Search results for: POME based lipase.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11337

Search results for: POME based lipase.

9087 A Robust Method for Encrypted Data Hiding Technique Based on Neighborhood Pixels Information

Authors: Ali Shariq Imran, M. Younus Javed, Naveed Sarfraz Khattak

Abstract:

This paper presents a novel method for data hiding based on neighborhood pixels information to calculate the number of bits that can be used for substitution and modified Least Significant Bits technique for data embedding. The modified solution is independent of the nature of the data to be hidden and gives correct results along with un-noticeable image degradation. The technique, to find the number of bits that can be used for data hiding, uses the green component of the image as it is less sensitive to human eye and thus it is totally impossible for human eye to predict whether the image is encrypted or not. The application further encrypts the data using a custom designed algorithm before embedding bits into image for further security. The overall process consists of three main modules namely embedding, encryption and extraction cm.

Keywords: Data hiding, image processing, information security, stagonography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
9086 I2Navi: An Indoor Interactive NFC Navigation System for Android Smartphones

Authors: Jing Hang Choo, Soon Nyean Cheong, Yee Lien Lee, Sze Hou Teh

Abstract:

The advancement of smartphones, wireless networking and Near Field Communication (NFC) technology have opened up a new approach to indoor navigation. Although NFC technology has been used to support electronic commerce, access control, and ticketing, there is a lack of research work on building NFC-based indoor navigation system for smartphone users. This paper presents an indoor interactive navigation system (named I2Navi) based on NFC technology for users to navigate within a building with ease using their smartphones. The I2Navi system has been implemented at the Faculty of Engineering (FOE), Multimedia University (MMU) to enable students, parents, visitors who own NFC-enabled Android smartphones to navigate themselves within the faculty. An evaluation is carried out and the results show positive response to the proposed indoor navigation system using NFC and smartphone technologies.

Keywords: Near Field Communication, indoor navigation system, smartphones.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2707
9085 A New Method for Identifying Broken Rotor Bars in Squirrel Cage Induction Motor Based on Particle Swarm Optimization Method

Authors: V. Rashtchi, R. Aghmasheh

Abstract:

Detection of squirrel cage induction motor (SCIM) broken bars has long been an important but difficult job in the detection area of motor faults. Early detection of this abnormality in the motor would help to avoid costly breakdowns. A new detection method based on particle swarm optimization (PSO) is presented in this paper. Stator current in an induction motor will be measured and characteristic frequency components of faylted rotor will be detected by minimizing a fitness function using pso. Supply frequency and side band frequencies and their amplitudes can be estimated by the proposed method. The proposed method is applied to a faulty motor with one and two broken bars in different loading condition. Experimental results prove that the proposed method is effective and applicable.

Keywords: broken bar, PSO, fault detection, SCIM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
9084 Optimizing Mobile Agents Migration Based on Decision Tree Learning

Authors: Yasser k. Ali, Hesham N. Elmahdy, Sanaa El Olla Hanfy Ahmed

Abstract:

Mobile agents are a powerful approach to develop distributed systems since they migrate to hosts on which they have the resources to execute individual tasks. In a dynamic environment like a peer-to-peer network, Agents have to be generated frequently and dispatched to the network. Thus they will certainly consume a certain amount of bandwidth of each link in the network if there are too many agents migration through one or several links at the same time, they will introduce too much transferring overhead to the links eventually, these links will be busy and indirectly block the network traffic, therefore, there is a need of developing routing algorithms that consider about traffic load. In this paper we seek to create cooperation between a probabilistic manner according to the quality measure of the network traffic situation and the agent's migration decision making to the next hop based on decision tree learning algorithms.

Keywords: Agent Migration, Decision Tree learning, ID3 algorithm, Naive Bayes Classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
9083 Comparative Study of Affricate Initial Consonants in Chinese and Slovak

Authors: Maria Istvanova

Abstract:

The purpose of the comparative study of the affricate consonants in Chinese and Slovak is to increase the awareness of the main distinguishing features between these two languages taking into consideration this particular group of consonants. We determine the main difficulties of the Slovak learners in the process of acquiring correct pronunciation of affricate initial consonants in Chinese based on the understanding of the distinguishing features of Chinese and Slovak affricates in combination with the experimental measuring of voice onset time (VOT) values. The software tool Praat is used for the analysis of the recorded language samples. The language samples contain recordings of a Chinese native speaker and Slovak students of Chinese with different language proficiency levels. Based on the results of the analysis in Praat, we identify erroneous pronunciation and provide clarification of its cause.

Keywords: Chinese, comparative study, initial consonants, pronunciation, Slovak

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 475
9082 Frequent and Systematic Timing Enhancement of Congestion Window in Typical Transmission Control Protocol

Authors: Ghassan A. Abed, Akbal O. Salman, Bayan M. Sabbar

Abstract:

Transmission Control Protocol (TCP) among the wired and wireless networks, it still has a practical problem; where the congestion control mechanism does not permit the data stream to get complete bandwidth over the existing network links. To solve this problem, many TCP protocols have been introduced with high speed performance. Therefore, an enhanced congestion window (cwnd) for the congestion control mechanism is proposed in this article to improve the performance of TCP by increasing the number of cycles of the new window to improve the transmitted packet number. The proposed algorithm used a new mechanism based on the available bandwidth of the connection to detect the capacity of network path in order to improve the regular clocking of congestion avoidance mechanism. The work in this paper based on using Network Simulator 2 (NS-2) to simulate the proposed algorithm.

Keywords: TCP, cwnd, Congestion Control, NS-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
9081 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh

Abstract:

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotiv EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Keywords: Brain Computer Interface (BCI), Electroencephalogram (EEG), EEGLab, BCILab, Emotiv, Emotions, Interval features, Spectral features, Artificial Neural Network, Control applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5297
9080 Target Signal Detection Using MUSIC Spectrum in Noise Environment

Authors: Sangjun Park, Sangbae Jeong, Moonsung Han, Minsoo hahn

Abstract:

In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. The algorithm detects the DOAs of multiple sources using the inverse of the eigenvalue-weighted eigen spectra. To apply the algorithm to target signal detection for GSC-based beamforming, we utilize its spectral response for the target DOA in noisy conditions. For evaluation of the algorithm, the performance of the proposed target signal detection method is compared with that of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics(ROC) curves.

Keywords: Beamforming, direction of arrival, multiple signal classification, target signal detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542
9079 Federal Open Agent System Platform

Authors: Hong-Bing Wang, Zhi-Hua Fan, Chun-Dong She

Abstract:

Open Agent System platform based on High Level Architecture is firstly proposed to support the application involving heterogeneous agents. The basic idea is to develop different wrappers for different agent systems, which are wrapped as federates to join a federation. The platform is based on High Level Architecture and the advantages for this open standard are naturally inherited, such as system interoperability and reuse. Especially, the federal architecture allows different federates to be heterogeneous so as to support the integration of different agent systems. Furthermore, both implicit communication and explicit communication between agents can be supported. Then, as the wrapper RTI_JADE an example, the components are discussed. Finally, the performance of RTI_JADE is analyzed. The results show that RTI_JADE works very efficiently.

Keywords: Open Agent System, High Level Architecture, Heterogeneous Agents, Wrapper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
9078 A Novel Compression Algorithm for Electrocardiogram Signals based on Wavelet Transform and SPIHT

Authors: Sana Ktata, Kaïs Ouni, Noureddine Ellouze

Abstract:

Electrocardiogram (ECG) data compression algorithm is needed that will reduce the amount of data to be transmitted, stored and analyzed, but without losing the clinical information content. A wavelet ECG data codec based on the Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm has achieved notable success in still image coding. We modified the algorithm for the one-dimensional (1-D) case and applied it to compression of ECG data. By this compression method, small percent root mean square difference (PRD) and high compression ratio with low implementation complexity are achieved. Experiments on selected records from the MIT-BIH arrhythmia database revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. Compression ratios of up to 48:1 for ECG signals lead to acceptable results for visual inspection.

Keywords: Discrete Wavelet Transform, ECG compression, SPIHT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
9077 The Small Scale Effect on Nonlinear Vibration of Single Layer Graphene Sheets

Authors: E. Jomehzadeh, A.R. Saidi

Abstract:

In the present article, nonlinear vibration analysis of single layer graphene sheets is presented and the effect of small length scale is investigated. Using the Hamilton's principle, the three coupled nonlinear equations of motion are obtained based on the von Karman geometrical model and Eringen theory of nonlocal continuum. The solutions of Free nonlinear vibration, based on a one term mode shape, are found for both simply supported and clamped graphene sheets. A complete analysis of graphene sheets with movable as well as immovable in-plane conditions is also carried out. The results obtained herein are compared with those available in the literature for classical isotropic rectangular plates and excellent agreement is seen. Also, the nonlinear effects are presented as functions of geometric properties and small scale parameter.

Keywords: Small scale, Nonlinear vibration, Graphene sheet, Nonlocal continuum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
9076 Design of a Novel Inclination Sensor Utilizing Grayscale Image

Authors: Tuhin Subhra Sarkar, Subir Das

Abstract:

Several research works have been done in recent times utilizing grayscale image for the measurement of many physical phenomena. In this present paper, we have designed an embedded based inclination sensor utilizing the grayscale image with a resolution of 0.3º. The sensor module consists of a circular shaped metal disc, laminated with grayscale image and an optical transreceiver. The sensor principle is based on temporal changes in light intensity by the movement of grayscale image with the inclination of the target surface and the variation of light intensity has been detected in terms of voltage by the signal processing circuit (SPC).The output of SPC is fed to a microcontroller program to display the inclination angel digitally. The experimental results are shown a satisfactory performance of the sensor in a small inclination measuring range of -40º to + 40º with a sensitivity of 62 mV/°.

Keywords: Grayscale image, Inclination Sensor, Microcontroller Program, Signal Processing Circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
9075 Coupling Compensation of 6-DOF Parallel Robot Based on Screw Theory

Authors: Ming Cong, Yinghua Wu, Dong Liu, Haiying Wen, Junfa Yu

Abstract:

In order to improve control performance and eliminate steady, a coupling compensation for 6-DOF parallel robot is presented. Taking dynamic load Tank Simulator as the research object, this paper analyzes the coupling of 6-DOC parallel robot considering the degree of freedom of the 6-DOF parallel manipulator. The coupling angle and coupling velocity are derived based on inverse kinematics model. It uses the mechanism-model combined method which takes practical moving track that considering the performance of motion controller and motor as its input to make the study. Experimental results show that the coupling compensation improves motion stability as well as accuracy. Besides, it decreases the dither amplitude of dynamic load Tank Simulator.

Keywords: coupling compensation, screw theory, parallel robot, mechanism-model combined motion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
9074 Large Scale Production of Polyhydroxyalkanoates (PHAs) from Wastewater: A Study of Techno-Economics, Energy Use and Greenhouse Gas Emissions

Authors: Cora Fernandez Dacosta, John A. Posada, Andrea Ramirez

Abstract:

The biodegradable family of polymers polyhydroxyalkanoates is an interesting substitute for convectional fossil-based plastics. However, the manufacturing and environmental impacts associated with their production via intracellular bacterial fermentation are strongly dependent on the raw material used and on energy consumption during the extraction process, limiting their potential for commercialization. Industrial wastewater is studied in this paper as a promising alternative feedstock for waste valorization. Based on results from laboratory and pilot-scale experiments, a conceptual process design, techno-economic analysis and life cycle assessment are developed for the large-scale production of the most common type of polyhydroxyalkanoate, polyhydroxbutyrate. Intracellular polyhydroxybutyrate is obtained via fermentation of microbial community present in industrial wastewater and the downstream processing is based on chemical digestion with surfactant and hypochlorite. The economic potential and environmental performance results help identifying bottlenecks and best opportunities to scale-up the process prior to industrial implementation. The outcome of this research indicates that the fermentation of wastewater towards PHB presents advantages compared to traditional PHAs production from sugars because the null environmental burdens and financial costs of the raw material in the bioplastic production process. Nevertheless, process optimization is still required to compete with the petrochemicals counterparts.

Keywords: Circular economy, life cycle assessment, polyhydroxyalkanoates, waste valorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4182
9073 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: Cellular automata, neural cellular automata, deep learning, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
9072 Men’s Engagement in Intimate Partner Violence (IPV) Prevention Programs

Authors: Zeynep Turhan

Abstract:

This review emphasizes the effectiveness of men’s participation in preventing domestic violence, and whether nonviolent (NV) boys’ and men’s perceptions of intimate partner violence (IPV) prevention programs affect their involvement. The main goals of this assessment were to investigate (1) how NV men engaged in anti-violence prevention programs that empower women, (2) what were the possible perceptions of NV men involved in prevention programs (3) how to identify effective approaches and strategies that encouraged NV men to become involved in prevention programs. This critical review also included the overview of prevention programs such as: The Mentors in Violence Prevention Programs (MVP), The White Ribbon Campaign (WRC), and Domestic Violence Prevention Enhancement and Leadership through Alliances (DELTA). The review suggested that (1) the expanding prevention programs need to reach more macro settings such as work place, faith-based and other community based organizations, and (2) territory prevention programs should expand through addressing the long-term effects of violence.

Keywords: Engagement, intimate partner violence, non-violent men, prevention programs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
9071 Economic effects and Energy Use Efficiency of Incorporating Alfalfa and Fertilizer into Grass- Based Pasture Systems

Authors: M. Khakbazan, S. L. Scott, H. C. Block, C. D. Robins, W. P. McCaughey

Abstract:

A ten-year grazing study was conducted at the Agriculture and Agri-Food Canada Brandon Research Centre in Manitoba to study the effect of alfalfa inclusion and fertilizer (N, P, K, and S) addition on economics and efficiency of non-renewable energy use in meadow brome grass-based pasture systems for beef production. Fertilizing grass-only or alfalfa-grass pastures to full soil test recommendations improved pasture productivity, but did not improve profitability compared to unfertilized pastures. Fertilizing grass-only pastures resulted in the highest net loss of any pasture management strategy in this study. Adding alfalfa at the time of seeding, with no added fertilizer, was economically the best pasture improvement strategy in this study. Because of moisture limitations, adding commercial fertilizer to full soil test recommendations is probably not economically justifiable in most years, especially with the rising cost of fertilizer. Improving grass-only pastures by adding fertilizer and/or alfalfa required additional non-renewable energy inputs; however, the additional energy required for unfertilized alfalfa-grass pastures was minimal compared to the fertilized pastures. Of the four pasture management strategies, adding alfalfa to grass pastures without adding fertilizer had the highest efficiency of energy use. Based on energy use and economic performance, the unfertilized alfalfa-grass pasture was the most efficient and sustainable pasture system.

Keywords: Alfalfa, grass, fertilizer, pasture systems, economics, energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
9070 Future-Proofing the Workforce: A Case Study of Integrated Human Capability Frameworks to Support Business Success

Authors: P. Paliadelis, A. Jones, G. Campbell

Abstract:

This paper discusses the development of co-designed capability frameworks for two large multinational organizations led by a university department. The aim was to create evidence-based, integrated capability frameworks that could define, identify, and measure human skill capabilities independent of specific work roles. The frameworks capture and cluster human skills required in the workplace and capture their application at various levels of mastery. Identified capability gaps inform targeted learning opportunities for workers to enhance their employability skills. The paper highlights the value of this evidence-based framework development process in capturing, defining, and assessing desired human-focused capabilities for organizational growth and success.

Keywords: Capability framework, human skills, work-integrated learning, credentialing, digital badging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47
9069 M-ary Chaotic Sequence Based SLM-OFDM System for PAPR Reduction without Side-Information

Authors: A.Goel, M. Agrawal, P. Gupta Poddar

Abstract:

Selected Mapping (SLM) is a PAPR reduction technique, which converts the OFDM signal into several independent signals by multiplication with the phase sequence set and transmits one of the signals with lowest PAPR. But it requires the index of the selected signal i.e. side information (SI) to be transmitted with each OFDM symbol. The PAPR reduction capability of the SLM scheme depends on the selection of phase sequence set. In this paper, we have proposed a new phase sequence set generation scheme based on M-ary chaotic sequence and a mapping scheme to map quaternary data to concentric circle constellation (CCC) is used. It is shown that this method does not require SI and provides better SER performance with good PAPR reduction capability as compared to existing SLMOFDM methods.

Keywords: Orthogonal frequency division multiplexing (OFDM), Peak-to-average power ratio (PAPR), Selected mapping (SLM), Side information (SI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
9068 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning

Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond

Abstract:

Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.

Keywords: Time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205
9067 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: Brain-computer interface, speech recognition, electroencephalography EEG, Wernicke area, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
9066 Rapid Finite-Element Based Airport Pavement Moduli Solutions using Neural Networks

Authors: Kasthurirangan Gopalakrishnan, Marshall R. Thompson, Anshu Manik

Abstract:

This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer moduli of flexible airfield pavements subjected to new generation aircraft (NGA) loading, based on the deflection profiles obtained from Heavy Weight Deflectometer (HWD) test data. The HWD test is one of the most widely used tests for routinely assessing the structural integrity of airport pavements in a non-destructive manner. The elastic moduli of the individual pavement layers backcalculated from the HWD deflection profiles are effective indicators of layer condition and are used for estimating the pavement remaining life. HWD tests were periodically conducted at the Federal Aviation Administration-s (FAA-s) National Airport Pavement Test Facility (NAPTF) to monitor the effect of Boeing 777 (B777) and Beoing 747 (B747) test gear trafficking on the structural condition of flexible pavement sections. In this study, a multi-layer, feed-forward network which uses an error-backpropagation algorithm was trained to approximate the HWD backcalculation function. The synthetic database generated using an advanced non-linear pavement finite-element program was used to train the ANN to overcome the limitations associated with conventional pavement moduli backcalculation. The changes in ANN-based backcalculated pavement moduli with trafficking were used to compare the relative severity effects of the aircraft landing gears on the NAPTF test pavements.

Keywords: Airfield pavements, ANN, backcalculation, newgeneration aircraft

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
9065 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System

Authors: Jason Chien-Hsun Tseng

Abstract:

This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.

Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
9064 CAD Tools Broadband Amplifier Design

Authors: Salwa M. Salah Eldeen, Fathi A. Farag, Abd Allah M. Moselhy

Abstract:

This paper proposed a new CAD tools for microwave amplifier design. The proposed tool is based on survey about the broadband amplifier design methods, such as the Feedback amplifiers, balanced amplifiers and Compensated Matching Network The proposed tool is developed for broadband amplifier using a compensated matching network "unconditional stability amplifier". The developed program is based on analytical procedures with ability of smith chart explanation. The C# software is used for the proposed tools implementation. The program is applied on broadband amplifier as an example for testing. The designed amplifier is considered as a broadband amplifier at the range 300-700 MHz. The results are highly agreement with the expected results. Finally, these methods can be extended for wide band amplifier design.

Keywords: Broadband amplifier (BBA), Compensated Matching Network, Microwave Amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
9063 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2776
9062 Random Access in IoT Using Naïve Bayes Classification

Authors: Alhusein Almahjoub, Dongyu Qiu

Abstract:

This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.

Keywords: Random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 451
9061 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning

Authors: Janet Holland

Abstract:

Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.

Keywords: Area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
9060 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data

Authors: Saeid Gharechelou, Ryutaro Tateishi

Abstract:

Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.

Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid monitoring, 2015-Nepal earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
9059 Cross Signal Identification for PSG Applications

Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu

Abstract:

The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.

Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
9058 A Fault Tolerant Token-based Algorithm for Group Mutual Exclusion in Distributed Systems

Authors: Abhishek Swaroop, Awadhesh Kumar Singh

Abstract:

The group mutual exclusion (GME) problem is a variant of the mutual exclusion problem. In the present paper a token-based group mutual exclusion algorithm, capable of handling transient faults, is proposed. The algorithm uses the concept of dynamic request sets. A time out mechanism is used to detect the token loss; also, a distributed scheme is used to regenerate the token. The worst case message complexity of the algorithm is n+1. The maximum concurrency and forum switch complexity of the algorithm are n and min (n, m) respectively, where n is the number of processes and m is the number of groups. The algorithm also satisfies another desirable property called smooth admission. The scheme can also be adapted to handle the extended group mutual exclusion problem.

Keywords: Dynamic request sets, Fault tolerance, Smoothadmission, Transient faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673