monocrystalline silicon. Unfortunately, direct Si-Si bonding is not easily achieved with highly structured wafers since residual stress may prevent the good adhesion between wafers. Using a thermoplastic polymer, such as parylene, as intermediate layer is not well adapted to this design as the wafer-to-wafer alignment is critical. An alternative anodic bonding method using an intermediate borosilicate layer has been successfully tested. This layer has been deposited onto the silicon substrate. The bonding recipe has been adapted to account for the presence of the SOI buried oxide and intermediate glass layer in order not to exceed the breakdown voltage. Flow control valves dedicated to infusion of viscous fluids at very high pressure have been made and characterized. The results are compared to previous data obtained using the standard anodic bonding method.
Keywords: Anodic bonding, evaporated glass, microfluidic valve, drug delivery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865