Search results for: stretching sheet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 233

Search results for: stretching sheet

53 Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties

Authors: Petr Homola, Roman Růžek

Abstract:

Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied.

Keywords: Fatigue, fracture surface, laser beam micro-drilling, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
52 About the Instability Modes of Current Sheet in Wide Range of Frequencies

Authors: V. V. Lyahov, V. M. Neshchadim

Abstract:

We offer a new technique for research of stability of current sheaths in space plasma taking into account the effect of polarization. At the beginning, the found perturbation of the distribution function is used for calculation of the dielectric permeability tensor, which simulates inhomogeneous medium of a current sheath. Further, we in the usual manner solve the system of Maxwell's equations closed with the material equation. The amplitudes of Fourier perturbations are considered to be exponentially decaying through the current sheath thickness. The dispersion equation follows from the nontrivial solution requirement for perturbations of the electromagnetic field. The resulting dispersion equation allows one to study the temporal and spatial characteristics of instability modes of the current sheath (within the limits of the proposed model) over a wide frequency range, including low frequencies.

Keywords: Current sheath, distribution function, effect of polarization, instability modes, low frequencies, perturbation of electromagnetic field dispersion equation, space plasma, tensor of dielectric permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
51 Computational Approaches for Ballistic Impact Response of Stainless Steel 304

Authors: A. Mostafa

Abstract:

This paper presents a numerical study on determination of ballistic limit velocity (V50) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems.

Keywords: Ballistic velocity, stainless steel, numerical approaches, security screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
50 Design of a Computer Vision Based Exercise Video Game for Senior Citizens

Authors: June Tay, Ivy Chia

Abstract:

There are numerous changes, both mental and physical, taking place when people age. We need to understand the different aspects required for healthy living, including meeting nutritional needs, regular physical activities to keep agility, sufficient rest and sleep to have physical and mental well-being, social engagement to avoid the risk of social isolation and depression, and access to healthcare to detect and manage chronic conditions. Promoting physical activities for an ageing population is necessary as many may have enjoyed sedentary lifestyles for some time. In our study, we evaluate the considerations when designing a computer vision video game for the elderly. We need to design some low-impact activities, such as stretching and gentle movements, because some elderly individuals may have joint pains or mobility issues. The exercise game should consist of simple movements that are easy to follow and remember. It should be fun and enjoyable so that they can be motivated to do some exercise. Social engagement can keep the elderly motivated and competitive, and they are more willing to engage in game exercises. Elderly citizens can compare their game scores and try to improve them. We propose a computer vision-based video game for the elderly that will capture and track the movement of the elderly hand pushing a ball on the screen into a circle. It can be easily set up using a PC laptop with a webcam. Our video game adhered to the design framework we employed, and it encompassed ease of use, a simple graphical interface, easy-to-play game exercise, and fun gameplay.

Keywords: Computer vision, video games, gerontology technology, caregiving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 102
49 Kinematic Behavior of Geogrid Reinforcements during Earthquakes

Authors: Ahmed Hosny Abdel-Rahman, Mohamed Abdel-Moneim

Abstract:

Reinforced earth structures are generally subjected to cyclic loading generated from earthquakes. This paper presents a summary of the results and analyses of a testing program carried out in a large-scale multi-function geosynthetic testing apparatus that accommodates soil samples up to 1.0 m3. This apparatus performs different shear and pullout tests under both static and cyclic loading. The testing program was carried out to investigate the controlling factors affecting soil/geogrid interaction under cyclic loading. The extensibility of the geogrids, the applied normal stresses, the characteristics of the cyclic loading (frequency, and amplitude), and initial static load within the geogrid sheet were considered in the testing program. Based on the findings of the testing program, the effect of these parameters on the pullout resistance of geogrids, as well as the displacement mobility under cyclic loading were evaluated. Conclusions and recommendations for the design of reinforced earth walls under cyclic loading are presented.

Keywords: Geogrid, Soil, Interface, Cyclic Loading, Pullout, and Large scale Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
48 Tensile Behavior of Spheroidizing Heat Treated High Carbon Steel

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

Spheroidization heat treatment was conducted on the  SK85 high carbon steel sheets with various initial microstructures  obtained after cold rolling by various reduction ratios at a couple of  annealing temperatures. On the high carbon steel sheet with fine  pearlite microstructure, obtained by soaking at 800oC for 2hr in a box furnace and then annealing at 570oC for 5min in a salt bath furnace followed by water quenching, cold rolling was conducted by reduction ratios of 20, 30, and 40%. Heat treatment for spheroidization was carried out at 600 and 720oC for the various time intervals from 0.1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times. Tensile tests were carried out at room temperature on the spheoidized high carbon steel.

 

Keywords: High carbon steel, SK85, pearlite, cementite, shperoidization, tensile behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4081
47 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: Artificial neural network, bending angle, fuzzy logic, laser forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
46 An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry

Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R.-H. Ladstaetter

Abstract:

Lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound, tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a hybrid composite technology for aerospace industries, which was developed with the help of a special innovation and development system.

Keywords: Composite, development, hybrid, innovation, system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
45 Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposite Free Standing Film

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz, David Contreras

Abstract:

In this work, we report, a systematic study on the structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method confirm that the prepared pure ZnO and Pr doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in sheet like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: Pr doped ZnO, polymer nanocomposites, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
44 Shear-Layer Instabilities of a Pulsed Stack-Issued Transverse Jet

Authors: Ching M. Hsu, Rong F. Huang, Michael E. Loretero

Abstract:

Shear-layer instabilities of a pulsed stack-issued transverse jet were studied experimentally in a wind tunnel. Jet pulsations were induced by means of acoustic excitation. Streak pictures of the smoke-flow patterns illuminated by the laser-light sheet in the median plane were recorded with a high-speed digital camera. Instantaneous velocities of the shear-layer instabilities in the flow were digitized by a hot-wire anemometer. By analyzing the streak pictures of the smoke-flow visualization, three characteristic flow modes, synchronized flapping jet, transition, and synchronized shear-layer vortices, are identified in the shear layer of the pulsed stack-issued transverse jet at various excitation Strouhal numbers. The shear-layer instabilities of the pulsed stack-issued transverse jet are synchronized by acoustic excitation except for transition mode. In transition flow mode, the shear-layer vortices would exhibit a frequency that would be twice as great as the acoustic excitation frequency.

Keywords: Acoustic excitation, jet in crossflow, shear-layer instability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
43 Fabrication of High Aluminum Content Mg alloys using a Horizontal Twin Roll Caster

Authors: H. Harada, S. Nishida, T. Nagumo, M. Endo, H. Watari

Abstract:

This study was aimed for investigating of manufacturing high aluminum content Mg alloys using a horizontal twin roll caster. Recently, weight saving has been key issues for lighter transport equipments as well as electronic component parts. As alternative materials to aluminum alloys, developing magnesium alloy with higher strength has been expected. Normally high Aluminum content Mg alloy has poor ductility and is difficult to be rolled because of its high strength. However, twin roll casting process is suitable for manufacturing wrought Mg alloys because materials can be cast directly from molten metal. In this study, manufacturing of high aluminum content magnesium alloy sheet using the roll casting process has been carried out. Effects of manufacturing parameter, such as roll velocity, pouring temperature and roll gap, on casting was investigated. A microscopic observation of the crystals of cross section of as cast strip as well as rolled strip was conducted.

Keywords: AZ91, AZ111, AZ121, Magnesium alloys, Twin roll casting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
42 Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes

Authors: B. Engel, H. Hassan

Abstract:

Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf =bending radius/ diameter of the tube), wall thickness (Wf = diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.

Keywords: Rotary draw bending, material properties, neutral axis shifting, wall thickness distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3875
41 Effect of Vibration Amplitude and Welding Force on Weld Strength of Ultrasonic Metal Welding

Authors: Ziad. Sh. Al Sarraf

Abstract:

Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.

Keywords: Ultrasonic welding, vibration amplitude, welding force, weld strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
40 Estimation of Wind Characteristics and Energy Yield at Different Towns in Libya

Authors: Farag Ahwide, Souhel Bousheha

Abstract:

A technical assessment has been made of electricity generation, considering wind turbines ranging between Vestas (V80-2.0 MW and V112-3.0 MW) and the air density is equal to 1.225 Kg/m3, at different towns in Libya. Wind speed might have been measured each 3 hours during 10 m stature at a time for 10 quite sometime between 2000 Furthermore 2009, these towns which are spotted on the bank from claiming Mediterranean ocean also how in the desert, which need aid Derna 1, Derna 2, Shahat, Benghazi, Ajdabya, Sirte, Misurata, Tripoli-Airport, Al-Zawya, Al-Kofra, Sabha, Nalut. The work presented long term "wind data analysis in terms of annual, seasonal, monthly and diurnal variations at these sites. Wind power density with different heights has been studied. Excel sheet program was used to calculate the values of wind power density and the values of wind speed frequency for the stations; their seasonally values have been estimated. Limit variable with rated wind pace to 10 different wind turbines need to be been estimated, which is used to focus those required yearly vitality yield of a wind vitality change framework (WECS), acknowledging wind turbines extending between 600 kW and 3000 kW).

Keywords: Energy yield, wind turbines, wind speed, wind power density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
39 Investigation of a Hybrid Process: Multipoint Incremental Forming

Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo

Abstract:

Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.

Keywords: Incremental forming, numerical simulation, MPIF, multipoint forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
38 Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading

Authors: S. A. Anuar, N. H. Hamid, M. H. Hashim, S. M. D. Salleh

Abstract:

This paper present the experimental work of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested until its strength degradation. Then, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22% in pushing and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB.

Keywords: Crack pattern, stiffness, ductility, equivalent viscous damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
37 Performance Enhancement of Membrane Distillation Process in Fruit Juice Concentration by Membrane Surface Modification

Authors: Samir K. Deshmukh, Mayur M. Tajane

Abstract:

In this work Membrane Distillation is applied to concentrate orange Juice. Clarified orange juice (11o Brix) obtained from fresh fruits and a sugar solution was subjected to membrane distillation. The experiments were performed on a flat sheet module using orange juice and sucrose solution as feeds. The concentration of a sucrose solution, used as a model fruit juice and also orange juice, was carried out in a direct contact membrane distillation using hydrophobic PTFE membrane of pore size 0.2 μm and porosity 70%. Surface modification of PTFE membrane has been carried out by treating membrane with alcohol and water solution to make it hydrophilic and then hydrophobicity was regained by drying. The influences of the feed temperature, feed concentration, flow rate, operating time on the permeate flux were studied for treated and non treated membrane. In this work treated and non treated membrane were compared in terms of water flux, Within the tested range, MD with surface modified membrane the water flux has been significantly improved by treating the membrane surface.

Keywords: Membrane Distillation, Surface Modification, Orange Juice. Polytetrafluoroethylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
36 Revea Ling Casein Micelle Dispersion under Various Ranges of Nacl: Evolution of Particles Size and Structure

Authors: Raza Hussain, Claire Gaiani, Joël Scher

Abstract:

Dispersions of casein micelles (CM) were studied at a constant protein concentration of 5 wt % in high NaCl environment ranging from 0% to 12% by Dynamic light scattering (DLS) and Fourier Transform Infrared (FTIR). The rehydration profiles obtained were interpreted in term of wetting, swelling and dispersion stages by using a turbidity method. Two behaviours were observed depending on the salt concentration. The first behaviour (low salt concentration) presents a typical rehydration profile with a significant change between 3 and 6% NaCl indicating quick wetting, swelling and long dispersion stage. On the opposite, the dispersion stage of the second behaviour (high salt concentration) was significantly shortened indicating a strong modification of the protein backbone. A salt increase result to a destabilization of the micelle and the formation of mini-micelles more or less aggregated indicating an average micelles size ranging from 100 to 200 nm. For the first time, the estimations of secondary structural elements (irregular, ß-sheet, α-helix and turn) by the Amide III assignments were correlated with results from Amide I.

Keywords: Casein, DLS, FTIR, Ionic environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
35 Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation

Authors: Jeong-Won Kang

Abstract:

Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force-vs-deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.

Keywords: Graphene, pressure sensor, circular graphene nanoflake, molecular dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
34 A Comparative Study of PV Models in Matlab/Simulink

Authors: Mohammad Seifi, Azura Bt. Che Soh, Noor Izzrib. Abd. Wahab, Mohd Khair B. Hassan

Abstract:

Solar energy has a major role in renewable energy resources. Solar Cell as a basement of solar system has attracted lots of research. To conduct a study about solar energy system, an authenticated model is required. Diode base PV models are widely used by researchers. These models are classified based on the number of diodes used in them. Single and two-diode models are well studied. Single-diode models may have two, three or four elements. In this study, these solar cell models are examined and the simulation results are compared to each other. All PV models are re-designed in the Matlab/Simulink software and they examined by certain test conditions and parameters. This paper provides comparative studies of these models and it tries to compare the simulation results with manufacturer-s data sheet to investigate model validity and accuracy. The results show a four- element single-diode model is accurate and has moderate complexity in contrast to the two-diode model with higher complexity and accuracy

Keywords: Fill Factor (FF), Matlab/Simulink, Maximum PowerPoint (MPP), Maximum Power Point Tracker (MPPT), Photo Voltaic(PV), Solar cell, Standard Test Condition (STC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5771
33 The Effect of the Weld Current Types on Microstructure and Hardness in Tungsten Inert Gas Welding of the AZ31 Magnesium Alloy Sheet

Authors: Bilge Demir, Ahmet Durgutlu, Mustafa Acarer

Abstract:

In this study, the butt welding of the commercial AZ31 magnesium alloy sheets have been carried out by using Tungsten Inert Gas (TIG) welding process with alternative and pulsed current. Welded samples were examined with regards to hardness and microstructure. Despite some recent developments in welding of magnesium alloys, they have some problems such as porosity, hot cracking, oxide formation and so on. Samples of the welded parts have undergone metallographic and mechanical examination. Porosities and homogeneous micron grain oxides were rarely observed. Orientations of the weld microstructure in terms of heat transfer also were rarely observed and equiaxed grain morphology was dominant grain structure as in the base metal. As results, fusion zone and few locations of the HAZ of the welded samples have shown twin’s grains. Hot cracking was not observed for any samples. Weld bead geometry of the welded samples were evaluated as normal according to welding parameters. In the results, conditions of alternative and pulsed current and the samples were compared to each other with regards to microstructure and hardness.

Keywords: AZ31 magnesium alloy, microstructures, micro hardness TIG welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
32 Comparative Studies on Interactions of Synthetic and Natural Compounds with Hen Egg-White Lysozyme

Authors: Seifollah Bahramikia

Abstract:

Amyloid aggregation of polypeptides is related to a growing number of pathologic states known as amyloid disorders. In recent years, blocking or reversing amyloid aggregation via the use of small compounds are considered as two useful approaches in hampering the development of these diseases. In this research, we have compared the ability of several manganese-salen derivatives, as synthetic compounds, and apigenin, as a natural flavonoid, to inhibit of hen egg-white lysozyme (HEWL) aggregation, as an in vitro model system. Different spectroscopic analyses such as Thioflavin T (ThT) and Anilinonaphthalene-8-sulfonic acid (ANS) fluorescence, Congo red (CR) absorbance along with transmission electron microscopy were used in this work to monitor the HEWL aggregation kinetic and inhibition. Our results demonstrated that both type of compounds were capable to prevent the formation of lysozyme amyloid aggregation in vitro. In addition, our data indicated that synthetic compounds had higher activity to inhibit of the β-sheet structures relative to natural compound. Regarding the higher antioxidant activities of the salen derivatives, it can be concluded that in addition to aromatic rings of each of the compounds, the potent antioxidant properties of salen derivatives contributes to lower lysozyme fibril accumulation.

Keywords: Aggregation, anti-amyloidogenic, apigenin, hen egg white lysozyme, salen derivatives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
31 Comparison of Ageing Deterioration of Silicone Rubber Housing Material for Outdoor Polymer Insulators

Authors: S.Thong-Om, W. Payakcho, J. Grasasom, A. Oonsivilaiand B. Marungsri

Abstract:

This paper presents the comparison ageing deterioration of silicone rubber housing material for outdoor polymer insulators by using salt fog ageing test based on IEC 61109 and outdoor exposure test.Four types of high temperature silicone vulcanized silicone rubber sheet with different amount of ATH were used as testing specimen. For salt fog ageing test, the specimens were tested continuously 1000 hours with energized in test chamber. For outdoor exposure test, the specimens were hung continuously 18 months without energized. Physical and chemical analyses were conducted to evaluate degree of ageing deterioration of tested specimens. Slightly surface erosion was observed on specimen surface after salt fog ageing test and no erosion was observed on surface of outdoor exposure specimen. However, comparable degree of ageing deterioration can be seen from surface analysis results.

Keywords: Accelerated ageing test, outdoor exposure test, HTV silicone rubber, housing material, salt fog test, surface erosion, polymer insulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3915
30 Iris Recognition Based On the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: Iris recognition, contrast stretching, gradient features, texture features, Euclidean metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
29 Overall Function and Symptom Impact of Self-Applied Myofascial Release in Adult Patients with Fibromyalgia: A Seven-Week Pilot Study

Authors: Domenica Tambasco, Riina Bray

Abstract:

Fibromyalgia is a chronic condition characterized by widespread musculoskeletal pain, fatigue, and reduced function. Management of symptoms include medications, physical treatments and mindfulness therapies. Myofascial Release is a modality that has been successfully applied in various musculoskeletal conditions. However, to the author’s best knowledge, it is not yet recognized as a self-management therapy option in Fibromyalgia. In this study, we investigated whether Self-applied Myofascial Release (SMR) is associated with overall improved function and symptoms in Fibromyalgia. Eligible adult patients with a confirmed diagnosis of Fibromyalgia at Women’s College Hospital were recruited to SMR. Sessions ran for 1 hour once a week for 7 weeks, led by the same two physiotherapists knowledgeable in this physical treatment modality. The main outcome measure was an overall impact score for function and symptoms based on the validated assessment tool for fibromyalgia, the Revised Fibromyalgia Impact Questionnaire (FIQR), measured pre- and post-intervention. Both descriptive and analytical methods were applied and reported. We analyzed results using a paired t-test to determine if there was a statistically significant difference in mean FIQR scores between initial (pre-intervention) and final (post-intervention) scores. A clinically significant difference in FIQR was defined as a reduction in score by 10 or more points. Our pilot study showed that SMR appeared to be a safe and effective intervention for our fibromyalgia participants and the overall impact on function and symptoms occurred in only 7 weeks. Further studies with larger sample sizes comparing SMR to other physical treatment modalities (such as stretching) in an randomized control trial (RCT) are recommended.

Keywords: Fibromyalgia, myofascial release, fibromyalgia impact questionnaire, fibromyalgia assessment status.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233
28 Synthesis, Characterization and Performance Study of Newly Developed Amine Polymeric Membrane (APM) for Carbon Dioxide (CO2) Removal

Authors: Rizwan Nasir, Hilmi Mukhtar, Zakaria Man, Dzeti Farhah Mohshim

Abstract:

Carbon dioxide has been well associated with greenhouse effect, and due to its corrosive nature it is an undesirable compound. A variety of physical-chemical processes are available for the removal of carbon dioxide. Previous attempts in this field have established alkanolamine group has the capability to remove carbon dioxide. So, this study combined the polymeric membrane and alkanolamine solutions to fabricate the amine polymeric membrane (APM) to remove carbon dioxide (CO2). This study entails the effect of three types of amines, monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA). The effect of each alkanolamine group on the morphology and performance of polyether sulfone (PES) polymeric membranes was studied. Flat sheet membranes were fabricated by solvent evaporation method by adding polymer and different alkanolamine solutions in the N-Methyl-2-pyrrolidone (NMP) solvent. The final membranes were characterized by using Field Emission Electron Microscope (FESEM), Fourier Transform Infrared (FTIR), and Thermo-Gravimetric Analysis (TGA). The membrane separation performance was studied. The PES-DEA and PES-MDEA membrane has good ability to remove carbon dioxide. 

Keywords: Amine Polymeric membrane, Alkanolamine solution, CO2 Removal, Characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
27 The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination

Authors: Bhausaheb L. Pangarkar, M. G. Sane, Saroj B. Parjane, Rajendra M. Abhang, Mahendra Guddad

Abstract:

Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.

Keywords: Desalination, heat and mass transfer coefficient, temperature polarization, membrane distillation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
26 Online Graduate Students’ Perspective on Engagement in Active Learning in the United States

Authors: Ehi E. Aimiuwu

Abstract:

As of 2017, many researchers in educational journals are still wondering if students are effectively and efficiently engaged in active learning in the online learning environment. The goal of this qualitative single case study and narrative research is to explore if students are actively engaged in their online learning. Seven online students in the United States from LinkedIn and residencies were interviewed for this study. Eleven online learning techniques from research were used as a framework.  Data collection tools were used for the study that included a digital audiotape, observation sheet, interview protocol, transcription, and NVivo 12 Plus qualitative software.  Data analysis process, member checking, and key themes were used to reach saturation. About 85.7% of students preferred individual grading. About 71.4% of students valued professor’s interacting 2-3 times weekly, participating through posts and responses, having good internet access, and using email.  Also, about 57.1% said students log in 2-3 times weekly to daily, professor’s social presence helps, regular punctuality in work submission, and prefer assessments style of research, essay, and case study.  About 42.9% appreciated syllabus usefulness and professor’s expertise.

Keywords: Class facilitation, course management, online teaching, online education, student engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 650
25 Finite Element Analysis of Sheet Metal Airbending Using Hyperform LS-DYNA

Authors: Himanshu V. Gajjar, Anish H. Gandhi, Harit K. Raval

Abstract:

Air bending is one of the important metal forming processes, because of its simplicity and large field application. Accuracy of analytical and empirical models reported for the analysis of bending processes is governed by simplifying assumption and do not consider the effect of dynamic parameters. Number of researches is reported on the finite element analysis (FEA) of V-bending, Ubending, and air V-bending processes. FEA of bending is found to be very sensitive to many physical and numerical parameters. FE models must be computationally efficient for practical use. Reported work shows the 3D FEA of air bending process using Hyperform LSDYNA and its comparison with, published 3D FEA results of air bending in Ansys LS-DYNA and experimental results. Observing the planer symmetry and based on the assumption of plane strain condition, air bending problem was modeled in 2D with symmetric boundary condition in width. Stress-strain results of 2D FEA were compared with 3D FEA results and experiments. Simplification of air bending problem from 3D to 2D resulted into tremendous reduction in the solution time with only marginal effect on stressstrain results. FE model simplification by studying the problem symmetry is more efficient and practical approach for solution of more complex large dimensions slow forming processes.

Keywords: Air V-bending, Finite element analysis, HyperformLS-DYNA, Planner symmetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175
24 Design and Fabrication of Stent with Negative Poisson’s Ratio

Authors: S. K. Bhullar, J. Ko, F. Ahmed, M. B. G. Jun

Abstract:

The negative Poisson’s ratios can be described in terms of models based on the geometry of the system and the way this geometry changes due to applied loads. As the Poisson’s ratio does not depend on scale hence deformation can take place at the nano to macro level the only requirement is the right combination of the geometry. Our thrust in this paper is to combine our knowledge of tailored enhanced mechanical properties of the materials having negative Poisson’s ratio with the micromachining and electrospining technology to develop a novel stent carrying a drug delivery system. Therefore, the objective of this paper includes (i) fabrication of a micromachined metal sheet tailored with structure having negative Poisson’s ratio through rotating solid squares geometry using femtosecond laser ablation; (ii) rolling fabricated structure and welding to make a tubular structure (iii) wrapping it with nanofibers of biocompatible polymer PCL (polycaprolactone) for drug delivery (iv) analysis of the functional and mechanical performance of fabricated structure analytically and experimentally. Further, as the applications concerned, tubular structures have potential in biomedical for example hollow tubes called stents are placed inside to provide mechanical support to a damaged artery or diseased region and to open a blocked esophagus thus allowing feeding capacity and improving quality of life.

Keywords: Micromachining, electrospining, auxetic materials, enhanced mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3584