Search results for: Super Resolution with Non-Linear Signal Processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3900

Search results for: Super Resolution with Non-Linear Signal Processing

1770 Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing

Authors: Esam I. Jassim, Mohamed M. Awad

Abstract:

Natural gas flow contains undesirable solid particles, liquid condensation, and/or oil droplets and requires reliable removing equipment to perform filtration. Recent natural gas processing applications are demanded compactness and reliability of process equipment. Since conventional means are sophisticated in design, poor in efficiency, and continue lacking robust, a supersonic nozzle has been introduced as an alternative means to meet such demands. A 3-D Convergent-Divergent Nozzle is simulated using commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six different shapes of nozzle are numerically examined to illustrate the position of shock-wave as such spot could be considered as a benchmark of particle separation. Rectangle, triangle, circular, elliptical, pentagon, and hexagon nozzles are simulated using Fluent Code with all have same cross-sectional area. The simple one-dimensional inviscid theory does not describe the actual features of fluid flow precisely as it ignores the impact of nozzle configuration on the flow properties. CFD Simulation results, however, show that nozzle geometry influences the flow structures including location of shock wave. The CFD analysis predicts shock appearance when p01/pa>1.2 for almost all geometry and locates at the lower area ratio (Ae/At). Simulation results showed that shock wave in Elliptical nozzle has the farthest distance from the throat among the others at relatively small NPR. As NPR increases, hexagon would be the farthest. The numerical result is compared with available experimental data and has shown good agreement in terms of shock location and flow structure.

Keywords: CFD, Particle Separation, Shock wave, Supersonic Nozzle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3251
1769 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
1768 Finite Element Modeling of Heat and Moisture Transfer in Porous Material

Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume

Abstract:

This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.

Keywords: Finite element method, heat transfer, moisture transfer, porous materials, wood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
1767 AI-Based Technologies in International Arbitration: An Exploratory Study on the Practicability of Applying AI Tools on International Arbitration

Authors: Annabelle Ogochukwu Onyefulu-Kingston

Abstract:

One of the major purposes of artificial intelligence (AI) today is to evaluate and analyse millions of micro and macro data in order to determine what is relevant in a particular case and proffer it in an adequate manner. Microdata, as far as it relates to AI in international arbitration, is the millions of key issues specifically mentioned by either one or both parties or by their counsels, arbitrators, or arbitral tribunals in arbitral proceedings. This can be qualifications of expert witness and admissibility of evidence, amongst others. Macro data, on the other hand, refer to data derived from the resolution of the dispute and, consequently, the final and binding award. A notable example of this includes the rationale of the award and specific and general damages awarded, amongst others. This paper aims to critically evaluate and analyses the possibility of technological inclusion in international arbitration. This research will be imploring the qualitative method by evaluating existing literature on the consequence of applying AI to both micro and macro data in international arbitration, and how this can be of assistance to parties, counsels, and arbitrators.

Keywords: AI-based technologies, algorithms, arbitrators, international arbitration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35
1766 An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes

Authors: S. Niksarlioglu, F. Kulahci

Abstract:

Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.

Keywords: Earthquake, Modeling, Prediction, Radon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3014
1765 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts

Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi

Abstract:

The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.

Keywords: Biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
1764 Designing a Single-Floor Structure for the Control Room of a Petroleum Refinery and Assessing the Resistance of Such a Structure against Gas Explosion Load

Authors: Amin Lotfi Eghlim, Mehran pourgholi

Abstract:

Explosion occurs due to sudden release of energy. Common examples of explosion include chemical, atomic, heat, and pressure tank (due to ignition) explosions. Petroleum, gas, and petrochemical industries operations are threatened by natural risks and processes. Fires and explosions are the greatest process risks which cause financial damages. This study aims at designing a single-floor structure for the control room of a petroleum refinery to be resistant against gas explosion loads, and the information related to the structure specifications have been provided regarding the fact that the structure is made on the ground's surface. In this research, the lateral stiffness of single pile is calculated by SPPLN.FOR computer program, and its value for 13624 KN/m single pile has been assessed. The analysis used due to the loading conditions, is dynamic nonlinear analysis with direct integration method.

Keywords: Gas Explosion Load, Petroleum Refinery, Single-Floor Structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
1763 Input Textural Feature Selection By Mutual Information For Multispectral Image Classification

Authors: Mounir Ait kerroum, Ahmed Hammouch, Driss Aboutajdine

Abstract:

Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).

Keywords: Feature Selection, Texture, Mutual Information, Wavelet Transform, SVM classification, SPOT Imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
1762 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm

Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho

Abstract:

Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.

Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
1761 Application of Homotopy Perturbation Method to Solve Steady Flow of Walter B Fluid A Vertical Channel In Porous Media

Authors: A.Memari

Abstract:

In this article, a simulation method called the Homotopy Perturbation Method (HPM) is employed in the steady flow of a Walter's B' fluid in a vertical channel with porous wall. We employed Homotopy Perturbation Method to derive solution of a nonlinear form of equation obtained from exerting similarity transforming to the ordinary differential equation gained from continuity and momentum equations of this kind of flow. The results obtained from the Homotopy Perturbation Method are then compared with those from the Runge–Kutta method in order to verify the accuracy of the proposed method. The results show that the Homotopy Perturbation Method can achieve good results in predicting the solution of such problems. Ultimately we use this solution to obtain the other terms of velocities and physical discussion about it.

Keywords: Steady flow; Walter's B' Fluid;, vertical channel;porous media, Homotopy Perturbation Method (HPM), Numerical Solution (NS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
1760 Posture Stabilization of Kinematic Model of Differential Drive Robots via Lyapunov-Based Control Design

Authors: Li Jie, Zhang Wei

Abstract:

In this paper, the problem of posture stabilization for a kinematic model of differential drive robots is studied. A more complex model of the kinematics of differential drive robots is used for the design of stabilizing control. This model is formulated in terms of the physical parameters of the system such as the radius of the wheels, and velocity of the wheels are the control inputs of it. In this paper, the framework of Lyapunov-based control design has been used to solve posture stabilization problem for the comprehensive model of differential drive robots. The results of the simulations show that the devised controller successfully solves the posture regulation problem. Finally, robustness and performance of the controller have been studied under system parameter uncertainty.

Keywords: Differential drive robots, nonlinear control, Lyapunov-based control design, posture regulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
1759 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization

Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin

Abstract:

In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller. 

Keywords: The Bouc-Wen hysteresis model, Particle swarm optimization, Prandtl-Ishlinskii model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
1758 Numerical Analysis and Sensitivity Study of Non-Premixed Combustion Using LES

Authors: J. Dumrongsak, A. M. Savill

Abstract:

Non-premixed turbulent combustion Computational Fluid Dynamics (CFD) has been carried out in a simplified methanefuelled coaxial jet combustor employing Large Eddy Simulation (LES). The objective of this study is to evaluate the performance of LES in modelling non-premixed combustion using a commercial software, FLUENT, and investigate the effects of the grid density and chemistry models employed on the accuracy of the simulation results. A comparison has also been made between LES and Reynolds Averaged Navier-Stokes (RANS) predictions. For LES grid sensitivity test, 2.3 and 6.2 million cell grids are employed with the equilibrium model. The chemistry model sensitivity analysis is achieved by comparing the simulation results from the equilibrium chemistry and steady flamelet models. The predictions of the mixture fraction, axial velocity, species mass fraction and temperature by LES are in good agreement with the experimental data. The LES results are similar for the two chemistry models but influenced considerably by the grid resolution in the inner flame and near-wall regions.

Keywords: Coaxial jet, reacting LES, non-premixed combustion, turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843
1757 Surface Topography Measurement by Confocal Spectral Interferometry

Authors: A. Manallah, C. Meier

Abstract:

Confocal spectral interferometry (CSI) is an innovative optical method for determining microtopography of surfaces and thickness of transparent layers, based on the combination of two optical principles: confocal imaging, and spectral interferometry. Confocal optical system images at each instant a single point of the sample. The whole surface is reconstructed by plan scanning. The interference signal generated by mixing two white-light beams is analyzed using a spectrometer. In this work, five ‘rugotests’ of known standard roughnesses are investigated. The topography is then measured and illustrated, and the equivalent roughness is determined and compared with the standard values.

Keywords: Confocal spectral interferometry, Nondestructive testing, Optical metrology, Surface topography, Roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
1756 Optimal Route Policy in Air Traffic Control with Competing Airlines

Authors: Siliang Wang, Minghui Wang

Abstract:

This work proposes a novel market-based air traffic flow control model considering competitive airlines in air traffic network. In the flow model, an agent based framework for resources (link/time pair) pricing is described. Resource agent and auctioneer for groups of resources are also introduced to simulate the flow management in Air Traffic Control (ATC). Secondly, the distributed group pricing algorithm is introduced, which efficiently reflect the competitive nature of the airline industry. Resources in the system are grouped according to the degree of interaction, and each auctioneer adjust s the price of one group of resources respectively until the excess demand of resources becomes zero when the demand and supply of resources of the system changes. Numerical simulation results show the feasibility of solving the air traffic flow control problem using market mechanism and pricing algorithms on the air traffic network.

Keywords: Air traffic control, Nonlinear programming, Marketmechanism, Route policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
1755 Efficient Realization of an ADFE with a New Adaptive Algorithm

Authors: N. Praveen Kumar, Abhijit Mitra, C. Ardil

Abstract:

Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.

Keywords: Decision feedback equalizer, Adaptive algorithm, Block based computation, Set membership filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
1754 Finite Element Dynamic Analysis of Composite Structure Cracks

Authors: Omid A. Zargar

Abstract:

Material damages dynamic analysis is difficult to deal with different material geometry and mechanism. In addition, it is difficult to measure the dynamic behavior of cracks, debond and delamination inside the material. Different simulation methods are developed in recent years for different physical features of mechanical systems like vibration and acoustic. Nonlinear fractures are analyzed and identified for different locations in this paper. The main idea of this work is to perform dynamic analysis on different types of materials (from normal homogeneous material to complex composite laminates). Technical factors like cracks, voids, interfaces and the damages’ locations are evaluated. In this project the modal analysis is performed on different types of materials. The results could be helpful in finding modal frequencies, natural frequencies, Time domain and fast Fourier transform (FFT) in industrial applications.

Keywords: Finite element method, dynamic analysis, vibration and acoustic, composite, crack, delamination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3654
1753 Weak Instability in Direct Integration Methods for Structural Dynamics

Authors: Shuenn-Yih Chang, Chiu-Li Huang

Abstract:

Three structure-dependent integration methods have been developed for solving equations of motion, which are second-order ordinary differential equations, for structural dynamics and earthquake engineering applications. Although they generally have the same numerical properties, such as explicit formulation, unconditional stability and second-order accuracy, a different performance is found in solving the free vibration response to either linear elastic or nonlinear systems with high frequency modes. The root cause of this different performance in the free vibration responses is analytically explored herein. As a result, it is verified that a weak instability is responsible for the different performance of the integration methods. In general, a weak instability will result in an inaccurate solution or even numerical instability in the free vibration responses of high frequency modes. As a result, a weak instability must be prohibited for time integration methods.

Keywords: Dynamic analysis, high frequency, integration method, overshoot, weak instability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
1752 Detection of Sags, Swells, and Transients Using Windowing Technique Based On Continuous S-Transform (CST)

Authors: K. Daud, A. F. Abidin, N. Hamzah, H. S. Nagindar Singh

Abstract:

This paper produces a new approach for power quality analysis using a windowing technique based on Continuous S-transform (CST). This half-cycle window technique approach can detect almost correctly for initial detection of disturbances i.e. voltage sags, swells, and transients. Samples in half cycle window has been analyzed based continuous S-transform for entire disturbance waveform. The modified parameter has been produced by MATLAB programming m-file based on continuous s-transform. CST has better time frequency and localization property than traditional and also has ability to detect the disturbance under noisy condition correctly. The excellent time-frequency resolution characteristic of the CST makes it the most an attractive candidate for analysis of power system disturbances signals.

Keywords: Power quality disturbances, initial detection, half cycle windowing, continuous S-transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
1751 Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation

Authors: Gholamhosein Khosravi, Mohammad Azadi, Hamidreza Ghezavati

Abstract:

In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.

Keywords: Carbon nanotubes, vibration control, piezoelectric layers, elastic foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255
1750 Protocol Modifications for Improved Co-Channel Wireless LAN Goodput in Partitioned Spaces

Authors: Raymond J. Jayabal, Chiew Tong Lau

Abstract:

Partitions can play a significant role in minimising cochannel interference of Wireless LANs by attenuating signals across room boundaries. This could pave the way towards higher density deployments in home and office environments through spatial channel reuse. Yet, due to protocol limitations, the latest incantation of IEEE 802.11 standard is still unable to take advantage of this fact: Despite having clearly adequate Signal to Interference Ratio (SIR) over co-channel neighbouring networks in other rooms, its goodput falls significantly lower than its maximum in the absence of cochannel interferers. In this paper, we describe how this situation can be remedied via modest modifications to the standard.

Keywords: IEEE 802.11 Wireless LAN, spatial channel re-use, physical layer capture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
1749 Influence of Flexural Reinforcement on the Shear Strength of RC Beams without Stirrups

Authors: Guray Arslan, Riza S. O. Keskin

Abstract:

Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and loadstrain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values.

Keywords: Finite element, flexural reinforcement, reinforced concrete beam, shear strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698
1748 A Context-Sensitive Algorithm for Media Similarity Search

Authors: Guang-Ho Cha

Abstract:

This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.

Keywords: Context-sensitive search, image search, media search, similarity ranking, similarity search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 641
1747 Pressure-Detecting Method for Estimating Levitation Gap Height of Swirl Gripper

Authors: Kaige Shi, Chao Jiang, Xin Li

Abstract:

The swirl gripper is an electrically activated noncontact handling device that uses swirling airflow to generate a lifting force. This force can be used to pick up a workpiece placed underneath the swirl gripper without any contact. It is applicable, for example, in the semiconductor wafer production line, where contact must be avoided during the handling and moving of a workpiece to minimize damage. When a workpiece levitates underneath a swirl gripper, the gap height between them is crucial for safe handling. Therefore, in this paper, we propose a method to estimate the levitation gap height by detecting pressure at two points. The method is based on theoretical model of the swirl gripper, and has been experimentally verified. Furthermore, the force between the gripper and the workpiece can also be estimated using the detected pressure. As a result, the nonlinear relationship between the force and gap height can be linearized by adjusting the rotating speed of the fan in the swirl gripper according to the estimated force and gap height. The linearized relationship is expected to enhance handling stability of the workpiece.

Keywords: Swirl gripper, noncontact handling, levitation, gap height estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 530
1746 Experimental Study of CO2 Absorption in Different Blend Solutions as Solvent for CO2 Capture

Authors: Rouzbeh Ramezani, Renzo Di Felice

Abstract:

Nowadays, removal of CO2 as one of the major contributors to global warming using alternative solvents with high CO2 absorption efficiency, is an important industrial operation. In this study, three amines, including 2-methylpiperazine, potassium sarcosinate and potassium lysinate as potential additives, were added to the potassium carbonate solution as a base solvent for CO2 capture. In order to study the absorption performance of CO2 in terms of loading capacity of CO2 and absorption rate, the absorption experiments in a blend of additives with potassium carbonate were carried out using the vapor-liquid equilibrium apparatus at a temperature of 313.15 K, CO2 partial pressures ranging from 0 to 50 kPa and at mole fractions 0.2, 0.3, and 0.4. Furthermore, the performance of CO2 absorption in these blend solutions was compared with pure monoethanolamine and with pure potassium carbonate. Finally, a correlation with good accuracy was developed using the nonlinear regression analysis in order to predict CO2 loading capacity.

Keywords: Absorption rate, carbon dioxide, CO2 capture, global warming, loading capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
1745 COVID_ICU_BERT: A Fine-tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes

Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo

Abstract:

Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as physiological vital signs, images and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful to influence the judgement of clinical sentiment in ICU clinical notes. This paper presents two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of a clinical transformer model that can reliably predict clinical sentiment for notes of COVID patients in ICU. We train the model on clinical notes for COVID-19 patients, ones not previously seen by Bio_ClinicalBERT or Bio_Discharge_Summary_BERT. The model which was based on Bio_ClinicalBERT achieves higher predictive accuracy than the one based on Bio_Discharge_Summary_BERT (Acc 93.33%, AUC 0.98, and Precision 0.96). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and Precision 0.92).

Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 277
1744 The Hyperbolic Smoothing Approach for Automatic Calibration of Rainfall-Runoff Models

Authors: Adilson Elias Xavier, Otto Corrêa Rotunno Filho, Paulo Canedo de Magalhães

Abstract:

This paper addresses the issue of automatic parameter estimation in conceptual rainfall-runoff (CRR) models. Due to threshold structures commonly occurring in CRR models, the associated mathematical optimization problems have the significant characteristic of being strongly non-differentiable. In order to face this enormous task, the resolution method proposed adopts a smoothing strategy using a special C∞ differentiable class function. The final estimation solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original conceptual problem. The use of this technique, called Hyperbolic Smoothing Method (HSM), makes possible the application of the most powerful minimization algorithms, and also allows for the main difficulties presented by the original CRR problem to be overcome. A set of computational experiments is presented for the purpose of illustrating both the reliability and the efficiency of the proposed approach.

Keywords: Rainfall-runoff models, optimization procedure, automatic parameter calibration, hyperbolic smoothing method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 409
1743 CFD Analysis of Natural Ventilation Behaviour in Four Sided Wind Catcher

Authors: M. Hossein Ghadiri, Mohd Farid Mohamed, N. Lukman N. Ibrahim

Abstract:

Wind catchers are traditional natural ventilation systems attached to buildings in order to ventilate the indoor air. The most common type of wind catcher is four sided one which is capable to catch wind in all directions. CFD simulation is the perfect way to evaluate the wind catcher performance. The accuracy of CFD results is the issue of concern, so sensitivity analyses is crucial to find out the effect of different settings of CFD on results. This paper presents a series of 3D steady RANS simulations for a generic isolated four-sided wind catcher attached to a room subjected to wind direction ranging from 0º to 180º with an interval of 45º. The CFD simulations are validated with detailed wind tunnel experiments. The influence of an extensive range of computational parameters is explored in this paper, including the resolution of the computational grid, the size of the computational domain and the turbulence model. This study found that CFD simulation is a reliable method for wind catcher study, but it is less accurate in prediction of models with non perpendicular wind directions.

Keywords: Wind catcher, CFD, natural ventilation, sensitivity study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695
1742 Realization of Electronically Controllable Current-mode Square-rooting Circuit Based on MO-CFTA

Authors: P. Silapan, C. Chanapromma, T. Worachak

Abstract:

This article proposes a current-mode square-rooting circuit using current follower transconductance amplifier (CTFA). The amplitude of the output current can be electronically controlled via input bias current with wide input dynamic range. The proposed circuit consists of only single CFTA. Without any matching conditions and external passive elements, the circuit is then appropriate for an IC architecture. The magnitude of the output signal is temperature-insensitive. The PSpice simulation results are depicted, and the given results agree well with the theoretical anticipation. The power consumption is approximately 1.96mW at ±1.5V supply voltages.

Keywords: CFTA, Current-mode, Square-rooting Circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
1741 An AFM Approach of RBC Micro and Nanoscale Topographic Features during Storage

Authors: K. Santacruz-Gomez, E. Silva-Campa, S. Álvarez-García, V. Mata-Haro, D. Soto-Puebla, M. Pedroza-Montero

Abstract:

Blood gamma irradiation is the only available method to prevent transfusion associated graft versus host disease (TAGVHD). However, when blood is irradiated, determine blood shelf time is crucial. Non irradiated blood have a self-time from 21 to 35 days when is preserved with anticoagulated solution and stored at 4°C. During their storage, red blood cells (RBC) undergo a series of biochemical, biomechanical and molecular changes involving what is known as storage lesion (SL). SL include loss of structural integrity of RBC, decrease of 2,3-diphosphatidylglyceric acid levels, and increase of both ion potassium concentration and hemoglobin (Hb). On the other hand, Atomic force Microscopy (AFM) represents a versatile tool for a nano-scale high resolution topographic analysis in biological systems. In order to evaluate SL in irradiated and nonirradiated blood, RBC topography and morphometric parameters were obtained from an AFM XE-BIO system. Cell viability was followed using flow cytometry. Our results showed that early markers as nanoscale roughness, allow us to evaluate blood quality since other perspective.

Keywords: AFM, Blood γ-irradiation, roughness, Storage lesion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697