Search results for: Data Reduction
6501 Aiming at Optimization of Tracking Technology through Seasonally Tilted Sun Trackers: An Indian Perspective
Authors: Sanjoy Mukherjee
Abstract:
Discussions on concepts of Single Axis Tracker (SAT) are becoming more and more apt for developing countries like India not just as an advancement in racking technology but due to the utmost necessity of reaching at the lowest Levelized Cost of Energy (LCOE) targets. With this increasing competition and significant fall in feed-in tariffs of solar PV projects, developers are under constant pressure to secure investment for their projects and eventually earn profits from them. Moreover, being the second largest populated country, India suffers from scarcity of land because of higher average population density. So, to mitigate the risk of this dual edged sword with reducing trend of unit (kWh) cost at one side and utilization of land on the other, tracking evolved as the call of the hour. Therefore, the prime objectives of this paper are not only to showcase how STT proves to be an effective mechanism to get more gain in Global Incidence in collector plane (Ginc) with respect to traditional mounting systems but also to introduce Seasonally Tilted Tracker (STT) technology as a possible option for high latitude locations.
Keywords: Tracking system, grid-connected PV systems, cost reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10406500 Combining Fuzzy Logic and Data Miningto Predict the Result of an EIA Review
Authors: Kevin Fong-Rey Liu, Jia-Shen Chen, Han-Hsi Liang, Cheng-Wu Chen, Yung-Shuen Shen
Abstract:
The purpose of determining impact significance is to place value on impacts. Environmental impact assessment review is a process that judges whether impact significance is acceptable or not in accordance with the scientific facts regarding environmental, ecological and socio-economical impacts described in environmental impact statements (EIS) or environmental impact assessment reports (EIAR). The first aim of this paper is to summarize the criteria of significance evaluation from the past review results and accordingly utilize fuzzy logic to incorporate these criteria into scientific facts. The second aim is to employ data mining technique to construct an EIS or EIAR prediction model for reviewing results which can assist developers to prepare and revise better environmental management plans in advance. The validity of the previous prediction model proposed by authors in 2009 is 92.7%. The enhanced validity in this study can attain 100.0%.Keywords: Environmental impact assessment review, impactsignificance, fuzzy logic, data mining, classification tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19436499 The Influence of Social Network Websites on Level of user Satisfaction
Authors: Pedram Behyar, Maryam Heidari, Zahra Bayat
Abstract:
the purpose of this research is to identify and clarify factors which have positive effect among user satisfaction and their social networking through websites. The examined factors in this research are; innovation, ease of use, trustworthy and customer support which are defined as satisfaction factors. To obtain reliable research approaches and to have better result in this research four hypothesizes used to test. This hypothesis testing has been done by correlation, regression and test of normality by using “SPSS16" also the data which was analyzed by this software. this data was gathered from prepaid questionnaire.Keywords: Customer Satisfaction, Social Network Website
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18576498 Blockchain in Saudi e-Government: A Systematic Literature Review
Authors: Haitham Assiri, Majed Eljazzar, Priyadarsi Nanda
Abstract:
The world is gradually entering the fourth industrial revolution. E-Government services are scaling government operations across the globe. However, as promising as an e-Government system would be, it is also susceptible to malicious attacks if not properly secured. In our study, we found that in Saudi Arabia, the e-Government website, Yesser, is vulnerable to external attacks. Obviously, this can lead to a breach of data integrity and privacy. In this paper, a systematic literature review (SLR) was conducted to explore possible ways the Kingdom of Saudi Arabia can take necessary measures to strengthen its e-Government system using blockchain. Blockchain is one of the emerging technologies shaping the world through its applications in finance, elections, healthcare, etc. It secures systems and brings more transparency. A total of 28 papers were selected for this SLR, and 19 of the papers significantly showed that blockchain could enhance the security and privacy of Saudi’s e-Government system. Other papers also concluded that blockchain is effective, albeit with the integration of other technologies like IoT, AI and big data. These papers have been analyzed to sieve out the findings and set the stage for future research into the subject.
Keywords: blockchain, data integrity, e-Government, security threats
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16316497 Molar Excess Volumes and Excess Isentropic Compressibilities of Ternary Mixtures Containing 2-Pyrrolidinone
Authors: Jaibir S. Yadav, Dimple, Vinod K. Sharma
Abstract:
Molar excess Volumes, VE ijk and speeds of sound , uijk of 2-pyrrolidinone (i) + benzene or toluene (j) + ethanol (k) ternary mixture have been measured as a function of composition at 308.15 K. The observed speeds of sound data have been utilized to determine excess isentropic compressiblities, ( E S κ )ijk of ternary (i + j + k) mixtures. Molar excess volumes, VE ijk and excess isentropic compressibilities, ( E S κ )ijk data have fitted to the Redlich-Kister equation to calculate ternary adjustable parameters and standard deviations. The Moelywn-Huggins concept (Huggins in Polymer 12: 389-399, 1971) of connectivity between the surfaces of the constituents of binary mixtures has been extended to ternary mixtures (using the concept of a connectivity parameter of third degree of molecules, 3ξ , which inturn depends on its topology) to obtain an expression that describes well the measured VE ijk and ( E S κ )ijk data.
Keywords: Connectivity parameter of third degree, 3ξ, Excess isentropic compressibilities, ( ES κ )ijk, Interaction energy parameter, χ, Molar excess volumes, VEijk, Speeds of sound, uijk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16416496 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Authors: Naghmeh Moradpoor Sheykhkanloo
Abstract:
Thousands of organisations store important and confidential information related to them, their customers, and their business partners in databases all across the world. The stored data ranges from less sensitive (e.g. first name, last name, date of birth) to more sensitive data (e.g. password, pin code, and credit card information). Losing data, disclosing confidential information or even changing the value of data are the severe damages that Structured Query Language injection (SQLi) attack can cause on a given database. It is a code injection technique where malicious SQL statements are inserted into a given SQL database by simply using a web browser. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLi attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLi attack categories, and a NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLi attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.Keywords: Neural Networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28426495 Performance Analysis Model Development for Mae Moh Coal-Fired Power Plant
Authors: Thitiporn Supasri, Natanee Vorayos, Piriya Thongchiew
Abstract:
Electrification is a complex process and governed by various parameters. Modeling of power plant’s target efficiency or target heat rate is often formulated and compared with the actual values. This comparison not only implies the performance of the power plant but also reflects the energy losses possibly inherited in some of related equipment and processes. The current modeling of Coal-fired Mae Moh power plant was formulated at the first commissioning. Some of equipments were replaced due to its life time. Relatively outdated for 20 years, the utilization of the model is not accomplished. This work has focused on the development of the performance analysis model of aforementioned power plant according to the most updated and current working conditions. The model is more appropriate and shows accuracy in its analysis. Losses are detected and measures are introduced such that reduction in energy consumption, related cost, and also environment impacts can be anticipated.
Keywords: Performance analysis model, Power plant modeling, Target heat rate, Target efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23296494 Security Enhanced RFID Middleware System
Authors: Jieun Song, Taesung Kim, Sokjoon Lee, Howon Kim
Abstract:
Recently, the RFID (Radio Frequency Identification) technology attracts the world market attention as essential technology for ubiquitous environment. The RFID market has focused on transponders and reader development. But that concern has shifted to RFID software like as high-valued e-business applications, RFID middleware and related development tools. However, due to the high sensitivity of data and service transaction within the RFID network, security consideration must be addressed. In order to guarantee trusted e-business based on RFID technology, we propose a security enhanced RFID middleware system. Our proposal is compliant with EPCglobal ALE (Application Level Events), which is standard interface for middleware and its clients. We show how to provide strengthened security and trust by protecting transported data between middleware and its client, and stored data in middleware. Moreover, we achieve the identification and service access control against illegal service abuse. Our system enables secure RFID middleware service and trusted e-business service.Keywords: RFID Middleware, ALE (Application Level Events), Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20666493 Conceptual Frameworks of Carbon Credit Registry System for Thailand
Authors: Akekaluck Hemtanon, Bunyarit Uyyanonvara
Abstract:
This research explores on the development of the structure of Carbon Credit Registry System those accords to the need of future events in Thailand. This research also explores the big picture of every connected system by referring to the design of each system, the Data Flow Diagram, and the design in term of the system-s data using DES standard. The purpose of this paper is to show how to design the model of each system. Furthermore, this paper can serve as guideline for designing an appropriate Carbon Credit Registry System.
Keywords: CDM, CDM BE, Annex I County, Non-Annex I country, CERs, Kyoto Protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16286492 Performance Evaluation of a Neural Network based General Purpose Space Vector Modulator
Authors: A.Muthuramalingam, S.Himavathi
Abstract:
Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for an inverter used in a variable frequency drive applications. It is computationally rigorous and hence limits the inverter switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained, the network with minimum resource and appropriate word length is identified. The bit precision required for this application is identified. The network with 8-bit precision is implemented in the IC XCV 400 and the results are presented. The performance of NN based general purpose SVM with higher bit precision is discussed.Keywords: NN based SVM, FPGA Implementation, LayerMultiplexing, NN structure and Resource Reduction, PerformanceEvaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14906491 An ensemble of Weighted Support Vector Machines for Ordinal Regression
Authors: Willem Waegeman, Luc Boullart
Abstract:
Instead of traditional (nominal) classification we investigate the subject of ordinal classification or ranking. An enhanced method based on an ensemble of Support Vector Machines (SVM-s) is proposed. Each binary classifier is trained with specific weights for each object in the training data set. Experiments on benchmark datasets and synthetic data indicate that the performance of our approach is comparable to state of the art kernel methods for ordinal regression. The ensemble method, which is straightforward to implement, provides a very good sensitivity-specificity trade-off for the highest and lowest rank.Keywords: Ordinal regression, support vector machines, ensemblelearning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16416490 Analysis of Bit Error Rate Improvement in MFSK Communication Link
Authors: O. P. Sharma, V. Janyani, S. Sancheti
Abstract:
Data rate, tolerable bit error rate or frame error rate and range & coverage are the key performance requirement of a communication link. In this paper performance of MFSK link is analyzed in terms of bit error rate, number of errors and total number of data processed. In the communication link model proposed, which is implemented using MATLAB block set, an improvement in BER is observed. Different parameters which effects and enables to keep BER low in M-ary communication system are also identified.Keywords: Additive White Gaussian Noise (AWGN), Bit Error Rate (BER), Frequency Shift Keying (FSK), Orthogonal Signaling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28886489 Problems of Boolean Reasoning Based Biclustering Parallelization
Authors: Marcin Michalak
Abstract:
Biclustering is the way of two-dimensional data analysis. For several years it became possible to express such issue in terms of Boolean reasoning, for processing continuous, discrete and binary data. The mathematical backgrounds of such approach — proved ability of induction of exact and inclusion–maximal biclusters fulfilling assumed criteria — are strong advantages of the method. Unfortunately, the core of the method has quite high computational complexity. In the paper the basics of Boolean reasoning approach for biclustering are presented. In such context the problems of computation parallelization are risen.Keywords: Boolean reasoning, biclustering, parallelization, prime implicant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5956488 Reduced Order Modelling of Linear Dynamic Systems using Particle Swarm Optimized Eigen Spectrum Analysis
Authors: G. Parmar, S. Mukherjee, R. Prasad
Abstract:
The authors present an algorithm for order reduction of linear time invariant dynamic systems using the combined advantages of the eigen spectrum analysis and the error minimization by particle swarm optimization technique. Pole centroid and system stiffness of both original and reduced order systems remain same in this method to determine the poles, whereas zeros are synthesized by minimizing the integral square error in between the transient responses of original and reduced order models using particle swarm optimization technique, pertaining to a unit step input. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The algorithm is illustrated with the help of two numerical examples and the results are compared with the other existing techniques.Keywords: Eigen spectrum, Integral square error, Orderreduction, Particle swarm optimization, Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16616487 Density Clustering Based On Radius of Data (DCBRD)
Authors: A.M. Fahim, A. M. Salem, F. A. Torkey, M. A. Ramadan
Abstract:
Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, a density based clustering algorithm (DCBRD) is presented, relying on a knowledge acquired from the data by dividing the data space into overlapped regions. The proposed algorithm discovers arbitrary shaped clusters, requires no input parameters and uses the same definitions of DBSCAN algorithm. We performed an experimental evaluation of the effectiveness and efficiency of it, and compared this results with that of DBSCAN. The results of our experiments demonstrate that the proposed algorithm is significantly efficient in discovering clusters of arbitrary shape and size.
Keywords: Clustering Algorithms, Arbitrary Shape of clusters, cluster Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18746486 Fourier Spectral Method for Analytic Continuation
Authors: Zhenyu Zhao, Lei You
Abstract:
The numerical analytic continuation of a function f(z) = f(x + iy) on a strip is discussed in this paper. The data are only given approximately on the real axis. The periodicity of given data is assumed. A truncated Fourier spectral method has been introduced to deal with the ill-posedness of the problem. The theoretic results show that the discrepancy principle can work well for this problem. Some numerical results are also given to show the efficiency of the method.
Keywords: Analytic continuation, ill-posed problem, regularization method Fourier spectral method, the discrepancy principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14976485 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases
Authors: Hao-Hsiang Ku, Ching-Ho Chi
Abstract:
Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.
Keywords: Hadoop, NoSQL, ontology, backpropagation neural network, and high distributed file system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9986484 A Study on the Accelerated Life Cycle Test Method of the Motor for Home Appliances by Using Acceleration Factor
Authors: Youn-Sung Kim, Mi-Sung Kim, Jae-Kun Lee
Abstract:
This paper deals with the accelerated life cycle test method of the motor for home appliances that demand high reliability. Life Cycle of parts in home appliances also should be 10 years because life cycle of the home appliances such as washing machine, refrigerator, TV is at least 10 years. In case of washing machine, the life cycle test method of motor is advanced for 3000 cycle test (1cycle = 2hours). However, 3000 cycle test incurs loss for the time and cost. Objectives of this study are to reduce the life cycle test time and the number of test samples, which could be realized by using acceleration factor for the test time and reduction factor for the number of sample.
Keywords: Accelerated life cycle test, motor reliability test, motor for washing machine, BLDC motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35916483 Increasing Profitability Supported by Innovative Methods and Designing Monitoring Software in Condition-Based Maintenance: A Case Study
Authors: Nasrin Farajiparvar
Abstract:
In the present article, a new method has been developed to enhance the application of equipment monitoring, which in turn results in improving condition-based maintenance economic impact in an automobile parts manufacturing factory. This study also describes how an effective software with a simple database can be utilized to achieve cost-effective improvements in maintenance performance. The most important results of this project are indicated here: 1. 63% reduction in direct and indirect maintenance costs. 2. Creating a proper database to analyse failures. 3. Creating a method to control system performance and develop it to similar systems. 4. Designing a software to analyse database and consequently create technical knowledge to face unusual condition of the system. Moreover, the results of this study have shown that the concept and philosophy of maintenance has not been understood in most Iranian industries. Thus, more investment is strongly required to improve maintenance conditions.
Keywords: Condition-based maintenance, Economic savings, Iran industries, Machine life prediction software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15746482 Modified Naïve Bayes Based Prediction Modeling for Crop Yield Prediction
Authors: Kefaya Qaddoum
Abstract:
Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to model a simple but often satisfactory supervised classification method. The original naive Bayes have a serious weakness, which is producing redundant predictors. In this paper, utilized regularization technique was used to obtain a computationally efficient classifier based on naive Bayes. The suggested construction, utilized L1-penalty, is capable of clearing redundant predictors, where a modification of the LARS algorithm is devised to solve this problem, making this method applicable to a wide range of data. In the experimental section, a study conducted to examine the effect of redundant and irrelevant predictors, and test the method on WSG data set for tomato yields, where there are many more predictors than data, and the urge need to predict weekly yield is the goal of this approach. Finally, the modified approach is compared with several naive Bayes variants and other classification algorithms (SVM and kNN), and is shown to be fairly good.
Keywords: Tomato yields prediction, naive Bayes, redundancy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51086481 A New Rigid Fistulectomy Set for Minimally Invasive “Core-Out“ Excision of High Anal Fistulas
Authors: Siamak Najarian, Meysam Esmaeili, Mohsen Towliat Kashani
Abstract:
In this article, we propose a new surgical device for circumferentially excision of high anal fistulas in a minimally invasive manner. The new apparatus works on the basis of axially rotating and moving a tubular blade along a fistulous tract straightened using a rigid straight guidewire. As the blade moves along the tract, its sharp circular cutting edge circumferentially separates approximately 2.25 mm thickness of tract encircling the rigid guidewire. We used the new set to excise two anal fistulas in a 62-year-old male patient, an extrasphincteric type and a long tract with no internal opening. With regard to the results of this test, the new device can be considered as a sphincter preserving mechanism for treatment of high anal fistulas. Consequently, a major reduction in the risk of fecal incontinence, recurrence rate, convalescence period and patient morbidity may be achieved using the new device for treatment of fistula-in-ano.Keywords: Fecal Incontinence, Fistulectomy, High Anal Fistula, Minimally Invasive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17306480 Open Educational Resource in Online Mathematics Learning
Authors: Haohao Wang
Abstract:
Technology, multimedia in Open Educational Resources, can contribute positively to student performance in an online instructional environment. Student performance data of past four years were obtained from an online course entitled Applied Calculus (MA139). This paper examined the data to determine whether multimedia (independent variable) had any impact on student performance (dependent variable) in online math learning, and how students felt about the value of the technology. Two groups of student data were analyzed, group 1 (control) from the online applied calculus course that did not use multimedia instructional materials, and group 2 (treatment) of the same online applied calculus course that used multimedia instructional materials. For the MA139 class, results indicate a statistically significant difference (p = .001) between the two groups, where group 1 had a final score mean of 56.36 (out of 100), group 2 of 70.68. Additionally, student testimonials were discussed in which students shared their experience in learning applied calculus online with multimedia instructional materials.Keywords: Online learning, Open Educational Resources, Multimedia, Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21136479 Future Housing Energy Efficiency Associated with the Auckland Unitary Plan
Authors: Bin Su
Abstract:
The draft Auckland Unitary Plan outlines the future land used for new housing and businesses with Auckland population growth over the next thirty years. According to Auckland Unitary Plan, over the next 30 years, the population of Auckland is projected to increase by one million, and up to 70% of total new dwellings occur within the existing urban area. Intensification will not only increase the number of median or higher density houses such as terrace house, apartment building, etc. within the existing urban area but also change mean housing design data that can impact building thermal performance under the local climate. Based on mean energy consumption and building design data, and their relationships of a number of Auckland sample houses, this study is to estimate the future mean housing energy consumption associated with the change of mean housing design data and evaluate housing energy efficiency with the Auckland Unitary Plan.
Keywords: Auckland Unitary Plan, Building thermal design, Housing design, Housing energy efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20756478 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains
Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol
Abstract:
We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.
Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3816477 Power Transformer Risk-Based Maintenance by Optimization of Transformer Condition and Transformer Importance
Authors: Kitti Leangkrua
Abstract:
This paper presents a risk-based maintenance strategy of a power transformer in order to optimize operating and maintenance costs. The methodology involves the study and preparation of a database for the collection the technical data and test data of a power transformer. An evaluation of the overall condition of each transformer is performed by a program developed as a result of the measured results; in addition, the calculation of the main equipment separation to the overall condition of the transformer (% HI) and the criteria for evaluating the importance (% ImI) of each location where the transformer is installed. The condition assessment is performed by analysis test data such as electrical test, insulating oil test and visual inspection. The condition of the power transformer will be classified from very poor to very good condition. The importance is evaluated from load criticality, importance of load and failure consequence. The risk matrix is developed for evaluating the risk of each power transformer. The high risk power transformer will be focused firstly. The computerized program is developed for practical use, and the maintenance strategy of a power transformer can be effectively managed.Keywords: Asset management, risk-based maintenance, power transformer, health index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13586476 Signal Reconstruction Using Cepstrum of Higher Order Statistics
Authors: Adnan Al-Smadi, Mahmoud Smadi
Abstract:
This paper presents an algorithm for reconstructing phase and magnitude responses of the impulse response when only the output data are available. The system is driven by a zero-mean independent identically distributed (i.i.d) non-Gaussian sequence that is not observed. The additive noise is assumed to be Gaussian. This is an important and essential problem in many practical applications of various science and engineering areas such as biomedical, seismic, and speech processing signals. The method is based on evaluating the bicepstrum of the third-order statistics of the observed output data. Simulations results are presented that demonstrate the performance of this method.
Keywords: Cepstrum, bicepstrum, third order statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20366475 Online Web Service based Solution for Urban Traffic Management
Authors: A. Ionita, A. Zafiu, C. Ghita
Abstract:
In this article, we present a web server based solution for implementing a system for intelligent navigation. In this solution we use real time collected data and traffic history to establish the best route for navigation. This is a low cost solution that is easily to implement and extend. There is no need any infrastructure at road network level except only a device that collect data about traffic in key road crossing. The presented solution creates a strong base for traffic pursuit and offers an infrastructure for navigation applications.Keywords: navigation, real time, route, traffic pursuit, webservice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15816474 A New Approach to Annotate the Text's of the Websites and Documents with a Quite Comprehensive Knowledge Base
Authors: Mohammad Yasrebi, Mehran Mohsenzadeh, Mashalla Abbasi-Dezfuli
Abstract:
Machine-understandable data when strongly interlinked constitutes the basis for the SemanticWeb. Annotating web documents is one of the major techniques for creating metadata on the Web. Annotating websites defines the containing data in a form which is suitable for interpretation by machines. In this paper, we present a new approach to annotate websites and documents by promoting the abstraction level of the annotation process to a conceptual level. By this means, we hope to solve some of the problems of the current annotation solutions.Keywords: Knowledge base, ontology, semantic annotation, semantic web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13456473 Multiple Sensors and JPDA-IMM-UKF Algorithm for Tracking Multiple Maneuvering Targets
Authors: Wissem Saidani, Yacine Morsly, Mohand Saïd Djouadi
Abstract:
In this paper, we consider the problem of tracking multiple maneuvering targets using switching multiple target motion models. With this paper, we aim to contribute in solving the problem of model-based body motion estimation by using data coming from visual sensors. The Interacting Multiple Model (IMM) algorithm is specially designed to track accurately targets whose state and/or measurement (assumed to be linear) models changes during motion transition. However, when these models are nonlinear, the IMM algorithm must be modified in order to guarantee an accurate track. In this paper we propose to avoid the Extended Kalman filter because of its limitations and substitute it with the Unscented Kalman filter which seems to be more efficient especially according to the simulation results obtained with the nonlinear IMM algorithm (IMMUKF). To resolve the problem of data association, the JPDA approach is combined with the IMM-UKF algorithm, the derived algorithm is noted JPDA-IMM-UKF.Keywords: Estimation, Kalman filtering, Multi-Target Tracking, Visual servoing, data association.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25616472 Visual Analytics of Higher Order Information for Trajectory Datasets
Authors: Ye Wang, Ickjai Lee
Abstract:
Due to the widespread of mobile sensing, there is a strong need to handle trails of moving objects, and trajectories. This paper proposes three visual analytics approaches for higher order information of trajectory datasets based on the higher order Voronoi diagram data structure. Proposed approaches reveal geometrical, topological, and directional information. Experimental resultsdemonstrate the applicability and usefulness of proposed three approaches.
Keywords: Visual Analytics, Higher Order Information, Trajectory Datasets, Spatio-temporal data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637