
 

 

 
Abstract—The detection and segmentation of mitochondria from 

fluorescence microscopy is crucial for understanding the complex 
structure of the nervous system. However, the constant fission and 
fusion of mitochondria and image distortion in the background make 
the task of detection and segmentation challenging. Although there 
exists a number of open-source software tools and artificial 
intelligence (AI) methods designed for analyzing mitochondrial 
images, the availability of only a few combined expertise in the 
medical field and AI required to utilize these tools poses a challenge 
to its full adoption and use in clinical settings. Motivated by the 
advantages of automated methods in terms of good performance, 
minimum detection time, ease of implementation, and cross-platform 
compactibility, this study proposes a fully automated framework for 
the detection and segmentation of mitochondria using both image 
shape information and descriptive statistics. Using the low-cost, open-
source Python and OpenCV library, the algorithms are implemented in 
three stages: pre-processing; image binarization; and coarse-to-fine 
segmentation. The proposed model is validated using the fluorescence 
mitochondrial dataset. Ground truth labels generated using Labkit 
were also used to evaluate the performance of our detection and 
segmentation model using precision, recall and rand index. The study 
produces good detection and segmentation results and reports the 
challenges encountered during the image analysis of mitochondrial 
morphology from the fluorescence mitochondrial dataset. A discussion 
on the methods and future perspectives of fully automated frameworks 
concludes the paper. 
 

Keywords—2D, Binarization, CLAHE, detection, fluorescence 
microscopy, mitochondria, segmentation.  

I. INTRODUCTION 

ITOCHONDRIA are important intracellular organelles 
responsible for several metabolic pathways including the 

production of free energy and the regulation of cellular life and 
death. Mitochondria fission (division) and fusion (elongation) 
are two opposing processes whose balance results in the steady-
state morphology. Mitochondrial fusion helps to rescue 
partially damaged mitochondria by exchanging their contents 
with functional mitochondria while mitochondrial fission 
enables the removal of damaged mitochondria and facilitates 
apoptosis during increased levels of cellular stress [1]. 
Disruption of normal mitochondrial function has been linked to 
several neurodegenerative diseases relating to aging, including 
Alzheimer’s disease, Huntington’s disease, juvenile-onset 
Parkinson’s disease, and cancer. Building a more exact 
understanding between mitochondrial phenotype and disease is 
therefore of great significance as the existence of noise and 
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frequent changes in shape among mitochondria (ranging from 
elongated, fragmented, and tubular-circular and elliptical) 
makes it challenging to detect subtle differences in morphology 
and nearly impossible to automate the same [2]. Our open 
source Organellar Networks (OrNet) framework was designed 
to perform analyses on diffuse, difficult-to-quantify subcellular 
structures like mitochondria and actin, but the segmentation 
procedure still requires some manual input. This process is 
highly laborious, time consuming, and introduces a varying 
degree of bias to each labeled image. This leads to improper 
detection, which in turn, causes a decrease in segmentation 
accuracy [3]. Thus, it is unable to meet the demands of high-
throughput image analysis for which OrNet was designed. 
Additionally, each mitochondrial image typically contains 
more than one mitochondrion, sometimes touching.  

Several methods have been proposed in the literature with 
different levels of automation to overcome these challenges and 
quantify the mitochondrial morphology in an unbiased manner. 
For instance, a number of specialized semi-automatic software 
tools such as ImageJ [4] IMOD [5], SerialEM [6], CellProfiler 
[7], and PEET [8] were developed to visually detect and 
segment volumes of mitochondria to enable accurate 
interpretation, measurement and detailed analysis. We refer the 
reader to Eliceiri et al. [9] for an interesting review of various 
open-source software tools used for the implementation of 
image data workflow. However, the extremely laborious and 
time-consuming characteristics of these tools, coupled with the 
flawed results obtained due to manual annotation processes and 
their attendant human errors (even with highly trained experts), 
raised several questions about the practicality of their use in 
time and safety-critical settings [10]. This drawback birthed 
inquiries into new research directions for flawless automated 
mitochondrion detection and segmentation. Inspired by the 
recent work of Lefebvre et al. [11], the motivation of this study 
originates from the need to develop a fully automated image 
analysis tool to detect and segment mitochondrial images 
directly from the fluorescence microscopy data in a timely, 
accurate, cross platform compactible manner. Our overarching 
goal is to utilize information about the shape and sophisticated 
background knowledge of mitochondrial structure and create a 
simplified mitochondrial image analysis method for researchers 
and medical professionals. The algorithms are in three main 
orderly stages: 1) pre-processing, 2) image binarization, and 3) 
coarse-to-fine segmentation. 
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The main contributions of the study are as follows: 
 Methods: We develop a fully automated detection and 

segmentation model that encodes information for 
segmentation of 2D mitochondrial morphology from 
fluorescence microscopy images.  

 Data: We show that the proposed model enables a single 
workflow from raw data input to desired detection and 2D 
segmentation results without relying on pre-trained models 
or third-party training datasets. It achieves good results in 
terms of good speed and good performance. 

The subsequent sections of this study present the detailed 
information about related work, methods, implementation, the 
experimental results and analysis, evaluation, and conclusions. 

II. RELATED WORK 

The analysis of mitochondria images is essential for studying 
mitochondrial morphology and computer aided analysis and 
diagnosis. Segmentation, which is an important step in image 
processing and diagnostic system, aims to partition an image 
into a set of meaningful structural parts by assigning labels to 
pixels so that the pixels with the same label form a segmented 
object. The output from a segmentation algorithm is an image 
of the same dimension as the input image where each pixel has 
been assigned a label indicating which object class the specific 
pixel belongs to. Generally, mitochondrial image detection and 
segmentation is a challenging task because of its sophisticated 
background, continuous cycle of shapes and sizes [10]. The 
fluorescence microscope, an optical microscope which enables 
the selective measurement of aggregate size and morphology in 
cells, has an additional drawback in that its images are 
corrupted by noise (salt and pepper) and blurred particles from 
outside of the focal plane, and sub-cellular structures, including 
synapses and vesicles [4], [12]. Given these challenges, the 
analysis of mitochondria with automated filtering 
functionalities and minimal user interference becomes 
undeniably necessary in order to understand its dynamics and 
provide much insight on its functioning and role in the well-
being of cells [1], [10], [11]. 

Many brilliant automated methods have been proposed in the 
literature for its detection [3], [11], [13]-[15] and segmentation 
[1], [3], [14], [16]-[18]. Ficher et al. [1], for instance, created 
Mitochondrial Segmentation Network (MitoSegNet), a deep 
learning segmentation model that enabled researchers to 
leverage the predictive and analytical strength of deep learning 
for the analysis of mitochondrial morphology. When tested 
against three feature-based segmentation algorithms and the 
machine-learning segmentation tool Ilastik, MitoSegNet 
outperformed all other methods in both pixelwise and 
morphological segmentation accuracy. Again, MitoSegNet 
showed superior performance when applied to unseen 
fluorescence microscopy images of mitoGFP expressing 
mitochondria. In an earlier study, Lihavainen et al. [17] 
developed Mytoe, a software application tool for analyzing 
mitochondrial morphology and dynamics from fluorescence 
microscope images. The tool provides automated quantitative 
analysis of mitochondrial motion by optical flow estimation and 
of morphology by segmentation of individual branches of the 

network-like structure of the organelles. Mytoe analyzes a 
number of features of individual branches, including length, 
tortuosity and speed, and of the macroscopic structure, such as 
area of mitochondrial and degree of clustering. Building on the 
study, Lihavainen et al. [14] developed an automated method 
for detecting and tracking fluorescent-labeled mitochondria 
with good accuracy. The MATLAB-based method trained a 
supervised learning classifier, Random Forest, on small patches 
extracted from confocal microscope images of U2OS human 
osteosarcoma cells. In a bid to further improve on the study, 
Lefebvre et al. [11] developed a fully automated MATLAB-
based software package, Mitometer, for analyzing the 
mitochondrial morphology and fission-fusion dynamics from 
time-series 2D and 3D fluorescence microscopy TIFF images 
in a fast and unbiased manner. The experimental results showed 
that Mitometer was able to accurately measure the 
morphological features including the sizes and shapes of 
mitochondria, and dynamic parameters including movement 
speeds and fission/fusion rates. Building upon an earlier work 
on active-mask framework developed for the segmentation of 
confocal fluorescence microscope images, Chen et al. [13] 
described an automated adaptive region-based distributing 
function for mitochondrial segmentation from widefield 
fluorescence microscopy images for quantitative morphology 
characterization. The model produces good performance 
against a hand-segmented ground truth and significantly 
outperforms the original active-mask algorithm, both 
qualitatively and quantitatively. 

A number of traditional machine learning methods, such as 
support vector machines, k-nearest neighbor algorithm, and 
adaptive boosting algorithm, have also been described for the 
tasks of mitochondria detection and segmentation [12], [19]-
[21]; for instance, mitochondrial cells were segmented with the 
Gentle-Boost classifier, trained with histograms of gray scale 
and Gabor-based filter responses computed in neighborhood 
windows on each pixel [3]. 

III. THE PROPOSED MODEL 

Evidently, most of the studies on automated bio-image 
processing in the literature focus primarily on matrix laboratory 
(MATLAB), machine learning, and deep learning-based 
analytics [19], with simple automated methods from raw data 
currently receiving little attention. While these approaches and 
platforms are very powerful and present excellent image 
processing workstations for various data analytical projects, a 
number of significant challenges which limit their use have also 
been identified. For instance, the comparatively high costs of 
MATLAB in terms of fast computers with sufficient memory 
requirements, and the cost of obtaining the licensed version 
make it undesirable for a large number of programming 
students and research communities [22]. Additionally, the slow 
execution of programs created in the MATLAB environment 
puts a limit to its use in the development of real-time or time-
critical image processing applications [22].  

The full potential of machine learning and deep learning 
algorithms is dependent on the availability of a sufficient 
amount of ground-truth labeled data [23]. While this is helpful 
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in ensuring efficiency, it also exposes it to certain limitations 
and potential limited efficiency [24]. Generating ground-truth 
labeled data for machine learning and deep learning methods is 
a tedious process and does not guarantee a perfect segmentation 
result. Again, deep learning methods are associated with some 
significant challenges, which limit their use in segmentation 
tasks. These include 1) significantly slow speed due to maxpool 
operation, 2) high computational cost [23], and 3) longer 
training process due to multiple layers [25], [26]. Given these 
drawbacks, this study investigates other practical methods for 
solving medical image segmentation problems with high 
reliability, low cost and accuracy. 

We propose a fully automated model that yields good 
segmentation results from raw data input without relying on 
pre-trained models or third-party training datasets. Our model 
is developed in open-source Python and the OpenCV library, 
which offer easy ways to manipulate color spaces while 
remaining fast and easy to use on any laptop or workstation 
[27]. Additionally, the OpenCV and Python development 
environments give our tool the added advantage of not being 
limited to particular file formats [22], data modalities, and can 
be quickly adapted to new experimental designs [28]. Our 
system can also be installed on a small low-memory computer 
with low electrical power usage, making it much more suitable 
as an efficient resource for mitochondrial image processing 
systems [27]. 

IV. METHODS 

As shown in Fig. 1, we introduce a fully automated method 
for the detection and segmentation of mitochondria using the 
three methodological steps described in this section. The 
algorithms have been implemented in python in our OrNet 
framework for fluorescence microscopy image processing and 
are available upon request.  

 

 

Fig. 1 Methodological steps of the study  
 

1) Image pre-processing: The image pre-processing helps to 
improve the image quality and ensures the high accuracy 
of the binarization stage. After loading the mitochondrial 
image, pre-processing was performed in the following 
three stages:  

i. filter application for unsharp masking: this was done to 
improve the sharpness of the edges and interfaces of 

images that contain depth information. Mathematically, 
this is defined as: 

 
𝑚 𝑥, 𝑦 𝑓 𝑥, 𝑦 𝑓 𝑥, 𝑦        (1)  

 
where 𝑓 𝑥, 𝑦  represents the original image and 𝑓 𝑥, 𝑦  
represents the blurred version of the original image. Then this 
mask is added back to the original image, which results in 
enhancing the high-frequency components 𝑔 𝑥, 𝑦 𝑓 𝑥, 𝑦
𝑘 ∗ 𝑚 𝑥, 𝑦  where 𝑘 represents the portion of the mask to be 
added. Unsharp masking occurs when 𝑘 1, but high boost 
filtering occurs when 𝑘 1. The opencv library achieves the 
unsharp masking using the functions: cv2.GaussianBlur and 
cv2.addWeighted.  
ii. Next, we apply the Contrast Limited Adaptive Histogram 

Equalization (CLAHE) filter to help improve the contrast 
of the images, as described in [29]. CLAHE function is 
included in the OpenCV package in two parameters: 
clipLimit (representing the threshold clip size) and 
tileGridSize (representing the size of the image processing 
window). (cv2.createCLAHE(clipLimit=2.0,tileGridSize= 
(gridsize,gridsize)).  

iii. Finally, we experimented with mean, median, bilateral and 
blur filters to help reduce the amount of noise present in the 
images. The results show the median filter outperforming 
the other filters in terms of noise reduction and edge 
preservation. This was followed by the mean filter, which 
blurs edges as it averages real signal with the background. 
The median filter is applied to a specified radius of two 
pixels. Median filtering functionality is implemented in the 
OpenCV packages using cv2.medianBlur() function. In 
summary, the unsharp masking and CLAHE help to 
amplify the salt and pepper noise of the fluorescent images, 
while the median filter helps to reduce or eliminate this 
type of noise [29]. 

2) Image binarization: On completion of the image pre-
processing stage, we binarized the image by applying a 
threshold on the intensity of all pixels in the image. This 
was a necessary step to separate the background and other 
non-mitochondrial tissues and to make the task of 
segmentation and identification of the mitochondrial 
images less difficult and challenging [3]. This was 
achieved in the following two stages:  

1) We binarized the mitochondrial images using the intensity-
based thresholding to help create a mask on the 
mitochondria and separate the regions of interest in the 
mitochondria image from regions that do not contain 
relevant information (background). The intensity-based 
thresholding T is available as cv2.threshold() on the 
OpenCV library. The image will be a binary image 
according to: 

 

𝑔 𝑥, 𝑦 ⦃ ,    ,
,    ,       (2) 

 
To ensure the stability of the mask, we run a parameter 

exploration algorithm to select the standard deviation of the 
kernel and the threshold level.  

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Materials Engineering

 Vol:17, No:2, 2023 

44International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

at
er

ia
ls

 E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

2,
 2

02
3 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

94
0.

pd
f



 

 

2) We skeletonized the image by removing small regions, and 
then compute the descriptive statistics describing the 
skeleton. Skeletonized image represents the image 
topology and is useful for feature extraction. OpenCV 
provides for skeletonization process by morphology using 
the cv2.erode() (erosion), cv2.dilate() (dilation) and 
cv2.subtract() (subtraction) functions. Since the input 
coarse segmented regions of this stage are quite isolated 
and small, various kinds of segmentation methods were 
adopted for this stage. We applied similar gradient 
boundary enhancement and combination of image 
binarization operations used during the coarse 
segmentation stage, to improve the segmentation task and 
arrive at the finely segmented mitochondrial regions. 

3) Coarse-to-fine segmentation: The mitochondrial image 
data have a sophisticated background, with mitochondria 
in close proximity to vesicles or various membranes. This 
violates the standard assumption that strong image gradient 
always corresponds to significant boundaries and makes 
many state-of-the-art segmentation and classification 
algorithms, powerless [10]. In order to address this 
challenge, this study improves upon the earlier approaches 
in the following two aspects: 

i. We adopted the coarse and fine segmentation procedure 
described in [3] and [10]. The coarse segmentation, 
achieved in the image binarization stage (Fig. 1 (f)) helped 
us to identify and include regions of high concentration of 
mitochondria based on its circular and elliptical shapes, and 
exclude regions of non-mitochondria or low concentration 
of mitochondria. 

 

 

Fig. 2 (a) Original image (b) Unsharp image (c) CLAHE image (d) 
Median (e) Binary (f) Skeleton 

 
Having performed the coarse segmentation, we performed 

the fine segmentation stage to improve the segmentation of 
mitochondria by removing non-mitochondrial pixels, which 
touch in coarse mitochondrial regions. We applied a 
combination of gradient boundary enhancement used to achieve 
the coarse segmentation for small regions of mitochondria. 
Examples for each of coarse and fine segmentation results are 
illustrated in Fig. 3. It can be seen that the fine segmentation 
results are largely improved compared to coarse segmented 

versions of the original mitochondrial image. 
ii. The study experimented with several images in the 

listeriolysin O (llo), mitochondrial division inhibitor 
(mdivi) and control datasets using several pre-processing 
and binarization algorithms that have achieved promising 
results (in terms of fast speed, good performance, and 
having been implemented in the OpenCV framework) in 
medical image identification, segmentation, and 
classification. 

The process of mitochondrial segmentation was split into 
two: coarse and fine segmentation using the shape information 
and descriptive statistics. For the coarse segmentation, we 
adopted the method used in [3] in order to enhance the 
mitochondrial boundaries that may not be clear. OpenCV 
provides for gradient enhancement in three functions: 
cv2.Sobel() (Sobel), cv2.scharr() (Scharr), and cv2.Laplacian() 
(Laplacian). Having achieved good performance in many image 
segmentation applications [30], this study applied the Sobel 
gradient enhancement. It uses two kernels measuring pixels to 
calculate the gradient. 

 

 

Fig. 3 Coarse, fine segmentation and ground truth labels of 
mitochondria from three datasets (llo, mdivi and control): a = coarse 
segmentation for llo; b = fine segmentation for llo; c = ground truth 
for llo; d = coarse segmentation for mdivi; f = fine segmentation for 

mdivi; g = ground truth for mdivi; h = coarse segmentation for 
control; j = fine segmentation for control; ground truth for control 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

The analytical framework comprised detection and 
segmentation of mitochondrial from raw dataset, which is a 
collection of confocal imaging videos of live HeLa cells 
fluorescently tagged with the protein DsRed2-Mito-7 [31]. It 
comprises three distinct groups of cells: the listeriolysin O (llo) 
group that was exposed to a pore-forming toxin, to induce 
mitochondrial fragmentation; the mitochondrial division 
inhibitor 1 (mdivi) group that was exposed to mitochondrial 
division inhibitor 1 (mdivi) to induce mitochondrial fusion, and 
the control group that was not exposed to any external 
stimulant. Every imaging video consists of at least 20,000 
frames, of dimensions 512 x 512, captured at 100 frames per 
second. Fig. 3 represents each of coarse and fine segmentation 
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of the llo, mdivi and control datasets. 
In this paper, we present a fully automated method for 

mitochondria detection and segmentation in fluorescence 
microscopy images. The proposed framework is able to 
automatically detect mitochondria in a 2D context without any 
user interaction. The algorithm was tested on several images 
from llo, mdivi and control datasets. 

From the binarized image, we computed the area occupied 
by mitochondrial structures before the image was skeletonized. 
The descriptive parameters, mean and standard deviation were 
computed from the skeletonized image. Table I shows the 
computed values of the coarse and fine segmentation for the llo, 
mdivi, and control dataset. The area denotes the total area 
occupied by mitochondria (footprint) after being separated from 
the background. The results demonstrate that all images 
segmented in the three datasets (llo, mdivi and control) 
exhibited a statistically equal area (denoting mitochondrial 
images occupying almost an equal area) when compared with 
the ground truth. This agrees with the definition of 
segmentation that the output from a segmentation algorithm is 
an image of the same dimension as the input image where each 
pixel has been assigned a label indicating which object class the 
specific pixel belongs to.  

 
TABLE I 

MEASUREMENT OF COARSE AND FINE SEGMENTATION AND GROUND TRUTH 

 Area Mean Standard Deviation 

Coarse segmentation for llo 262144 249.317 30.275 

Fine segmentation for llo 262144 228.825 66.717 

Ground truth for llo 262144 34.496 87.215 

Coarse segmentation for mdivi 262144 3.041 27.68 

Fine segmentation for mdivi 6185 255 0 

Ground truth for mdivi 262144 22.121 71.775 

Coarse segmentation for control 262144 3.017 27.574 

Fine segmentation for control 247711 0 0 

Ground truth for control 262144 51.288 102.216 

VI. EVALUATION 

In order to quantitatively evaluate the performance of the 
model, we generated several ground truth labels from each of 
the three datasets using Labkit. [24]. Labkit is a user-friendly 
Fiji plugin platform that provides automated and manual image 
segmentation routines, which can be quickly applied to single 
and multi-channel 2D or 3D images as well as to time-lapse 
movies. Our choice of Labkit was motivated by the remarkable 
results it achieved in a number of recent studies where it was 
used for ground truth generation [10], [13], [26]. We paired 
each frame containing the mitochondria detected and 
segmented by our method with the corresponding ground truth 
frame and computed the descriptive statistics (mean and 
standard deviation). The results of all measurements are shown 
in Table I. We also evaluated the proposed model using three 
commonly used metrics: precision, recall, and rand index. 
Precision, also known as the positive predictive value, measures 
the proportion of positively detected labels that are actually 
correct. A model that achieves high precision has minimal false 
negatives. Mathematically, precision is given as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 TP/ FP TP   
 
Recall, also called sensitivity or true positive rate (TPR), 

measures the model’s ability to correctly detect the positives out 
of actual positives. That is, it measures how good the model is 
at identifying all actual positives out of all the positives that 
exist within the image data. A model that achieves high recall 
has minimal false positives. Mathematically, the recall is given 
as: 

 
𝑅𝑒𝑐𝑎𝑙𝑙 TP/ FN TP    

 
where TP = true positive, FP = false positive, and FN = false 
negative. 

The Rand Index (RI) between test and ground-truth 
segmentations S and G is given by the sum of the number of 
pairs of pixels that have the same label in S and G and those 
that have different labels in both segmentations, divided by the 
total number of pairs of pixels. RI is given as: 

 
𝑅𝐼 𝑎 𝑏 / 𝑎 𝑏 𝑐 𝑑  

 
where, a represents number of pairs of elements in S that are in 
the same set in U and in the same set in V; b represents the 
number of pairs of elements in S that are in different sets in U 
and in different sets in V; c represents the number of pairs of 
elements in S that are in the same set in U and in different sets 
in V; d represents the number of pairs of elements in S that are 
in different sets in U and in the same set in V. The range of RI 
values is between 0 and 1, where 0 is for absolute non-
compliance with GT and 1 is for total compliance with GT. 

 
TABLE II 

EVALUATION METRICS 

 Precision Recall Rand index 

Coarse segmentation for llo 0.88 0.82 0.84 

Fine segmentation for llo 0.92 0.91 0.84 

Ground truth for llo 1.00 1.00 1.00 

Coarse segmentation for mdivi 0.72 0.86 0.79 

Fine segmentation for mdivi 0.89 0.87 0.87 

Ground truth for mdivi 1.00 1.00 1.00 

Coarse segmentation for control 0.86 0.84 0.90 

Fine segmentation for control 0.93 0.81 0.77 

Ground truth for control 1.00 1.00 1.00 

VII. CONCLUSIONS AND FUTURE WORK 

The three-stage framework described in this paper provides 
automated computer-assisted tools to address a variety of 
challenges often faced during the detection and segmentation of 
mitochondrial imagery in video. It relies on: I) the pre-
processing stage to decrease the amount of noise, amend the 
effects of the missing edge, and prepare the image for 
subsequent steps; II) the image binarization stage to help 
separate the mitochondrial regions from the non-mitochondrial 
regions; and, III) the coarse-to-fine segmentation stage to 
accomplish the detection and segmentation methods. Even 
though the proposed method in this study illustrated a simple 
and good performance implementation, there were a number of 
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challenges encountered during the study. These include the 
detection process and information fusion process that need to 
be addressed. These challenges stem from the fact that some 
mitochondria may not have been detected especially if they 
display extremely elongated shapes or do not present the 
mitochondrial structure characteristics. An interesting future 
research direction would be to explore the use of other fully 
automated detection and segmentation algorithms, such as 
machine learning and deep learning methods, and then do a 
comparison between the two methods, a coarse-to-fine method 
and a direct segmentation method. Future research in this area 
will investigate the two methods, and will focus on optimizing 
the segmentation results. 
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