Search results for: A complexity-based approach in image compression using neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8252

Search results for: A complexity-based approach in image compression using neural networks

5972 Scatterer Density in Edge and Coherence Enhancing Nonlinear Anisotropic Diffusion for Medical Ultrasound Speckle Reduction

Authors: Ahmed Badawi, J. Michael Johnson, Mohamed Mahfouz

Abstract:

This paper proposes new enhancement models to the methods of nonlinear anisotropic diffusion to greatly reduce speckle and preserve image features in medical ultrasound images. By incorporating local physical characteristics of the image, in this case scatterer density, in addition to the gradient, into existing tensorbased image diffusion methods, we were able to greatly improve the performance of the existing filtering methods, namely edge enhancing (EE) and coherence enhancing (CE) diffusion. The new enhancement methods were tested using various ultrasound images, including phantom and some clinical images, to determine the amount of speckle reduction, edge, and coherence enhancements. Scatterer density weighted nonlinear anisotropic diffusion (SDWNAD) for ultrasound images consistently outperformed its traditional tensor-based counterparts that use gradient only to weight the diffusivity function. SDWNAD is shown to greatly reduce speckle noise while preserving image features as edges, orientation coherence, and scatterer density. SDWNAD superior performances over nonlinear coherent diffusion (NCD), speckle reducing anisotropic diffusion (SRAD), adaptive weighted median filter (AWMF), wavelet shrinkage (WS), and wavelet shrinkage with contrast enhancement (WSCE), make these methods ideal preprocessing steps for automatic segmentation in ultrasound imaging.

Keywords: Nonlinear anisotropic diffusion, ultrasound imaging, speckle reduction, scatterer density estimation, edge based enhancement, coherence enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
5971 An Innovational Intermittent Algorithm in Networks-On-Chip (NOC)

Authors: Ahmad M. Shafiee, Mehrdad Montazeri, Mahdi Nikdast

Abstract:

Every day human life experiences new equipments more automatic and with more abilities. So the need for faster processors doesn-t seem to finish. Despite new architectures and higher frequencies, a single processor is not adequate for many applications. Parallel processing and networks are previous solutions for this problem. The new solution to put a network of resources on a chip is called NOC (network on a chip). The more usual topology for NOC is mesh topology. There are several routing algorithms suitable for this topology such as XY, fully adaptive, etc. In this paper we have suggested a new algorithm named Intermittent X, Y (IX/Y). We have developed the new algorithm in simulation environment to compare delay and power consumption with elders' algorithms.

Keywords: Computer architecture, parallel computing, NOC, routing algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
5970 Segmentation Free Nastalique Urdu OCR

Authors: Sobia T. Javed, Sarmad Hussain, Ameera Maqbool, Samia Asloob, Sehrish Jamil, Huma Moin

Abstract:

The electronically available Urdu data is in image form which is very difficult to process. Printed Urdu data is the root cause of problem. So for the rapid progress of Urdu language we need an OCR systems, which can help us to make Urdu data available for the common person. Research has been carried out for years to automata Arabic and Urdu script. But the biggest hurdle in the development of Urdu OCR is the challenge to recognize Nastalique Script which is taken as standard for writing Urdu language. Nastalique script is written diagonally with no fixed baseline which makes the script somewhat complex. Overlap is present not only in characters but in the ligatures as well. This paper proposes a method which allows successful recognition of Nastalique Script.

Keywords: HMM, Image processing, Optical CharacterRecognition, Urdu OCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
5969 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images

Authors: M. Das Gupta, S. Banerjee

Abstract:

Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.

Keywords: Case based reasoning, Exudates, Retina image, Similarity based retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
5968 High Capacity Spread-Spectrum Watermarking for Telemedicine Applications

Authors: Basant Kumar, Animesh Anand, S.P. Singh, Anand Mohan

Abstract:

This paper presents a new spread-spectrum watermarking algorithm for digital images in discrete wavelet transform (DWT) domain. The algorithm is applied for embedding watermarks like patient identification /source identification or doctors signature in binary image format into host digital radiological image for potential telemedicine applications. Performance of the algorithm is analysed by varying the gain factor, subband decomposition levels, and size of watermark. Simulation results show that the proposed method achieves higher watermarking capacity.

Keywords: Watermarking, spread-spectrum, discrete wavelettransform, telemedicine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
5967 Denoising based on Wavelets and Deblurring via Self-Organizing Map for Synthetic Aperture Radar Images

Authors: Mario Mastriani

Abstract:

This work deals with unsupervised image deblurring. We present a new deblurring procedure on images provided by lowresolution synthetic aperture radar (SAR) or simply by multimedia in presence of multiplicative (speckle) or additive noise, respectively. The method we propose is defined as a two-step process. First, we use an original technique for noise reduction in wavelet domain. Then, the learning of a Kohonen self-organizing map (SOM) is performed directly on the denoised image to take out it the blur. This technique has been successfully applied to real SAR images, and the simulation results are presented to demonstrate the effectiveness of the proposed algorithms.

Keywords: Blur, Kohonen self-organizing map, noise, speckle, synthetic aperture radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
5966 A Time-Reducible Approach to Compute Determinant |I-X|

Authors: Wang Xingbo

Abstract:

Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.

Keywords: Algorithm, determinant, computation, eigenvalue, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1163
5965 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: Structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 428
5964 AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U networks

Authors: Farshad Zeinali, Sajedeh Norouzi, Nader Mokari, Eduard A. Jorswieck

Abstract:

The capacity of fifth-generation (5G)vehicle-to-everything (V2X) networks poses significant challenges.To address this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a vehicular heterogeneous network (HetNet). We propose a framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles, while guarantying the WiFi users throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands.

Keywords: Vehicle-to-everything, resource allocation, BS assignment, new radio, new radio unlicensed, coexistence NR-U and WiFi, deep deterministic policy gradient, Deep Q-network, Duty cycle mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 348
5963 Indian License Plate Detection and Recognition Using Morphological Operation and Template Matching

Authors: W. Devapriya, C. Nelson Kennedy Babu, T. Srihari

Abstract:

Automatic License plate recognition (ALPR) is a technology which recognizes the registration plate or number plate or License plate of a vehicle. In this paper, an Indian vehicle number plate is mined and the characters are predicted in efficient manner. ALPR involves four major technique i) Pre-processing ii) License Plate Location Identification iii) Individual Character Segmentation iv) Character Recognition. The opening phase, named pre-processing helps to remove noises and enhances the quality of the image using the conception of Morphological Operation and Image subtraction. The second phase, the most puzzling stage ascertain the location of license plate using the protocol Canny Edge detection, dilation and erosion. In the third phase, each characters characterized by Connected Component Approach (CCA) and in the ending phase, each segmented characters are conceptualized using cross correlation template matching- a scheme specifically appropriate for fixed format. Major application of ALPR is Tolling collection, Border Control, Parking, Stolen cars, Enforcement, Access Control, Traffic control. The database consists of 500 car images taken under dissimilar lighting condition is used. The efficiency of the system is 97%. Our future focus is Indian Vehicle License Plate Validation (Whether License plate of a vehicle is as per Road transport and highway standard).

Keywords: Automatic License plate recognition, Character recognition, Number plate Recognition, Template matching, morphological operation, canny edge detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
5962 An Improved Switching Median filter for Uniformly Distributed Impulse Noise Removal

Authors: Rajoo Pandey

Abstract:

The performance of an image filtering system depends on its ability to detect the presence of noisy pixels in the image. Most of the impulse detection schemes assume the presence of salt and pepper noise in the images and do not work satisfactorily in case of uniformly distributed impulse noise. In this paper, a new algorithm is presented to improve the performance of switching median filter in detection of uniformly distributed impulse noise. The performance of the proposed scheme is demonstrated by the results obtained from computer simulations on various images.

Keywords: Switching median filter, Impulse noise, Imagefiltering, Impulse detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
5961 An 8-Bit, 100-MSPS Fully Dynamic SAR ADC for Ultra-High Speed Image Sensor

Authors: F. Rarbi, D. Dzahini, W. Uhring

Abstract:

In this paper, a dynamic and power efficient 8-bit and 100-MSPS Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) is presented. The circuit uses a non-differential capacitive Digital-to-Analog (DAC) architecture segmented by 2. The prototype is produced in a commercial 65-nm 1P7M CMOS technology with 1.2-V supply voltage. The size of the core ADC is 208.6 x 103.6 µm2. The post-layout noise simulation results feature a SNR of 46.9 dB at Nyquist frequency, which means an effective number of bit (ENOB) of 7.5-b. The total power consumption of this SAR ADC is only 1.55 mW at 100-MSPS. It achieves then a figure of merit of 85.6 fJ/step.

Keywords: CMOS analog to digital converter, dynamic comparator, image sensor application, successive approximation register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
5960 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux

Authors: Hao Mi, Ming Yang, Tian-yue Yang

Abstract:

Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.

Keywords: Remote monitoring, non-destructive testing, embedded linux system, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
5959 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation

Authors: Lae-Jeong Park

Abstract:

The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.

Keywords: Pedestrian detection, color segmentation, false positives, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
5958 A Simulation Software for DNA Computing Algorithms Implementation

Authors: M. S. Muhammad, S. M. W. Masra, K. Kipli, N. Zamhari

Abstract:

The capturing of gel electrophoresis image represents the output of a DNA computing algorithm. Before this image is being captured, DNA computing involves parallel overlap assembly (POA) and polymerase chain reaction (PCR) that is the main of this computing algorithm. However, the design of the DNA oligonucleotides to represent a problem is quite complicated and is prone to errors. In order to reduce these errors during the design stage before the actual in-vitro experiment is carried out; a simulation software capable of simulating the POA and PCR processes is developed. This simulation software capability is unlimited where problem of any size and complexity can be simulated, thus saving cost due to possible errors during the design process. Information regarding the DNA sequence during the computing process as well as the computing output can be extracted at the same time using the simulation software.

Keywords: DNA computing, PCR, POA, simulation software

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
5957 Characteristics of Wall Thickness Increase in Pipe Reduction Process using Planetary Rolls

Authors: Yuji Kotani, Shunsuke Kanai, Hisaki Watari

Abstract:

In recent years, global warming has become a worldwide problem. The reduction of carbon dioxide emissions is a top priority for many companies in the manufacturing industry. In the automobile industry as well, the reduction of carbon dioxide emissions is one of the most important issues. Technology to reduce the weight of automotive parts improves the fuel economy of automobiles, and is an important technology for reducing carbon dioxide. Also, even if this weight reduction technology is applied to electric automobiles rather than gasoline automobiles, reducing energy consumption remains an important issue. Plastic processing of hollow pipes is one important technology for realizing the weight reduction of automotive parts. Ohashi et al. [1],[2] present an example of research on pipe formation in which a process was carried out to enlarge a pipe diameter using a lost core, achieving the suppression of wall thickness reduction and greater pipe expansion than hydroforming. In this study, we investigated a method to increase the wall thickness of a pipe through pipe compression using planetary rolls. The establishment of a technology whereby the wall thickness of a pipe can be controlled without buckling the pipe is an important technology for the weight reduction of products. Using the finite element analysis method, we predicted that it would be possible to increase the compression of an aluminum pipe with a 3mm wall thickness by approximately 20%, and wall thickness by approximately 20% by pressing the hollow pipe with planetary rolls.

Keywords: Pipe-Forming, Wall Thickness, Finite-element-method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2990
5956 TBOR: Tree Based Opportunistic Routing for Mobile Ad Hoc Networks

Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji

Abstract:

A mobile ad hoc network (MANET) is a wireless communication network where nodes that are not within direct transmission range establish their communication via the help of other nodes to forward data. Routing protocols in MANETs are usually categorized as proactive. Tree Based Opportunistic Routing (TBOR) finds a multipath link based on maximum probability of the throughput. The simulation results show that the presented method is performed very well compared to the existing methods in terms of throughput, delay and routing overhead.

Keywords: Mobile ad hoc networks, opportunistic data forwarding, proactive Source routing, BFS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
5955 Advanced Image Analysis Tools Development for the Early Stage Bronchial Cancer Detection

Authors: P. Bountris, E. Farantatos, N. Apostolou

Abstract:

Autofluorescence (AF) bronchoscopy is an established method to detect dysplasia and carcinoma in situ (CIS). For this reason the “Sotiria" Hospital uses the Karl Storz D-light system. However, in early tumor stages the visualization is not that obvious. With the help of a PC, we analyzed the color images we captured by developing certain tools in Matlab®. We used statistical methods based on texture analysis, signal processing methods based on Gabor models and conversion algorithms between devicedependent color spaces. Our belief is that we reduced the error made by the naked eye. The tools we implemented improve the quality of patients' life.

Keywords: Bronchoscopy, digital image processing, lung cancer, texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
5954 Determinants of Brand Equity: Offering a Model to Chocolate Industry

Authors: Emari Hossien

Abstract:

This study examined the underlying dimensions of brand equity in the chocolate industry. For this purpose, researchers developed a model to identify which factors are influential in building brand equity. The second purpose was to assess brand loyalty and brand images mediating effect between brand attitude, brand personality, brand association with brand equity. The study employed structural equation modeling to investigate the causal relationships between the dimensions of brand equity and brand equity itself. It specifically measured the way in which consumers’ perceptions of the dimensions of brand equity affected the overall brand equity evaluations. Data were collected from a sample of consumers of chocolate industry in Iran. The results of this empirical study indicate that brand loyalty and brand image are important components of brand equity in this industry. Moreover, the role of brand loyalty and brand image as mediating factors in the intention of brand equity are supported. The principal contribution of the present research is that it provides empirical evidence of the multidimensionality of consumer based brand equity, supporting Aaker´s and Keller´s conceptualization of brand equity. The present research also enriched brand equity building by incorporating the brand personality and brand image, as recommended by previous researchers. Moreover, creating the brand equity index in chocolate industry of Iran particularly is novel.

Keywords: brand equity, brand personality, structural equationmodeling, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3622
5953 Comments on He et al.’s Robust Biometric-based User Authentication Scheme for WSNs

Authors: Eun-Jun Yoon, Kee-Young Yoo

Abstract:

In order to guarantee secure communication for wireless sensor networks (WSNs), many user authentication schemes have successfully drawn researchers- attention and been studied widely. In 2012, He et al. proposed a robust biometric-based user authentication scheme for WSNs. However, this paper demonstrates that He et al.-s scheme has some drawbacks: poor reparability problem, user impersonation attack, and sensor node impersonate attack.

Keywords: Security, authentication, biometrics, poor reparability, impersonation attack, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
5952 Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems

Authors: Mohamed Omar

Abstract:

Steel bracing members are widely used in steel  structures to reduce lateral displacement and dissipate energy during  earthquake motions. Concentric steel bracing provide an excellent  approach for strengthening and stiffening steel buildings. Using these  braces the designer can hardly adjust the stiffness together with  ductility as needed because of buckling of braces in compression. In  this study the use of SMA bracing and steel bracing (Mega) utilized  in steel frames are investigated. The effectiveness of these two  systems in rehabilitating a mid-rise eight-storey steel frames were  examined using time-history nonlinear analysis utilizing seismostruct  software. Results show that both systems improve the strength and  stiffness of the original structure but due to excellent behavior of  SMA in nonlinear phase and under compressive forces this system  shows much better performance than the rehabilitation system of  Mega bracing.

 

Keywords: Finite element analysis, seismic response, shapes memory alloy, steel frame, mega bracing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4212
5951 Performance of Compound Enhancement Algorithms on Dental Radiograph Images

Authors: S.A.Ahmad, M.N.Taib, N.E.A.Khalid, R.Ahmad, H.Taib

Abstract:

The purpose of this research is to compare the original intra-oral digital dental radiograph images with images that are enhanced using a combination of image processing algorithms. Intraoral digital dental radiograph images are often noisy, blur edges and low in contrast. A combination of sharpening and enhancement method are used to overcome these problems. Three types of proposed compound algorithms used are Sharp Adaptive Histogram Equalization (SAHE), Sharp Median Adaptive Histogram Equalization (SMAHE) and Sharp Contrast adaptive histogram equalization (SCLAHE). This paper presents an initial study of the perception of six dentists on the details of abnormal pathologies and improvement of image quality in ten intra-oral radiographs. The research focus on the detection of only three types of pathology which is periapical radiolucency, widen periodontal ligament space and loss of lamina dura. The overall result shows that SCLAHE-s slightly improve the appearance of dental abnormalities- over the original image and also outperform the other two proposed compound algorithms.

Keywords: intra-oral dental radiograph, histogram equalization, sharpening, CLAHE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
5950 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model

Authors: A. Kablan

Abstract:

The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.

Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3406
5949 IT System in the Food Supply Chain Safety: Application in SMEs Sector

Authors: Mohsen Shirani, Micaela Demichela

Abstract:

Food supply chain is one of the most complex supply chain networks due to its perishable nature and customer oriented products, and food safety is the major concern for this industry. IT system could help to minimize the production and consumption of unsafe food by controlling and monitoring the entire system. However, there have been many issues in adoption of IT system in this industry specifically within SMEs sector. With this regard, this study presents a novel approach to use IT and tractability systems in the food supply chain, using application of RFID and central database.

Keywords: Food Supply Chain, IT System, Food Safety, SME.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461
5948 Visual Search Based Indoor Localization in Low Light via RGB-D Camera

Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng

Abstract:

Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.

Keywords: Indoor navigation, low light, RGB-D camera, vision based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
5947 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: Artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
5946 Pushing the Limits of Address Based Authentication: How to Avoid MAC Address Spoofing in Wireless LANs

Authors: Kemal Bicakci, Yusuf Uzunay

Abstract:

It is well-known that in wireless local area networks, authenticating nodes by their MAC addresses is not secure since it is very easy for an attacker to learn one of the authorized addresses and change his MAC address accordingly. In this paper, in order to prevent MAC address spoofing attacks, we propose to use dynamically changing MAC addresses and make each address usable for only one session. The scheme we propose does not require any change in 802.11 protocols and incurs only a small performance overhead. One of the nice features of our new scheme is that no third party can link different communication sessions of the same user by monitoring MAC addresses therefore our scheme is preferable also with respect to user privacy.

Keywords: Authentication, MAC address spoofing, security, wireless networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2585
5945 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images

Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn

Abstract:

The detection and segmentation of mitochondria from fluorescence microscopy is crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. Although there exists a number of open-source software tools and artificial intelligence (AI) methods designed for analyzing mitochondrial images, the availability of only a few combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compactibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source Python and OpenCV library, the algorithms are implemented in three stages: pre-processing; image binarization; and coarse-to-fine segmentation. The proposed model is validated using the fluorescence mitochondrial dataset. Ground truth labels generated using Labkit were also used to evaluate the performance of our detection and segmentation model using precision, recall and rand index. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks concludes the paper.

Keywords: 2D, Binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
5944 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P.-W. Tsai, W.-L. Hong, C.-W. Chen, C.-Y. Chen

Abstract:

In this paper, we present a neural-network (NN) based approach to represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov Stability, Parallel Particle Swarm Optimization, Linear Differential Inclusion, Artificial Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
5943 A Learning Agent for Knowledge Extraction from an Active Semantic Network

Authors: Simon Thiel, Stavros Dalakakis, Dieter Roller

Abstract:

This paper outlines the development of a learning retrieval agent. Task of this agent is to extract knowledge of the Active Semantic Network in respect to user-requests. Based on a reinforcement learning approach, the agent learns to interpret the user-s intention. Especially, the learning algorithm focuses on the retrieval of complex long distant relations. Increasing its learnt knowledge with every request-result-evaluation sequence, the agent enhances his capability in finding the intended information.

Keywords: Reinforcement learning, learning retrieval agent, search in semantic networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501