Search results for: water deficit stress
1181 Pervious Concrete for Road Intersection Drainage
Authors: Ivana Barišić, Ivanka Netinger Grubeša, Ines Barjaktarić
Abstract:
Road performance and traffic safety are highly influenced by improper water drainage system performance, particularly within intersection areas. So, the aim of the presented paper is the evaluation of pervious concrete made with two types and two aggregate fractions for potential utilization in intersection drainage areas. Although the studied pervious concrete mixtures achieved proper drainage but lower strength characteristics, this pervious concrete has a good potential for enhancing pavement drainage systems if it is embedded on limited intersection areas.Keywords: Pervious concrete, drainage, road, intersection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11391180 Use of Short Piles for Stabilizing the Side Slope of the Road Embankment along the Canal
Authors: Monapat Sasingha, Suttisak Soralump
Abstract:
This research presents the behavior of slope of the road along the canal stabilized by short piles. In this investigation, the centrifuge machine was used, modelling the condition of the water levels in the canal. The centrifuge tests were performed at 35 g. To observe the movement of the soil, visual analysis was performed to evaluate the failure behavior. Conclusively, the use of short piles to stabilize the canal slope proved to be an effective solution. However, the certain amount of settlement was found behind the short pile rows.
Keywords: Centrifuge test, slope failure, embankment, stability of slope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10261179 Evaluation of Seismic Parameters and Response Modification Factor of Connections in Reduced Beam Section
Authors: Elmira Tavasoli Yousef Abadi
Abstract:
All structural components influencing the inelastic analysis alter response modification factor too. Ductility of connections has been regarded among the factors which have a direct impact on steel frame response modification factor. The experience of recent earthquakes such as the 1994 Northridge earthquake showed that structural connections in steel frame incurred unexpected (brittle) fracture in beam-to-column connection area. One of the methods to improve performance of moment frames is to reduce the beam section near the connection to the column. Reduced Beam Section (RBS) refers to one of the proposed moment connections in FEMA350. Ductility is the most important advantage of this connection over the other moment connections; it is found as the major factor in suitable plastic behavior of structural system. In this paper, beam-to-column connection with RBS and wide-flange beams has been examined via software Abaqus 6.12. It is observed that use of RBS connections can improve the connection behavior at inelastic area to a large extent and avoid stress concentrations and large deformation in the column.Keywords: RBS, seismic performance, beam-to-column connection, ductility, wide-flange beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15221178 Meditation Based Brain Painting Promoting Foreign Language Memory through Establishing a Brain-Computer Interface
Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny
Abstract:
In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide insights into meditation, creative language education, brain-computer interface, and human-computer interactions.
Keywords: Brain-computer interface, creative thinking, meditation, mental health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5861177 Prediction of Compressive Strength of Self- Compacting Concrete with Fuzzy Logic
Authors: Paratibha Aggarwal, Yogesh Aggarwal
Abstract:
The paper presents the potential of fuzzy logic (FL-I) and neural network techniques (ANN-I) for predicting the compressive strength, for SCC mixtures. Six input parameters that is contents of cement, sand, coarse aggregate, fly ash, superplasticizer percentage and water-to-binder ratio and an output parameter i.e. 28- day compressive strength for ANN-I and FL-I are used for modeling. The fuzzy logic model showed better performance than neural network model.Keywords: Self compacting concrete, compressive strength, prediction, neural network, Fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24591176 The Effect of Electrical Stimulation Intensity on VEGF Expression and Biomechanical Properties during Wound
Authors: M R Asadi, G Torkaman, M Hedayati
Abstract:
We evaluated the effect of sensory (direct current (DC), 600μA) and motor (monophasic current, pulse duration 300μs, 100 Hz, 2.5-3mA) intensities of cathodal electrical stimulation (ES) current to release VEGF and biomechanical properties of wound. 54 male Sprague-dawley rats were randomly assigned into one control and two experimental groups. A full thickness skin incision was made on animals- dorsal region. The experimental groups received ES for 1h/day and every other day. VEGF expression was measured in skin on the 7th day after surgical incision and tensile strength was measured on 21st day. On the 7th day, the values of skin VEGF in the sensory group were significantly greater than those of the other groups (p < 0.05). Sensory and Motor intensity stimulation, can not improve the biomechanical properties of the repaired wounds. It seems the mechanical environment induced by sensory and motor intensity of electrical stimulation, could not simulate the role of normal daily stress and strain to maturation of collagen fibers and their cross links. Further work is needed to determine the relationship between VEGF expression after ES and its effect on tensile strength of healed wound.Keywords: Biomechanical properties Direct current, Monophasic current, Skin, VEGF
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16021175 En-Face Optical Coherence Tomography Combined with Fluorescence in Material Defects Investigations for Ceramic Fixed Partial Dentures
Authors: C. Sinescu, M. Negrutiu, M. Romînu, C. Haiduc, E. Petrescu, M. Leretter, A.G. Podoleanu
Abstract:
Optical Coherence Tomography (OCT) combined with the Confocal Microscopy, as a noninvasive method, permits the determinations of materials defects in the ceramic layers depth. For this study 256 anterior and posterior metal and integral ceramic fixed partial dentures were used, made with Empress (Ivoclar), Wollceram and CAD/CAM (Wieland) technology. For each investigate area 350 slices were obtain and a 3D reconstruction was perform from each stuck. The Optical Coherent Tomography, as a noninvasive method, can be used as a control technique in integral ceramic technology, before placing those fixed partial dentures in the oral cavity. The purpose of this study is to evaluate the capability of En face Optical Coherence Tomography (OCT) combined with a fluorescent method in detection and analysis of possible material defects in metalceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.Keywords: Ceramic Fixed Partial Dentures, Material Defects, En face Optical Coherence Tomography, Fluorescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14911174 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70
Authors: Omar Al Denali, Abdelaziz Badi
Abstract:
The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.
Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3991173 Waste Oils pre-Esterification for Biodiesel Synthesis: Effect of Feed Moisture Contents
Authors: Kalala Jalama
Abstract:
A process flowsheet was developed in ChemCad 6.4 to study the effect of feed moisture contents on the pre-esterification of waste oils. Waste oils were modelled as a mixture of triolein (90%), oleic acid (5%) and water (5%). The process mainly consisted of feed drying, pre-esterification reaction and methanol recovery. The results showed that the process energy requirements would be minimized when higher degrees of feed drying and higher preesterification reaction temperatures are used.Keywords: Waste oils, moisture content, pre-esterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17551172 Durability Properties of Foamed Concrete with Fiber Inclusion
Authors: Hanizam Awang, Muhammad Hafiz Ahmad
Abstract:
An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glas, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4%. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.
Keywords: Foamed concrete, Fibres, Durability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47381171 Optimization of Turbocharged Diesel Engines
Authors: Ebrahim Safarian, Kadir Bilen, Akif Ceviz
Abstract:
The turbocharger and turbocharging have been the inherent component of diesel engines, so that critical parameters of such engines, as BSFC (Brake Specific Fuel Consumption) or thermal efficiency, fuel consumption, BMEP (Brake Mean Effective Pressure), the power density output and emission level have been improved extensively. In general, the turbocharger can be considered as the most complex component of diesel engines, because it has closely interrelated turbomachinery concepts of the turbines and the compressors to thermodynamic fundamentals of internal combustion engines and stress analysis of all components. In this paper, a waste gate for a conventional single stage radial turbine is investigated by consideration of turbochargers operation constrains and engine operation conditions, without any detail designs in the turbine and the compressor. Amount of opening waste gate which extended between the ranges of full opened and closed valve, is demonstrated by limiting compressor boost pressure ratio. Obtaining of an optimum point by regard above mentioned items is surveyed by three linked meanline modeling programs together which consist of Turbomatch®, Compal®, Rital® madules in concepts NREC® respectively.
Keywords: Turbocharger, Wastegate, diesel engine, CONCEPT NREC programs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34211170 Thermomechanical Coupled Analysis of Fiber Reinforced Polymer Composite Square Tube: A Finite Element Study
Authors: M. Ali, K. Alam, E. Ohioma
Abstract:
This paper presents a numerical investigation on the behavior of fiber reinforced polymer composite tubes (FRP) under thermomechanical coupled loading using finite element software ABAQUS and a special add-on subroutine, CZone. Three cases were explored; pure mechanical loading, pure thermal loading, and coupled thermomechanical loading. The failure index (Tsai-Wu) under all three loading cases was assessed for all plies in the tube walls. The simulation results under pure mechanical loading showed that composite tube failed at a tensile load of 3.1 kN. However, with the superposition of thermal load on mechanical load on the composite tube, the failure index of the previously failed plies in tube walls reduced significantly causing the tube to fail at 6 kN. This showed 93% improvement in the load carrying capacity of the composite tube in present study. The increase in load carrying capacity was attributed to the stress effects of the coefficients of thermal expansion (CTE) on the laminate as well as the inter-lamina stresses induced due to the composite stack layup.
Keywords: Thermal, mechanical, composites, square tubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19471169 A Study on the Comparison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test
Authors: Hee Jae Shin, Lee Ku Kwac, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Hong Gun Kim
Abstract:
In rapid industrial development, the demand for high-strength and lightweight materials have been increased. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order and thickness. Thus, the hardness and strength of CFRP depends much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75° and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75° and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties.
Keywords: Carbon Fiber Reinforced Plastic (CFRP), Bending Test, Infrared Camera, Composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20291168 Fatigue Analysis of Spread Mooring Line
Authors: Chanhoe Kang, Changhyun Lee, Seock-Hee Jun, Yeong-Tae Oh
Abstract:
Offshore floating structure under the various environmental conditions maintains a fixed position by mooring system. Environmental conditions, vessel motions and mooring loads are applied to mooring lines as the dynamic tension. Because global responses of mooring system in deep water are specified as wave frequency and low frequency response, they should be calculated from the time-domain analysis due to non-linear dynamic characteristics. To take into account all mooring loads, environmental conditions, added mass and damping terms at each time step, a lot of computation time and capacities are required. Thus, under the premise that reliable fatigue damage could be derived through reasonable analysis method, it is necessary to reduce the analysis cases through the sensitivity studies and appropriate assumptions. In this paper, effects in fatigue are studied for spread mooring system connected with oil FPSO which is positioned in deep water of West Africa offshore. The target FPSO with two Mbbls storage has 16 spread mooring lines (4 bundles x 4 lines). The various sensitivity studies are performed for environmental loads, type of responses, vessel offsets, mooring position, loading conditions and riser behavior. Each parameter applied to the sensitivity studies is investigated from the effects of fatigue damage through fatigue analysis. Based on the sensitivity studies, the following results are presented: Wave loads are more dominant in terms of fatigue than other environment conditions. Wave frequency response causes the higher fatigue damage than low frequency response. The larger vessel offset increases the mean tension and so it results in the increased fatigue damage. The external line of each bundle shows the highest fatigue damage by the governed vessel pitch motion due to swell wave conditions. Among three kinds of loading conditions, ballast condition has the highest fatigue damage due to higher tension. The riser damping occurred by riser behavior tends to reduce the fatigue damage. The various analysis results obtained from these sensitivity studies can be used for a simplified fatigue analysis of spread mooring line as the reference.
Keywords: Mooring system, fatigue analysis, time domain, non-linear dynamic characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25601167 Velocity Distribution in Open Channels with Sand: An Experimental Study
Authors: E. Keramaris
Abstract:
In this study, laboratory experiments in open channel flows over a sand bed were conducted. A porous bed (sand bed) with porosity of ε=0.70 and porous thickness of s΄=3 cm was tested. Vertical distributions of velocity were evaluated by using a two-dimensional (2D) Particle Image Velocimetry (PIV). Velocity profiles are measured above the impermeable bed and above the sand bed for the same different total water heights (h= 6, 8, 10 and 12 cm) and for the same slope S=1.5. Measurements of mean velocity indicate the effects of the bed material used (sand bed) on the flow characteristics (Velocity distribution and Reynolds number) in comparison with those above the impermeable bed.
Keywords: Particle image velocimetry, sand bed, velocity distribution, Reynolds number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17101166 Geometry Calibration Factors of Modified Arcan Fracture Test for Welded Joint
Authors: S. R. Hosseini, N. Choupani, A. R. M. Gharabaghi
Abstract:
In this study the mixed mode fracture mechanics parameters were investigated for high tensile steel butt welded joint based on modified Arcan test and finite element analysis was used to evaluate the effect of crack length on fracture criterion. The nondimensional stress intensity factors, strain energy release rates and Jintegral energy on crack tip were obtained for various in-plane loading combinations on Arcan specimen starting from pure mode-I to pure mode-II loading conditions. The specimen and apparatus were modeled by finite element method and analyzed under various loading angles (between 0 to 90 degrees with 15 degree interval) to simulate the pure mode-I, II and mixed mode fracture. Since the analytical results are independent from elasticity modules for isotropic materials, therefore the results in elastic fields can be used for Arcan specimens. The main objective of this study was to evaluate the geometric calibration factors for modified Arcan test specimen in order to obtain fracture toughness under mixed mode loading conditions.Keywords: Arcan specimen, Geometric calibration factors, Mixed Mode, Fracture mechanics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19671165 Inhibition Kinetic Determination of Trace Amounts of Ruthenium(III) by the Spectrophotometric method with Rhodamine B in Micellar Medium
Authors: Mohsen Keyvanfard
Abstract:
A new, simple and highly sensitive kinetic spectrophotometric method was developed for the determination of trace amounts of Ru(III) in the range of 0.06-20 ng/ml .The method is based on the inhibitory effect of ruthenium(III) on the oxidation of Rhodamine B by bromate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decreasing in absorbance of Rhodamine B at 554 nm with a fixedtime method..The limit of detection is 0.04 ng/ml Ru(III).The relative standard deviation of 5 and 10 ng/ml Ru(III) was 2.3 and 2.7 %, respectively. The method was applied to the determination of ruthenium in real water samplesKeywords: Ruthenium ;Inhibitory; Rhodamine B; bromate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17071164 Effect of Jet Diameter on Surface Quenching at Different Spatial Locations
Authors: C. Agrawal, R. Kumar, A. Gupta, B. Chatterjee
Abstract:
An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 C initial temperature. A round water jet of 22 ± 1 oC temperature was injected over the hot surface through straight tube type nozzles of 2.5- 4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000 -24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location.
Keywords: Hot-Surface, Jet Impingement, Quenching, Stagnation Point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22971163 Periodic Topology and Size Optimization Design of Tower Crane Boom
Authors: Wu Qinglong, Zhou Qicai, Xiong Xiaolei, Zhang Richeng
Abstract:
In order to achieve the layout and size optimization of the web members of tower crane boom, a truss topology and cross section size optimization method based on continuum is proposed considering three typical working conditions. Firstly, the optimization model is established by replacing web members with web plates. And the web plates are divided into several sub-domains so that periodic soft kill option (SKO) method can be carried out for topology optimization of the slender boom. After getting the optimized topology of web plates, the optimized layout of web members is formed through extracting the principal stress distribution. Finally, using the web member radius as design variable, the boom compliance as objective and the material volume of the boom as constraint, the cross section size optimization mathematical model is established. The size optimization criterion is deduced from the mathematical model by Lagrange multiplier method and Kuhn-Tucker condition. By comparing the original boom with the optimal boom, it is identified that this optimization method can effectively lighten the boom and improve its performance.
Keywords: Tower crane boom, topology optimization, size optimization, periodic, soft kill option, optimization criterion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13431162 Evaluation of Droplet Sizes from Video Images for Metal Working Fluids
Authors: R. Hacıoğlu, A. Genç, B. Bakırcı
Abstract:
Metal working fluids were used in the preparation of oil in water emulsions. The size of oil droplets were evaluated by using the analysis of video images taken from the zeta potential measurements. The evaluated size distributions for emulsions were also tested by microscopic analysis. In addition, emulsion stabilities were discussed depending on electrolyte concentration and pH. The results showed that the stability of oil emulsions was strongly related to pH and the concentration of CaCl2. However, the same dependency was not observed for NaCl.
Keywords: Droplet size distribution, emulsion stability, o/w emulsions, video images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18411161 The Effect of Ageing on Impact Toughness and Microstructure of 2024 Al-Cu-Mg Alloy
Authors: Swami Naidu Gurugubelli
Abstract:
The present study aims at determining the effect of ageing on the impact toughness and microstructure of 2024 Al-Cu - Mg alloy. Following the 2 h solutionizing treatment at 450°C and water quench, the specimens were aged at 200°C for various periods (1 to 18 h). The precipitation stages during ageing were monitored by hardness measurements. For each specimen group, Charpy impact and hardness tests were carried out. During ageing the impact toughness of the alloy first increased, and then, following a maxima decreased due to the precipitation of intermediate phases, finally it reached its minimum at the peak hardness. Correlations between hardness and impact toughness were investigated.
Keywords: Ageing, alloy, hardness, microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21391160 Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy
Authors: Woei-Shyan Lee, Hao-Chien Kao
Abstract:
The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.
Keywords: Haynes 188 alloy, impact, strain rate and temperature effect, adiabatic shearing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23351159 Investigation and Evalution of Swelling Kinetics Related to Biocopolymers Based on CMC poly(AA-co BuMC)
Authors: Mohammad Sadeghi, Behrouz Heidari, Korush Montazeri
Abstract:
In this paper, we have focused on study of swelling kinetics and salt-sensitivity behavior of a superabsorbing hydrogel based on carboxymethylcellulose (CMC) and acrylic acid and 2- Buthyl methacrylate. The swelling kinetics of the hydrogels with various particle sizes was preliminary investigated as well. The swelling of the hydrogel showed a second order kinetics of swelling in water. In addition, swelling measurements of the synthesized hydrogels in various chloride salt solutions was measured. Results indicated that a swelling-loss with an increase in the ionic strength of the salt solutions.
Keywords: Carboxymethylcellulose, swelling kinetics, 2-hydroxypropylmetacrylate, acrylic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15431158 The Analysis and Simulation of TRACE in the Ultimate Response Guideline for Chinshan BWR/4 Nuclear Power Plant
Authors: J. R. Wang, H. T. Lin, H. C. Chen, C. Shih, S. W. Chen, S. C. Chiang, C. C. Liu
Abstract:
In this research, TRACE model of Chinshan BWR/4 nuclear power plant (NPP) has been developed for the simulation and analysis of ultimate response guideline (URG).The main actions of URG are the depressurization and low pressure water injection of reactor and containment venting. This research focuses to verify the URG efficiency under Fukushima-like conditions. TRACE analysis results show that the URG can keep the PCT below the criteria 1088.7 K under Fukushima-like conditions. It indicated that Chinshan NPP was safe.Keywords: BWR, TRACE, safety analysis, URG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23441157 Flexural Properties of Halloysite Nanotubes-Polyester Nanocomposites Exposed to Aggressive Environment
Authors: Mohd Shahneel Saharudin, Jiacheng Wei, Islam Shyha, Fawad Inam
Abstract:
This study aimed to investigate the effect of aggressive environment on the flexural properties of halloysite nanotubes-polyester nanocomposites. Results showed that the addition of halloysite nanotubes into polyester matrix was found to improve flexural properties of the nanocomposites in dry condition and after water-methanol exposure. Significant increase in surface roughness was also observed and measured by Alicona Infinite Focus optical microscope.
Keywords: Halloysite nanotubes, polymer degradation, flexural properties, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9731156 Identification of the Best Blend Composition of Natural Rubber-High Density Polyethylene Blends for Roofing Applications
Authors: W. V. W. H. Wickramaarachchi, S. Walpalage, S. M. Egodage
Abstract:
Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs.
Keywords: Thermoplastic elastomer, natural rubber, high density polyethylene, roofing material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9591155 Toxicity Test of Ag+, Nano-Ag0 and Nano- Ag2O Using Green Algae (Chlorella sp.) and Water Flea (Moina macrocopa)
Authors: M. Yoo-iam, R. Chaichana, T. Satapanaiaru
Abstract:
The research objective was to study the toxicity of silver nanoparticles in aquatic organisms. Three forms of free silver ion nanoparticles (Ag+), silver nano particles (nano-Ag0) and silver oxide nanoparticles (nano Ag2O) were examined for toxic effects with Chlorella sp. and Moina macrocopa. The results showed that the toxicity of three silver ion forms to both organisms was examined
Keywords: Chlorella sp, moina nanomacrocopa, silver nanoparticles, toxicity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18451154 High Efficiency Solar Thermal Collectors Utilization in Process Heat: A Case Study of Textile Finishing Industry
Authors: Gökçen A. Çiftçioğlu, M. A. Neşet Kadırgan, Figen Kadırgan
Abstract:
Solar energy, since it is available every day, is seen as one of the most valuable renewable energy resources. Thus, the energy of sun should be efficiently used in various applications. The most known applications that use solar energy are heating water and spaces. High efficiency solar collectors need appropriate selective surfaces to absorb the heat. Selective surfaces (Selektif-Sera) used in this study are applied to flat collectors, which are produced by a roll to roll cost effective coating of nano nickel layers, developed in Selektif Teknoloji Co. Inc. Efficiency of flat collectors using Selektif-Sera absorbers are calculated in collaboration with Institute for Solar Technik Rapperswil, Switzerland. The main cause of high energy consumption in industry is mostly caused from low temperature level processes. There is considerable effort in research to minimize the energy use by renewable energy sources such as solar energy. A feasibility study will be presented to obtain the potential of solar thermal energy utilization in the textile industry using these solar collectors. For the feasibility calculations presented in this study, textile dyeing and finishing factory located at Kahramanmaras is selected since the geographic location was an important factor. Kahramanmaras is located in the south east part of Turkey thus has a great potential to have solar illumination much longer. It was observed that, the collector area is limited by the available area in the factory, thus a hybrid heating generating system (lignite/solar thermal) was preferred in the calculations of this study to be more realistic. During the feasibility work, the calculations took into account the preheating process, where well waters heated from 15 °C to 30-40 °C by using the hot waters in heat exchangers. Then the preheated water was heated again by high efficiency solar collectors. Economic comparison between the lignite use and solar thermal collector use was provided to determine the optimal system that can be used efficiently. The optimum design of solar thermal systems was studied depending on the optimum collector area. It was found that the solar thermal system is more economic and efficient than the merely lignite use. Return on investment time is calculated as 5.15 years.
Keywords: Solar energy, heating, solar heating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12401153 Effect of Self-Compacting Concrete and Aggregate Size on Anchorage Performance at Highly Congested Reinforcement Regions
Authors: Umair Baig, Kohei Nagai
Abstract:
At highly congested reinforcement regions, which is common at beam-column joint area, clear spacing between parallel bars becomes less than maximum normal aggregate size (20mm) which has not been addressed in any design code and specifications. Limited clear spacing between parallel bars (herein after thin cover) is one of the causes which affect anchorage performance. In this study, an experimental investigation was carried out to understand anchorage performance of reinforcement in Self-Compacting Concrete (SCC) and Normal Concrete (NC) at highly congested regions under uni-axial tensile loading. Column bar was pullout whereas; beam bars were offset from column reinforcement creating thin cover as per site condition. Two different sizes of coarse aggregate were used for NC (20mm and 10mm). Strain gauges were also installed along the bar in some specimens to understand the internal stress mechanism. Test results reveal that anchorage performance is affected at highly congested reinforcement region in NC with maximum aggregate size 20mm whereas; SCC and Small Aggregate (10mm) gives better structural performance.
Keywords: Anchorage capacity, bond, Normal Concrete, self-compacting concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34301152 Assessing the Impact of Underground Cavities on Buildings with Stepped Foundations on Sloping Lands
Authors: Masoud Mahdavi
Abstract:
The use of sloping lands is increasing due to the reduction of suitable lands for the construction of buildings. In the design and construction of buildings on sloping lands, the foundation has special loading conditions that require the designer and executor to use the slopped foundation. The creation of underground cavities, including urban and subway tunnels, sewers, urban facilities, etc., inside the ground, causes the behavior of the foundation to be unknown. In the present study, using Abacus software, a 45-degree stepped foundation on the ground is designed. The foundations are placed on the ground in a cohesive (no-hole) manner with circular cavities that show the effect of increasing the cross-sectional area of the underground cavities on the foundation's performance. The Kobe earthquake struck the foundation and ground for two seconds. The underground cavities have a circular cross-sectional area with a radius of 5 m, which is located at a depth of 22.54 m above the ground. The results showed that as the number of underground cavities increased, von Mises stress (in the vertical direction) increased. With the increase in the number of underground cavities, the plastic strain on the ground has increased. Also, with the increase in the number of underground cavities, the change in location and speed in the foundation has increased.
Keywords: Stepped foundation, sloping ground, Kobe earthquake, Abaqus software, underground excavations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614