Search results for: electrical networks.
493 A Practical Approach for Electricity Load Forecasting
Authors: T. Rashid, T. Kechadi
Abstract:
This paper is a continuation of our daily energy peak load forecasting approach using our modified network which is part of the recurrent networks family and is called feed forward and feed back multi context artificial neural network (FFFB-MCANN). The inputs to the network were exogenous variables such as the previous and current change in the weather components, the previous and current status of the day and endogenous variables such as the past change in the loads. Endogenous variable such as the current change in the loads were used on the network output. Experiment shows that using endogenous and exogenous variables as inputs to the FFFBMCANN rather than either exogenous or endogenous variables as inputs to the same network produces better results. Experiments show that using the change in variables such as weather components and the change in the past load as inputs to the FFFB-MCANN rather than the absolute values for the weather components and past load as inputs to the same network has a dramatic impact and produce better accuracy.
Keywords: Daily peak load forecasting, feed forward and feedback multi-context neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854492 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications
Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik
Abstract:
The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.
Keywords: Atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382491 Active Power Flow Control Using A TCSC Based Backstepping Controller in Multimachine Power System
Authors: Naimi Abdelhamid, Othmane Abdelkhalek
Abstract:
With the current rise in the demand of electrical energy, present-day power systems which are large and complex, will continue to grow in both size and complexity. Flexible AC Transmission System (FACTS) controllers provide new facilities, both in steady state power flow control and dynamic stability control. Thyristor Controlled Series Capacitor (TCSC) is one of FACTS equipment, which is used for power flow control of active power in electric power system and for increase of capacities of transmission lines. In this paper, a Backstepping Power Flow Controller (BPFC) for TCSC in multimachine power system is developed and tested. The simulation results show that the TCSC proposed controller is capable of controlling the transmitted active power and improving the transient stability when compared with conventional PI Power Flow Controller (PIPFC).
Keywords: FACTS, Thyristor Controlled Series Capacitor (TCSC), Backstepping, BPFC, PIPFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795490 A Multimedia Telemonitoring Network for Healthcare
Authors: Hariton N. Costin, Sorin Puscoci, Cristian Rotariu, Bogdan Dionisie, Marinela C. Cimpoesu
Abstract:
TELMES project aims to develop a securized multimedia system devoted to medical consultation teleservices. It will be finalized with a pilot system for a regional telecenters network that connects local telecenters, having as support multimedia platforms. This network will enable the implementation of complex medical teleservices (teleconsulations, telemonitoring, homecare, urgency medicine, etc.) for a broader range of patients and medical professionals, mainly for family doctors and those people living in rural or isolated regions. Thus, a multimedia, scalable network, based on modern IT&C paradigms, will result. It will gather two inter-connected regional telecenters, in Iaşi and Piteşti, Romania, each of them also permitting local connections of hospitals, diagnostic and treatment centers, as well as local networks of family doctors, patients, even educational entities. As communications infrastructure, we aim to develop a combined fixmobile- internet (broadband) links. Other possible communication environments will be GSM/GPRS/3G and radio waves. The electrocardiogram (ECG) acquisition, internet transmission and local analysis, using embedded technologies, was already successfully done for patients- telemonitoring.Keywords: Healthcare, telemedicine, telemonitoring, ECG analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820489 Measures for Limiting Corruption upon Migration Wave in Europe
Authors: Jordan Georgiev Deliversky
Abstract:
Fight against migrant smuggling has been put as a priority issues at the European Union policy agenda for more than a decade. The trafficked person, who has been targeted as the object of criminal exploitation, is specifically unique for human trafficking. Generally, the beginning of human trafficking activities is related to profit from the victim’s exploitation. The objective of this paper is to present measures that could result in the limitation of corruption mainly through analyzing the existing legislation framework against corruption in Europe. The analysis is focused on exploring the multiple origins of factors influencing migration processes in Europe, as corruption could be characterized as one of the most significant reasons for refugees to flee their countries. The main results show that law enforcement must turn the focus on the financing of the organized crime groups that are involved in migrant smuggling activities. Corruption has a significant role in managing smuggling operations and in particular when criminal organizations and networks are involved. Illegal migrants and refugees usually represent significant sources of additional income for officials involved in the process of boarding protection and immigration control within the European Union borders.
Keywords: Corruption, influence, human smuggling, legislation, migration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091488 Using Facebook as an Alternative Learning Tool in Malaysian Higher Learning Institutions: A Structural Equation Modeling Approach
Authors: Ahasanul Haque, Abdullah Sarwar, Khaliq Ahmad
Abstract:
Networking is important among students to achieve better understanding. Social networking plays an important role in the education. Realizing its huge potential, various organizations, including institutions of higher learning have moved to the area of social networks to interact with their students especially through Facebook. Therefore, measuring the effectiveness of Facebook as a learning tool has become an area of interest to academicians and researchers. Therefore, this study tried to integrate and propose new theoretical and empirical evidences by linking the western idea of adopting Facebook as an alternative learning platform from a Malaysian perspective. This study, thus, aimed to fill a gap by being among the pioneering research that tries to study the effectiveness of adopting Facebook as a learning platform across other cultural settings, namely Malaysia. Structural equation modeling was employed for data analysis and hypothesis testing. This study finding has provided some insights that would likely affect students’ awareness towards using Facebook as an alternative learning platform in the Malaysian higher learning institutions. At the end, future direction is proposed.Keywords: Learning Management Tool, Social Networking, Education, Malaysia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425487 A Data-Driven Approach for Studying the Washout Effects of Rain on Air Pollution
Abstract:
Air pollution is a serious environmental threat on a global scale and can cause harm to human health, morbidity and premature mortality. Reliable monitoring and control systems are therefore necessary to develop coping skills against the hazards associated with this phenomenon. However, existing environmental monitoring means often do not provide a sufficient response due to practical and technical limitations. Commercial microwave links that form the infrastructure for transmitting data between cell phone towers can be harnessed to map rain at high tempo-spatial resolution. Rainfall causes a decrease in the signal strength received by these wireless communication links allowing it to be used as a built-in sensor network to map the phenomenon. In this study, we point to the potential that lies in this system to indirectly monitor areas where air pollution is reduced. The relationship between pollutant wash-off and rainfall provides an opportunity to acquire important spatial information about air quality using existing cell-phone tower signals. Since the density of microwave communication networks is high relative to any dedicated sensor arrays, it could be possible to rely on this available observation tool for studying precipitation scavenging on air pollutants, for model needs and more.
Keywords: Air pollution, commercial microwave links, rainfall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 904486 Lower Order Harmonics Minimisation in CHB Inverter Using GA and Decomposition by WT
Authors: V. Joshi Manohar, P. Sujatha, K. S. R. Anjaneyulu
Abstract:
Nowadays Multilevel inverters are widely using in various applications. Modulation strategy at fundamental switching frequency like, SHEPWM is prominent technique to eliminate lower order of harmonics with less switching losses and better harmonic profile. The equations which are formed by SHE are highly nonlinear transcendental in nature, there may exist single, multiple or even no solutions for a particular MI. However, some loads such as electrical drives, it is required to operate in whole range of MI. In order to solve SHE equations for whole range of MI, intelligent techniques are well suited to solve equations so as to produce lest %THDV. Hence, this paper uses Continuous genetic algorithm for minimising harmonics. This paper also presents wavelet based analysis of harmonics. The developed algorithm is simulated and %THD from FFT analysis and Wavelet analysis are compared. MATLAB programming environment and SIMULINK models are used whenever necessary.
Keywords: Cascade H-Bridge Inverter (CHB), Continuous Genetic Algorithm (C-GA), Selective Harmonic Elimination Pulse Width Modulation (SHEPWM), Total Harmonic Distortion (%THDv), Wavelet Transform (WT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2915485 Implementation of a New Neural Network Function Block to Programmable Logic Controllers Library Function
Authors: Hamid Abdi, Abolfazl Salami, Abolfazl Ahmadi
Abstract:
Programmable logic controllers are the main controllers in the today's industries; they are used for several applications in industrial control systems and there are lots of examples exist from the PLC applications in industries especially in big companies and plants such as refineries, power plants, petrochemical companies, steel companies, and food and production companies. In the PLCs there are some functions in the function library in software that can be used in PLC programs as basic program elements. The aim of this project are introducing and implementing a new function block of a neural network to the function library of PLC. This block can be applied for some control applications or nonlinear functions calculations after it has been trained for these applications. The implemented neural network is a Perceptron neural network with three layers, three input nodes and one output node. The block can be used in manual or automatic mode. In this paper the structure of the implemented function block, the parameters and the training method of the network are presented by considering the especial method of PLC programming and its complexities. Finally the application of the new block is compared with a classic simulated block and the results are presented.Keywords: Programmable Logic Controller, PLC Programming, Neural Networks, Perception Network, Intelligent Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3810484 Generalized Predictive Control of Batch Polymerization Reactor
Authors: R. Khaniki, M.B. Menhaj, H. Eliasi
Abstract:
This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.
Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504483 Generalized Predictive Control of Batch Polymerization Reactor
Authors: R. Khaniki, M.B. Menhaj, H. Eliasi
Abstract:
This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782482 Electrochemical Performance of Carbon Nanotube Based Supercapacitor
Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari
Abstract:
Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750oC analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.
Keywords: Carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489481 A Framework for Scalable Autonomous P2P Resource Discovery for the Grid Implementation
Authors: Hesham A. Ali, Mofreh M. Salem, Ahmed A. Hamza
Abstract:
Recently, there have been considerable efforts towards the convergence between P2P and Grid computing in order to reach a solution that takes the best of both worlds by exploiting the advantages that each offers. Augmenting the peer-to-peer model to the services of the Grid promises to eliminate bottlenecks and ensure greater scalability, availability, and fault-tolerance. The Grid Information Service (GIS) directly influences quality of service for grid platforms. Most of the proposed solutions for decentralizing the GIS are based on completely flat overlays. The main contributions for this paper are: the investigation of a novel resource discovery framework for Grid implementations based on a hierarchy of structured peer-to-peer overlay networks, and introducing a discovery algorithm utilizing the proposed framework. Validation of the framework-s performance is done via simulation. Experimental results show that the proposed organization has the advantage of being scalable while providing fault-isolation, effective bandwidth utilization, and hierarchical access control. In addition, it will lead to a reliable, guaranteed sub-linear search which returns results within a bounded interval of time and with a smaller amount of generated traffic within each domain.
Keywords: Grid computing, grid information service, P2P, resource discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976480 A Comparative Analysis of Fuzzy, Neuro-Fuzzy and Fuzzy-GA Based Approaches for Software Reusability Evaluation
Authors: Parvinder Singh Sandhu, Dalwinder Singh Salaria, Hardeep Singh
Abstract:
Software Reusability is primary attribute of software quality. There are metrics for identifying the quality of reusable components but the function that makes use of these metrics to find reusability of software components is still not clear. These metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the component and hence improve the productivity due to probabilistic increase in the reuse level. In this paper, we have devised the framework of metrics that uses McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component as input attributes and calculated reusability of the software component. Here, comparative analysis of the fuzzy, Neuro-fuzzy and Fuzzy-GA approaches is performed to evaluate the reusability of software components and Fuzzy-GA results outperform the other used approaches. The developed reusability model has produced high precision results as expected by the human experts.Keywords: Software Reusability, Software Metrics, Neural Networks, Genetic Algorithm, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816479 A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems
Authors: Nahid Ardalani, Ahmadreza Khoogar, H. Roohi
Abstract:
In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.Keywords: Power control, neural networks, DS/CDMA mobilecommunication systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515478 A Study of Behavioral Phenomena Using ANN
Authors: Yudhajit Datta
Abstract:
Behavioral aspects of experience such as will power are rarely subjected to quantitative study owing to the numerous complexities involved. Will is a phenomenon that has puzzled humanity for a long time. It is a belief that will power of an individual affects the success achieved by them in life. It is also thought that a person endowed with great will power can overcome even the most crippling setbacks in life while a person with a weak will cannot make the most of life even the greatest assets. This study is an attempt to subject the phenomena of will to the test of an artificial neural network through a computational model. The claim being tested is that will power of an individual largely determines success achieved in life. It is proposed that data pertaining to success of individuals be obtained from an experiment and the phenomenon of will be incorporated into the model, through data generated recursively using a relation between will and success characteristic to the model. An artificial neural network trained using part of the data, could subsequently be used to make predictions regarding data points in the rest of the model. The procedure would be tried for different models and the model where the networks predictions are found to be in greatest agreement with the data would be selected; and used for studying the relation between success and will.
Keywords: Will Power, Success, ANN, Time Series Prediction, Sliding Window, Computational Model, Behavioral Phenomena.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928477 A Four Architectures to Locate Mobile Users using Statistical Mapping of WLANs in Indoorand Outdoor Environments-Loids
Authors: K. Krishna Naik, M. N. Giri Prasad
Abstract:
These days wireless local area networks has become very popular, when the initial IEEE802.11 is the standard for providing wireless connectivity to automatic machinery, equipment and stations that require rapid deployment, which may be portable, handheld or which may be mounted on moving vehicles within a local area. IEEE802.11 Wireless local area network is a sharedmedium communication network that transmits information over wireless links for all IEEE802.11 stations in its transmission range to receive. When a user is moving from one location to another, how the other user knows about the required station inside WLAN. For that we designed and implemented a system to locate a mobile user inside the wireless local area network based on RSSI with the help of four specially designed architectures. These architectures are based on statistical or we can say manual configuration of mapping and radio map of indoor and outdoor location with the help of available Sniffer based and cluster based techniques. We found a better location of a mobile user in WLAN. We tested this work in indoor and outdoor environments with different locations with the help of Pamvotis, a simulator for WLAN.Keywords: AP, RSSI, RPM, WLAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315476 Granger Causal Nexus between Financial Development and Energy Consumption: Evidence from Cross Country Panel Data
Authors: Rudra P. Pradhan
Abstract:
This paper examines the Granger causal nexus between financial development and energy consumption in the group of 35 Financial Action Task Force (FATF) Countries over the period 1988-2012. The study uses two financial development indicators such as private sector credit and stock market capitalization and seven energy consumption indicators such as coal, oil, gas, electricity, hydro-electrical, nuclear and biomass. Using panel cointegration tests, the study finds that financial development and energy consumption are cointegrated, indicating the presence of a long-run relationship between the two. Using a panel vector error correction model (VECM), the study detects both bidirectional and unidirectional causality between financial development and energy consumption. The variation of this causality is due to the use of different proxies for both financial development and energy consumption. The policy implication of this study is that economic policies should recognize the differences in the financial development-energy consumption nexus in order to maintain sustainable development in the selected 35 FATF countries.Keywords: Financial development, energy consumption, Panel VECM, FATF countries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513475 The Application of an Experimental Design for the Defect Reduction of Electrodeposition Painting on Stainless Steel Washers
Authors: Chansiri Singhtaun, Nattaporn Prasartthong
Abstract:
The purpose of this research is to reduce the amount of incomplete coating of stainless steel washers in the electrodeposition painting process by using an experimental design technique. The surface preparation was found to be a major cause of painted surface quality. The influence of pretreating and painting process parameters, which are cleaning time, chemical concentration and shape of hanger were studied. A 23 factorial design with two replications was performed. The analysis of variance for the designed experiment showed the great influence of cleaning time and shape of hanger. From this study, optimized cleaning time was determined and a newly designed electrical conductive hanger was proved to be superior to the original one. The experimental verification results showed that the amount of incomplete coating defects decreased from 4% to 1.02% and operation cost decreased by 10.5%.
Keywords: Defect reduction, design of experiments, electrodeposition painting, stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269474 Development of a Serial Signal Monitoring Program for Educational Purposes
Authors: Jungho Moon, Lae-Jeong Park
Abstract:
This paper introduces a signal monitoring program developed with a view to helping electrical engineering students get familiar with sensors with digital output. Because the output of digital sensors cannot be simply monitored by a measuring instrument such as an oscilloscope, students tend to have a hard time dealing with digital sensors. The monitoring program runs on a PC and communicates with an MCU that reads the output of digital sensors via an asynchronous communication interface. Receiving the sensor data from the MCU, the monitoring program shows time and/or frequency domain plots of the data in real time. In addition, the monitoring program provides a serial terminal that enables the user to exchange text information with the MCU while the received data is plotted. The user can easily observe the output of digital sensors and configure the digital sensors in real time, which helps students who do not have enough experiences with digital sensors. Though the monitoring program was programmed in the Matlab programming language, it runs without the Matlab since it was compiled as a standalone executable.Keywords: Digital sensor, MATLAB, MCU, signal monitoring program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115473 Distributed 2-Vertex Connectivity Test of Graphs Using Local Knowledge
Authors: Brahim Hamid, Bertrand Le Saec, Mohamed Mosbah
Abstract:
The vertex connectivity of a graph is the smallest number of vertices whose deletion separates the graph or makes it trivial. This work is devoted to the problem of vertex connectivity test of graphs in a distributed environment based on a general and a constructive approach. The contribution of this paper is threefold. First, using a preconstructed spanning tree of the considered graph, we present a protocol to test whether a given graph is 2-connected using only local knowledge. Second, we present an encoding of this protocol using graph relabeling systems. The last contribution is the implementation of this protocol in the message passing model. For a given graph G, where M is the number of its edges, N the number of its nodes and Δ is its degree, our algorithms need the following requirements: The first one uses O(Δ×N2) steps and O(Δ×logΔ) bits per node. The second one uses O(Δ×N2) messages, O(N2) time and O(Δ × logΔ) bits per node. Furthermore, the studied network is semi-anonymous: Only the root of the pre-constructed spanning tree needs to be identified.
Keywords: Distributed computing, fault-tolerance, graph relabeling systems, local computations, local knowledge, message passing system, networks, vertex connectivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839472 Feasibility of the Evolutionary Algorithm using Different Behaviours of the Mutation Rate to Design Simple Digital Logic Circuits
Authors: Konstantin Movsovic, Emanuele Stomeo, Tatiana Kalganova
Abstract:
The evolutionary design of electronic circuits, or evolvable hardware, is a discipline that allows the user to automatically obtain the desired circuit design. The circuit configuration is under the control of evolutionary algorithms. Several researchers have used evolvable hardware to design electrical circuits. Every time that one particular algorithm is selected to carry out the evolution, it is necessary that all its parameters, such as mutation rate, population size, selection mechanisms etc. are tuned in order to achieve the best results during the evolution process. This paper investigates the abilities of evolution strategy to evolve digital logic circuits based on programmable logic array structures when different mutation rates are used. Several mutation rates (fixed and variable) are analyzed and compared with each other to outline the most appropriate choice to be used during the evolution of combinational logic circuits. The experimental results outlined in this paper are important as they could be used by every researcher who might need to use the evolutionary algorithm to design digital logic circuits.Keywords: Evolvable hardware, evolutionary algorithm, digitallogic circuit, mutation rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502471 Real Time Acquisition and Psychoacoustic Analysis of Brain Wave
Authors: Shweta Singh, Dipali Bansal, Rashima Mahajan
Abstract:
Psychoacoustics has become a potential area of research due to the growing interest of both laypersons and medical and mental health professionals. Non invasive brain computer interface like Electroencephalography (EEG) is widely being used in this field. An attempt has been made in this paper to examine the response of EEG signals to acoustic stimuli further analyzing the brain electrical activity. The real time EEG is acquired for 6 participants using a cost effective and portable EMOTIV EEG neuro headset. EEG data analysis is further done using EMOTIV test bench, EDF browser and EEGLAB (MATLAB Tool) application software platforms. Spectral analysis of acquired neural signals (AF3 channel) using these software platforms are clearly indicative of increased brain activity in various bands. The inferences drawn from such an analysis have significant correlation with subject’s subjective reporting of the experiences. The results suggest that the methodology adopted can further be used to assist patients with sleeping and depressive disorders.
Keywords: OM’ chant, Spectral analysis, EDF Browser, EEGLAB, EMOTIV, Real time Acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3577470 Distributed Relay Selection and Channel Choice in Cognitive Radio Network
Authors: Hao He, Shaoqian Li
Abstract:
In this paper, we study the cooperative communications where multiple cognitive radio (CR) transmit-receive pairs competitive maximize their own throughputs. In CR networks, the influences of primary users and the spectrum availability are usually different among CR users. Due to the existence of multiple relay nodes and the different spectrum availability, each CR transmit-receive pair should not only select the relay node but also choose the appropriate channel. For this distributed problem, we propose a game theoretic framework to formulate this problem and we apply a regret-matching learning algorithm which is leading to correlated equilibrium. We further formulate a modified regret-matching learning algorithm which is fully distributed and only use the local information of each CR transmit-receive pair. This modified algorithm is more practical and suitable for the cooperative communications in CR network. Simulation results show the algorithm convergence and the modified learning algorithm can achieve comparable performance to the original regretmatching learning algorithm.
Keywords: cognitive radio, cooperative communication, relay selection, channel choice, regret-matching learning, correlated equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676469 Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case
Authors: Elif Derya UBEYLI, Inan GULER
Abstract:
A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.
Keywords: Chaotic signal, Electroencephalogram (EEG) signals, Feature extraction/selection, Lyapunov exponents
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509468 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition
Authors: Jong Han Joo, Jeong Hun Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi
Abstract:
In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. However, the effects of echo path changes should be considered for eliminating the undesired echoes. We describe a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.
Keywords: Acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317467 Optimal Design and Intelligent Management of Hybrid Power System
Authors: Reza Sedaghati
Abstract:
Given the increasing energy demand in the world as well as limited fossil energy fuel resources, it is necessary to use renewable energy resources more than ever. Developing a hybrid energy system is suggested to overcome the intermittence of renewable energy resources such as sun and wind, in which the excess electrical energy can be converted and stored. While these resources store the energy, they can provide a more reliable system that is really suitable for off-grid applications. In hybrid systems, a methodology for optimal sizing of power generation systems components is of great importance in terms of economic aspects and efficiency. In this study, a hybrid energy system is designed to supply an off-grid sample load pattern with the aim of supplying necessary energy and minimizing the total production cost throughout the system life as well as increasing the reliability. For this purpose, the optimal size and the cost function of these resources is determined and minimized using evolutionary algorithms and system efficiency is studied with real-time load and meteorological information of Kazerun, a city in southern Iran under different conditions.Keywords: Hybrid energy system, intelligent method, optimal size, minimal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474466 Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator
Authors: Thiang, Handry Khoswanto, Rendy Pangaldus
Abstract:
Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.
Keywords: Artificial neural network, back propagation, inverse kinematics, manipulator, robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288465 Functionally Graded MEMS Piezoelectric Energy Harvester with Magnetic Tip Mass
Authors: M. Derayatifar, M. Packirisamy, R.B. Bhat
Abstract:
Role of piezoelectric energy harvesters has gained interest in supplying power for micro devices such as health monitoring sensors. In this study, in order to enhance the piezoelectric energy harvesting in capturing energy from broader range of excitation and to improve the mechanical and electrical responses, bimorph piezoelectric energy harvester beam with magnetic mass attached at the end is presented. In view of overcoming the brittleness of piezo-ceramics, functionally graded piezoelectric layers comprising of both piezo-ceramic and piezo-polymer is employed. The nonlinear equations of motions are derived using energy method and then solved analytically using perturbation scheme. The frequency responses of the forced vibration case are obtained for the near resonance case. The nonlinear dynamic responses of the MEMS scaled functionally graded piezoelectric energy harvester in this paper may be utilized in different design scenarios to increase the efficiency of the harvester.
Keywords: Energy harvesting, functionally graded piezoelectric material, magnetic force, MEMS piezoelectric, perturbation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910464 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems
Authors: K. Kusakana
Abstract:
A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.
Keywords: Renewable energies, hybrid systems, optimization, operation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107