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"Static Pullout Load Level - SPLL") then cyclic loading 
started, at a specified loading frequency and amplitude 

(minimum and maximum around the static pullout load level). 
Fig. 7 illustrates the cyclic loading technique. 

 

Hydralic Jack

H
yd

ra
ul

ic
 J

ac
k

transducer
Displacement

holder

transducer
Four Displacement

H
yd

ra
ul

ic
 J

ac
k

Load Cell

Pressure Cell

Pressure Transducer

Pressure Transducer

LVDT 1

LVDT 2
LVDT 3

LVDT 4

Load Cell

A. Elevation View

B. Plan View

Soil Sample

Clamping System

 

Fig. 4 Plan and Elevation Showing the Instrumentation Devices 
 

 

Fig. 5 Grain Size Distribution of the Tested Sand 
 

TABLE I 
GEOMETRICAL PROPERTIES OF THE TESTED GEOGRIDS 

Item A B C D E 

Aperture Size (M.D) (mm) 220 220 220 220 220 

Aperture Size (T.D) (mm) 13/20 13/20 13/20 13/20 13/20 

Mass per Unit Area (g/m2) 1000 800 600 400 300 

M. D: Machine Direction; T.D.: Transverse Direction (Refer to Fig. 9)  
 
 
 
 
 

V. TESTING MATRIX 

For each geogrid type, a matrix of static and cyclic loading 
tests was carried out. The testing matrix was designed to cover 
the most important factors that control the behavior of geogrid 
sheets under cyclic pullout loads including stiffness of 
geogrid, interface normal stresses (σni), initial Static Pullout 
Load Level (SPLL) within the geogrid, and frequency of 
loading (FL). 

 
TABLE II 

MECHANICAL CHARACTERISTICS OF THE TESTED GEOGRIDS 

Item A B C D E 

Tensile Strength at 2% Strain (kN/m) 45 36 26 17 11 

Tensile Strength at 5% Strain (kN/m) 90 72 50 32 25 

Peak Tensile Strength (kN/m) 160 120 90 60 45 

Yield Point Elongation (%) 13 13 13 13 11.5 

Junction Strength (kN/m) 130 110 80 50 36 

Long Term Design Strength (kN/m) 75.4 56.5 42.4 28.3 21.2 
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Fig. 11 Static and Cyclic Pullout Tests Results for Geogrid C at 
(FL=1.0 Hz, σni = 80 kPa, SPLL = 50 kPa) 

B. Static Pullout Load Level (SPLL) 

Figs. 15 and 16 present cyclic pullout tests results for 
geogrid (B); performed at the same testing conditions (FL=0.5 
Hz, σni = 40 KPa) where the load cycles started at two 
different Static Pullout Load Levels (SPLL = 45 kN/m and 70 
kN/m). The tests were carried out to slippage. The higher 
initial SPLL reflects a lower safety factor in the anchorage 
strength of the geogrid in reinforced earth structures. It is clear 
that the test that started at higher SPLL have reached failure at 
a lower number of loading cycles. No practical changes in the 

rate of the horizontal displacement while increasing the 
number of load cycles was observed. The same test was 
performed on geogrid (A) at the same testing conditions 
(FL=1.0 Hz, σni = 52 & 62 kPa) where the load cycles started 
at two different static pullout loads (67 kN/m and 80 kN/m). 
The tests results are shown in Figs. 17 and 18 and the same 
conclusion could be obtained. 

 

 

Fig. 12 Comparison of the Pullout Response at Different 
Extensibility properties (Geogrids B and C)
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Fig. 13 Comparison of Horizontal Displacement Responses during Cyclic Pullout of Different Geogrids Extensibilities (Geogrids B and C) 
 

 

Fig. 14 Comparison of Pullout Responses of Geogrid (B) at Different 
Values of SPLL's 
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Fig. 15 Comparison of Horizontal Displacements along the Geogrid 
Sheet with Load Cycles of Geogrid (B) at Different Values of SPLL's 
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C. Interface Normal Stresses (σni) 

Figs. 19 and 20 present cyclic pullout tests results of 
geogrid B, performed under similar conditions (FL=1 Hz, and 
nearly the same SPLL=78 and 85 kN/m) at two different σni 
(43 kPa and 128 kPa).  

The lower σni reflects the condition of a relatively shallow 
sheet of geogrid placed in a reinforced earth wall or similar. 
The results indicated that the horizontal displacement of 
geogrids increased at lower σni. However, with increasing σni 
and the number of load cycles, the rates of displacement as 
well as the incremental changes in the relative displacement 
along the sheets were clearly affected. This should be 
accounted for in setting the design properties for geogrid 
sheets at shallow depths in seismically active areas, in order to 
avoid excessive displacement at the top facing blocks and 
hence their dis-integration.  

 

 

Fig. 16 Comparison of Pullout Responses of Geogrid (A) at Different 
SPLL's 

 

D. Frequency of the Loading Cycles (FL) 

Figs. 21 and 22 present the pullout tests results of geogrid 
C, performed to failure under similar conditions (σni = 40 kPa, 
SPLL= 54 kN/m), and two different loading frequencies (FL = 
0.5 Hz and 1.0 Hz). The displacement per load cycle was 
found to decrease while increasing load frequency with ability 
to sustain higher number of load cycles before slippage. 
However, no effect on the behavior of the displacement with 
load cycles curves was observed.  

E. The Cyclic Loading Amplitude 

To investigate the effect of the cyclic loading amplitude on 
the cyclic pullout response of the embedded geogrids, Fig. 23 
presents the tests results of geogrid (C), performed under the 
same conditions (Normal stress = 80 kN/m2, static pullout load 
= 47 kN/m, and cyclic loading frequency = 1.0 Hz ), at two 
different cyclic loading amplitude, 15 kN/m, and 25 kN/m, 
which simulates 16%, and 28% of the maximum monotonic 
pullout resistance. From Fig. 23, the following could be 
concluded: 
1- The displacement per cycle under higher cyclic loading 

amplitude is higher than displacement per cycle under 
lower cyclic loading amplitude. 

2- For cyclic loading amplitude = 16% of the monotonic 
pullout resistance, the geogrid could sustain 120 loading 
cycles. For cyclic loading amplitude = 28% of the 
monotonic pullout resistance, the geogrid could sustain 74 
loading cycles only.  

3- The horizontal strain increased from 9.04% to 16.59% for 
the tests performed at cyclic loading amplitude equal to 
16%, and 28% of the monotonic pullout resistance, 
respectively. 
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Fig. 17 Comparison of the Horizontal Displacements along the Geogrid Sheet with Load Cycles of Geogrid (A) at Different Values of SPLL's 
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Fig. 18 Comparison of Pullout Responses of Geogrid (B) at Different 
Values of σni's 
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Fig. 19 Comparison of the Horizontal Displacement with Load 
Cycles of Geogrid (B) at Two Different Values of σni's 

 

 

Fig. 20 Comparison of Pullout Responses of Geogrid (C) at Different 
Values of FL's 
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Fig. 21 Comparison of Horizontal Displacement with Load Cycles of 
Geogrid (C) at Two Different Vales of FL's 

 

 

Fig. 22 Comparison of Pullout Responses of Geogrid (C) Subjected 
to the same Test Conditions at Two Different Cyclic Loading 

Amplitudes 
 

 

Fig. 23 Comparison of Horizontal Displacement versus Number of 
Loading Cycles along Geogrid (C) Under the Same Test Conditions 

at Two Different Cyclic Loading Amplitudes 

VIII. DISPLACEMENT MOBILITY OF GEOGRIDS UNDER CYCLIC 

LOADING 

The displacement of the geogrid sheet under cyclic loading 
could be calculated from (1) as; 

 
Δtotal = Δstatic + Δcyclic                              (1) 

 
where; Δtotal: the total displacement of the geogrid sheet (in 
monotonic and cyclic loading); Δstatic the static displacement at 
SPLL (could be derived from numerical modeling or from 
monotonic experimental test) Δcyclic: the cyclic displacement at 
number of loading cycles = N, as each loading cycle develop a 
permanent accumulative displacement in the geogrid. 

 
= ΣΔper cycle(N=1 to N=N) = ΔN=1 + ΔN=2 + ΔN=3 +ΔN=4+…..ΔN=N    (2)           
 

Fig. 24 illustrates the notation in (2). 
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Fig. 24 The Notations Used in Equations 1 and 2 
 
Based on the experimental tests results, conducted during 

this research, it could be concluded that the horizontal 
permanent displacement per cycle of the geogrid sheet under 
cyclic loading depends mainly on the following parameters: 
 The number of loading cycles (N), 
 The static pullout load level (SPLL), 
 The applied normal stresses (σn), 
 The loading frequency (FL),  
 The cyclic loading amplitude (Amp), and 
 The Geogrid sheet stiffness. 

The previous parameters should be encountered in the 
calculation of the displacement of the geogrid sheet under 
cyclic loading. In this section, the results of the experimental 
tests were used to develop a relationship between the 
permanent accumulative displacement per cycle of the geogrid 
and the number of the loading cycles. The results of twelve 
cyclic pullout tests were implemented in developing the 
proposed relationship. The data of these tests are shown in 
Table III. 

The permanent displacements per cycle for the previous 
twelve tests were plotted with the number of loading cycles, as 
shown in Fig. 25.  

 
TABLE III 

THE TESTS IMPLEMENTED IN DEVELOPING THE PROPOSED RELATIONSHIP FOR 

THE GEOGRID UNDER THE CYCLIC LOADING 

Test 
number 

Geogrid 
Type 

Type of 
the Test 

Initial 
Normal 
Stresses 

(kPa) 

SPLL 
(kN/m) 

Load Level 
(SPLL/Pult)

Frequency 
(Hz) 

2A A Cyclic 62 67 0.42 1 

3B 

B 

Cyclic 37.5 70 0.58 0.5 

4B Cyclic 40 45 0.38 0.5 

5B Cyclic 37 70 0.58 1 

6B Cyclic 43 75 0.63 1 

7B Cyclic 73 85 0.71 2 

8B Cyclic 70 82 0.68 1 

9B Cyclic 128 90 0.75 1 

3C 

C 

Cyclic 34 54 0.60 0.5 

4C Cyclic 40 54 0.60 1 

6C Cyclic 80 47 0.52 1 

7C Cyclic 80 48 0.53 1 

 

 

Fig. 25 Maximum Permanent Horizontal Displacement per Cycle 
versus the Number of Cycles for the Twelve Selected Tests 

 
From Fig. 25 all the curves could be viewed as taking a 

general trend line for the relationship between the 
displacement per cycle and the number of loading cycles.  

The trend line for all curves could be normalized through 
the general form in (3): 

 
Δper cycle (N) = B - A x ln (N)         (3) 

 
where; N: Number of loading cycle at which the permanent 
cyclic displacement is calculated; A, B: Empirical Constants 
that depend on the applied normal stress, SPLL, cyclic loading 
amplitude, Cyclic loading frequency, the geogrid sheet 
extensibility. 

Fig. 26 shows the normalized curve for the relationship 
between the permanent cyclic front horizontal displacement 
and the number of loading cycles.  

 

 

Fig. 26 The Normalized Trend Line for the Relationship between the 
Permanent Cyclic Front Horizontal Displacement and the Number of 

Loading Cycles 
 
The values of the constants A, and B are controlled by the 

SPLL, initial normal stress, geogrid type, cyclic loading 
amplitude, and frequency. This requires a large number of 
cyclic pullout tests to be performed with different types of 
geogrids and cyclic loading conditions to develop an accurate 
determination for the constants (A, and B). 

 Empirical values for these constants were calculated based 
on statistical analyses. It should be noted that these empirical 
values are limited to the condition of the tests performed 
during the course of this research (geogrid type, cyclic loading 
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