Novel PES Membrane Reinforced by Nano-WS2 for Enhanced Fouling Resistance
Authors: Jiuyang Lin, Wenyuan Ye, Arcadio Sotto, Bart Van der Bruggen
Abstract:
Application of nanoparticles as additives in membrane synthesis for improving the resistance of membranes against fouling has triggered recent interest in new membrane types. However, most nanoparticle-enhanced membranes suffer from the tradeoff between permeability and selectivity. In this study, nano-WS2 was explored as the additive in membrane synthesis by non-solvent induced phase separation. Blended PES-WS2 flat-sheet membranes with the incorporation of ultra-low concentrations of nanoparticles (from 0.025 to 0.25%, WS2/PES ratio) were manufactured and investigated in terms of permeability, fouling resistance and solute rejection. Remarkably, a significant enhancement in the permeability was observed as a result of the incorporation of ultra-low fractions of nano-WS2 to the membrane structure. Optimal permeability values were obtained for modified membranes with 0.10% nanoparticle/polymer concentration ratios. Furthermore, fouling resistance and solute rejection were significantly improved by the incorporation of nanoparticles into the membrane matrix. Specifically, fouling resistance of modified membrane can increase by around 50%.
Keywords: Nano-WS2, Nanoparticle enhanced hybrid membrane, Ultralow concentration, Antifouling.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087384
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143References:
[1] M.T.M. Pendergast, E.M.V. Hoek, Energy Environ. Sci. 4 (2011)
1946-1971.
[2] J. Kim, B. Van der Bruggen, Environ. Pollut. 158 (2010) 2335-2349.
[3] F. Peng, L. Lu, H. Sun, Y. Wang, J. Liu, Z. Jiang, Chem. Mater. 17 (2005)
6790-6796.
[4] A. Walcarius, Chem. Mater. 13 (2001) 3351-3372.
[5] H. Basri, A. F. Ismail, M. Aziz, Desalination 287 (2012) 71-77.
[6] L.Y. Ng, A.W. Mohammad, C.P. Leo, N. Hilal, Desalination 308 (2013)
15-33.
[7] P. Jian, H. Yahui, W. Yang and L. Linlin. J. Membr. Sci. 284 (2006) 9-16.
[8] E. Celik, L. Liu, H. Choi, Water Res. 45 (2011) 5287-5294.
[9] Y.Q. Zhu, T. Sekine, Y.H. Li, M.W. Fay, Y.M. Zhao, C.H.P. Poa, W.X.
Wang, M.J. Roe, P.D. Brown, N. Fleischer, R. Tenne, J. Am. Chem. Soc.
127 (2005) 16263-16272.
[10] Y.Q. Zhu, T. Sekine, Y. H. Li, W.X. Wang, M.W. Fay, H. Edwards, P.D.
Brown, N. Fleischer, R. Tenne, Adv. Mater. 17 (2005) 1500-1503.
[11] A.M. Díez-Pascua, M. Naffakh, C. Marco, G. Ellis, M.A. Gómez-Fatou,
Prog. Mater. Sci. 57 (2012) 1106-1190.
[12] M. Naffakh, A.M. Díez-Pascua, M.A. Gómez-Fatou, J. Mater. Chem. 21
(2011) 7425-7433.
[13] A. Margolin, R. Rosentsveig, A. Albu-Yaron, R. Popovitz-Biro, R.
Tenne, J. Mater. Chem. 14 (2004) 617-624.
[14] C. Shahar, D. Zbaida, L. Rapoport, H. Cohen, T. Bendikov, J. Tannous,
Langmuir 26 (2010) 4409-4414.
[15] D. Jermann, W. Pronk, S. Meylan, M. Boller, Water Res. 41 (2007)
1713-1722.
[16] H. Huang, K. Schwab, J.G. Jacangelo, Environ. Sci. Technol. 43 (2009)
3011-3019.
[17] Y. Lu, S.L. Yu, B.X. Chai, X.D. Shun, J. Membr. Sci. 276 (2006)
162-167.