Search results for: model reference adaptive control.
10836 Application of Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA
Authors: Eleftherios Giovanis
Abstract:
In this paper discrete choice models, Logit and Probit are examined in order to predict the economic recession or expansion periods in USA. Additionally we propose an adaptive neuro-fuzzy inference system with triangular membership function. We examine the in-sample period 1947-2005 and we test the models in the out-of sample period 2006-2009. The forecasting results indicate that the Adaptive Neuro-fuzzy Inference System (ANFIS) model outperforms significant the Logit and Probit models in the out-of sample period. This indicates that neuro-fuzzy model provides a better and more reliable signal on whether or not a financial crisis will take place.Keywords: ANFIS, discrete choice models, financial crisis, USeconomy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161010835 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections
Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu
Abstract:
In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.
Keywords: Connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184810834 Cognitive Emotion Regulation in Children Is Attributable to Parenting Style, Not to Family Type and Child’s Gender
Authors: AKM Rezaul Karim, Tania Sharafat, Abu Yusuf Mahmud
Abstract:
The study aimed to investigate whether cognitive emotion regulation in children varies with parenting style, family type and gender. Toward this end, cognitive emotion regulation and perceived parenting style of 206 school children were measured. Standard regression analyses of data revealed that the models were significant and explained 17.3% of the variance in adaptive emotion regulation (Adjusted R²=0.173; F=9.579, p<.001), and 7.1% of the variance in less adaptive emotion regulation (Adjusted R²=.071, F=4.135, p=.001). Results showed that children’s cognitive emotion regulation is functionally associated with parenting style, but not with family type and their gender. Amongst three types of parenting, authoritative parenting was the strongest predictor of the overall adaptive emotion regulation while authoritarian parenting was the strongest predictor of the overall less adaptive emotion regulation. Permissive parenting has impact neither on adaptive nor on less adaptive emotion regulation. The findings would have important implications for parents, caregivers, child psychologists, and other professionals working with children or adolescents.
Keywords: Cognitive Emotion Regulation, Adaptive, Less Adaptive, Parenting Style, Family Type.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 370010833 Applications of Prediction and Identification Using Adaptive DCMAC Neural Networks
Authors: Yu-Lin Liao, Ya-Fu Peng
Abstract:
An adaptive dynamic cerebellar model articulation controller (DCMAC) neural network used for solving the prediction and identification problem is proposed in this paper. The proposed DCMAC has superior capability to the conventional cerebellar model articulation controller (CMAC) neural network in efficient learning mechanism, guaranteed system stability and dynamic response. The recurrent network is embedded in the DCMAC by adding feedback connections in the association memory space so that the DCMAC captures the dynamic response, where the feedback units act as memory elements. The dynamic gradient descent method is adopted to adjust DCMAC parameters on-line. Moreover, the analytical method based on a Lyapunov function is proposed to determine the learning-rates of DCMAC so that the variable optimal learning-rates are derived to achieve most rapid convergence of identifying error. Finally, the adaptive DCMAC is applied in two computer simulations. Simulation results show that accurate identifying response and superior dynamic performance can be obtained because of the powerful on-line learning capability of the proposed DCMAC.Keywords: adaptive, cerebellar model articulation controller, CMAC, prediction, identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140110832 Qualitative Modelling for Ferromagnetic Hysteresis Cycle
Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira
Abstract:
In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158710831 Characterization of Extreme Low-Resolution Digital Encoder for Control System with Sinusoidal Reference Signal
Authors: Zhenyu Zhang, Qingbin Gao
Abstract:
Low-resolution digital encoder (LRDE) is commonly adopted as a position sensor in low-cost and resource-constraint applications. Traditionally, a digital encoder is modeled as a quantizer without considering the initial position of the LRDE. However, it cannot be applied to extreme LRDE for which stroke of angular motion is only a few times of resolution of the encoder. Besides, the actual angular motion is substantially distorted by this extreme LRDE so that the encoder reading does not faithfully represent the actual angular motion. This paper presents a modeling method for extreme LRDE by taking into account the initial position of the LRDE. For a control system with sinusoidal reference signal and extreme LRDE, this paper analyzes the characteristics of angular motion. Specifically, two descriptors of sinusoidal angular motion are studied, which essentially sheds light on the actual angular motion from extreme LRDE.
Keywords: Low resolution digital encoder, resource-constraint control system, sinusoidal reference signal, servo motion control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80610830 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling
Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao
Abstract:
Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.Keywords: Neural Network, Fuzzy, River, Forecasting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128910829 Simulink Model of Reference Frame Theory Based Three Phase Shunt Active Filter
Authors: P. Nammalvar, P. Meganathan, A. Balamuguran
Abstract:
Among various active filters, shunt active filter is a viable solution for reactive power and harmonics compensation. In this paper, the SRF plan is used to generate current reference for compensation and conventional PI controllers were used as the controller to compensate the reactive power. The design of the closed loop controllers is reserved simple by modeling them as first order systems. Computationally uncomplicated and efficient SVM system is used in the present work for better utilization of dc bus voltage. The rating of shunt active filter has been finalized based on the reactive power demand of the selected reactive load. The proposed control and SVM technique are validated by simulating in MATLAB software.Keywords: Shunt Active Filter, Space vector pulse width modulation, Voltage Source Converter, Reactive Power, Synchronous Reference Frame, Point of common coupling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 258710828 Educational Quiz Board Games for Adaptive E-Learning
Authors: Boyan Bontchev, Dessislava Vassileva
Abstract:
Internet computer games turn to be more and more attractive within the context of technology enhanced learning. Educational games as quizzes and quests have gained significant success in appealing and motivating learners to study in a different way and provoke steadily increasing interest in new methods of application. Board games are specific group of games where figures are manipulated in competitive play mode with race conditions on a surface according predefined rules. The article represents a new, formalized model of traditional quizzes, puzzles and quests shown as multimedia board games which facilitates the construction process of such games. Authors provide different examples of quizzes and their models in order to demonstrate the model is quite general and does support not only quizzes, mazes and quests but also any set of teaching activities. The execution process of such models is explained and, as well, how they can be useful for creation and delivery of adaptive e-learning courseware.Keywords: Quiz, board game, e-learning, adaptive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 242210827 Adaptive Digital Watermarking Integrating Fuzzy Inference HVS Perceptual Model
Authors: Sherin M. Youssef, Ahmed Abouelfarag, Noha M. Ghatwary
Abstract:
An adaptive Fuzzy Inference Perceptual model has been proposed for watermarking of digital images. The model depends on the human visual characteristics of image sub-regions in the frequency multi-resolution wavelet domain. In the proposed model, a multi-variable fuzzy based architecture has been designed to produce a perceptual membership degree for both candidate embedding sub-regions and strength watermark embedding factor. Different sizes of benchmark images with different sizes of watermarks have been applied on the model. Several experimental attacks have been applied such as JPEG compression, noises and rotation, to ensure the robustness of the scheme. In addition, the model has been compared with different watermarking schemes. The proposed model showed its robustness to attacks and at the same time achieved a high level of imperceptibility.Keywords: Watermarking, The human visual system (HVS), Fuzzy Inference System (FIS), Local Binary Pattern (LBP), Discrete Wavelet Transform (DWT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181810826 Design and Development of Automatic Leveling and Equalizing Hoist Device for Spacecraft
Authors: Fu Hao, Sun Gang, Tang Laiying, Cui Junfeng
Abstract:
To solve the quick and accurate level-adjusting problem in the process of spacecraft precise mating, automatic leveling and equalizing hoist device for spacecraft is developed. Based on lifting point adjustment by utilizing XY-workbench, the leveling and equalizing controller by a self-adaptive control algorithm is proposed. By simulation analysis and lifting test using engineering prototype, validity and reliability of the hoist device is verified, which can meet the precision mating requirements of practical applications for spacecraft.Keywords: automatic leveling and equalizing, hoist device, lifting point adjustment, self-adaptive control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202010825 Efficient CT Image Volume Rendering for Diagnosis
Authors: HaeNa Lee, Sun K. Yoo
Abstract:
Volume rendering is widely used in medical CT image visualization. Applying 3D image visualization to diagnosis application can require accurate volume rendering with high resolution. Interpolation is important in medical image processing applications such as image compression or volume resampling. However, it can distort the original image data because of edge blurring or blocking effects when image enhancement procedures were applied. In this paper, we proposed adaptive tension control method exploiting gradient information to achieve high resolution medical image enhancement in volume visualization, where restored images are similar to original images as much as possible. The experimental results show that the proposed method can improve image quality associated with the adaptive tension control efficacy.Keywords: Tension control, Interpolation, Ray-casting, Medical imaging analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 237210824 Impulsive Noise-Resilient Subband Adaptive Filter
Authors: Young-Seok Choi
Abstract:
We present a new subband adaptive filter (R-SAF) which is robust against impulsive noise in system identification. To address the vulnerability of adaptive filters based on the L2-norm optimization criterion against impulsive noise, the R-SAF comes from the L1-norm optimization criterion with a constraint on the energy of the weight update. Minimizing L1-norm of the a posteriori error in each subband with a constraint on minimum disturbance gives rise to the robustness against the impulsive noise and the capable convergence performance. Experimental results clearly demonstrate that the proposed R-SAF outperforms the classical adaptive filtering algorithms when impulsive noise as well as background noise exist.Keywords: Subband adaptive filter, L1-norm, system identification, robustness, impulsive interference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147010823 Retaining Structural System Active Vibration Control
Authors: Ming-Hui Lee, Shou-Jen Hsu
Abstract:
This study presents an active vibration control technique to reduce the earthquake responses of a retained structural system. The proposed technique is a synthesis of the adaptive input estimation method (AIEM) and linear quadratic Gaussian (LQG) controller. The AIEM can estimate an unknown system input online. The LQG controller offers optimal control forces to suppress wall-structural system vibration. The numerical results show robust performance in the active vibration control technique.Keywords: Active vibration control, AIEM, LQG, Optimal control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186910822 A Dynamic Composition of an Adaptive Course
Authors: S. Chiali, Z.Eberrichi, M.Malki
Abstract:
The number of framework conceived for e-learning constantly increase, unfortunately the creators of learning materials and educational institutions engaged in e-formation adopt a “proprietor" approach, where the developed products (courses, activities, exercises, etc.) can be exploited only in the framework where they were conceived, their uses in the other learning environments requires a greedy adaptation in terms of time and effort. Each one proposes courses whose organization, contents, modes of interaction and presentations are unique for all learners, unfortunately the latter are heterogeneous and are not interested by the same information, but only by services or documents adapted to their needs. Currently the new tendency for the framework conceived for e-learning, is the interoperability of learning materials, several standards exist (DCMI (Dublin Core Metadata Initiative)[2], LOM (Learning Objects Meta data)[1], SCORM (Shareable Content Object Reference Model)[6][7][8], ARIADNE (Alliance of Remote Instructional Authoring and Distribution Networks for Europe)[9], CANCORE (Canadian Core Learning Resource Metadata Application Profiles)[3]), they converge all to the idea of learning objects. They are also interested in the adaptation of the learning materials according to the learners- profile. This article proposes an approach for the composition of courses adapted to the various profiles (knowledge, preferences, objectives) of learners, based on two ontologies (domain to teach and educational) and the learning objects.Keywords: Adaptive educational hypermedia systems (AEHS), E-learning, Learner's model, Learning objects, Metadata, Ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196010821 Development of a Speed Sensorless IM Drives
Authors: Dj. Cherifi, Y. Miloud, A. Tahri
Abstract:
The primary objective of this paper is to elimination of the problem of sensitivity to parameter variation of induction motor drive. The proposed sensorless strategy is based on an algorithm permitting a better simultaneous estimation of the rotor speed and the stator resistance including an adaptive mechanism based on the lyaponov theory. To study the reliability and the robustness of the sensorless technique to abnormal operations, some simulation tests have been performed under several cases.
The proposed sensorless vector control scheme showed a good performance behavior in the transient and steady states, with an excellent disturbance rejection of the load torque.
Keywords: Induction Motor Drive, field-oriented control, adaptive speed observer, stator resistance estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202710820 Adaptive Educational Hypermedia System for High School Students Based on Learning Styles
Authors: Stephen Akuma, Timothy Ndera
Abstract:
Information seekers get “lost in hyperspace” due to the voluminous documents updated daily on the internet. Adaptive Hypermedia Systems (AHS) are used to direct learners to their target goals. One of the most common AHS designed to help information seekers to overcome the problem of information overload is the Adaptive Education Hypermedia System (AEHS). However, this paper focuses on AEHS that adopts the learning preference of high school students and deliver learning content according to this preference throughout their learning experience. The research developed a prototype system for predicting students’ learning preference from the Visual, Aural, Read-Write and Kinesthetic (VARK) learning style model and adopting the learning content suitable to their preference. The predicting strength of several classifiers was compared and we found Support Vector Machine (SVM) to be more accurate in predicting learning style based on users’ preferences.
Keywords: Hypermedia, adaptive education, learning style, lesson content, user profile, prediction, feedback, adaptive hypermedia, learning style.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84710819 Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
In this paper, we present a comparative assessment of Space Vector Pulse Width Modulation (SVPWM) and Model Predictive Control (MPC) for two-level three phase (2L-3P) Voltage Source Inverter (VSI). VSI with associated system is subjected to both control techniques and the results are compared. Matlab/Simulink was used to model, simulate and validate the control schemes. Findings of this study show that MPC is superior to SVPWM in terms of total harmonic distortion (THD) and implementation.
Keywords: Model Predictive Control, Space Vector Pulse Width Modulation, Voltage Source Inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452210818 Toward a Measure of Appropriateness of User Interfaces Adaptations Solutions
Authors: A. Siam, R. Maamri, Z. Sahnoun
Abstract:
The development of adaptive user interfaces (UI) presents for a long time an important research area in which researcher attempt to call upon the full resources and skills of several disciplines, The adaptive UI community holds a thorough knowledge regarding the adaptation of UIs with users and with contexts of use. Several solutions, models, formalisms, techniques and mechanisms were proposed to develop adaptive UI. In this paper, we propose an approach based on the fuzzy set theory for modeling the concept of the appropriateness of different solutions of UI adaptation with different situations for which interactive systems have to adapt their UIs.Keywords: Adaptive user interfaces, adaptation solution’s appropriateness, fuzzy sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193810817 Adaptive Notch Filter for Harmonic Current Mitigation
Authors: T. Messikh, S. Mekhilef, N. A. Rahim
Abstract:
This paper presents an effective technique for harmonic current mitigation using an adaptive notch filter (ANF) to estimate current harmonics. The proposed filter consists of multiple units of ANF connected in parallel structure; each unit is governed by two ordinary differential equations. The frequency estimation is carried out based on the output of these units. The simulation and experimental results show the ability of the proposed tracking scheme to accurately estimate harmonics. The proposed filter was implemented digitally in TMS320F2808 and used in the control of hybrid active power filter (HAPF). The theoretical expectations are verified and demonstrated experimentally.
Keywords: Adaptive notch filter, Active power filter, harmonic filtering, Time varying frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 305310816 An Integrated Software Architecture for Bandwidth Adaptive Video Streaming
Authors: T. Arsan
Abstract:
Video streaming over lossy IP networks is very important issues, due to the heterogeneous structure of networks. Infrastructure of the Internet exhibits variable bandwidths, delays, congestions and time-varying packet losses. Because of variable attributes of the Internet, video streaming applications should not only have a good end-to-end transport performance but also have a robust rate control, furthermore multipath rate allocation mechanism. So for providing the video streaming service quality, some other components such as Bandwidth Estimation and Adaptive Rate Controller should be taken into consideration. This paper gives an overview of video streaming concept and bandwidth estimation tools and then introduces special architectures for bandwidth adaptive video streaming. A bandwidth estimation algorithm – pathChirp, Optimized Rate Controllers and Multipath Rate Allocation Algorithm are considered as all-in-one solution for video streaming problem. This solution is directed and optimized by a decision center which is designed for obtaining the maximum quality at the receiving side.Keywords: Adaptive Video Streaming, Bandwidth Estimation, QoS, Software Architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143110815 A High Precision Temperature Insensitive Current and Voltage Reference Generator
Authors: Kimberly Jane S. Uy, Patricia Angela Reyes-Abu, Wen Yaw Chung
Abstract:
A high precision temperature insensitive current and voltage reference generator is presented. It is specifically developed for temperature compensated oscillator. The circuit, designed using MXIC 0.5um CMOS technology, has an operating voltage that ranges from 2.6V to 5V and generates a voltage of 1.21V and a current of 6.38 ӴA. It exhibits a variation of ±0.3nA for the current reference and a stable output for voltage reference as the temperature is varied from 0°C to 70°C. The power supply rejection ratio obtained without any filtering capacitor at 100Hz and 10MHz is -30dB and -12dB respectively.
Keywords: Current reference, voltage reference, threshold voltage, temperature compensation, mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235110814 Learning the Dynamics of Articulated Tracked Vehicles
Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri
Abstract:
In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.Keywords: Dirichlet processes, Gaussian processes, robot control learning, tracked vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178310813 Network State Classification based on the Statistical properties of RTT for an Adaptive Multi-State Proactive Transport Protocol for Satellite based Networks
Authors: Mohanchur Sakar, K.K.Shukla, K.S.Dasgupta
Abstract:
This paper attempts to establish the fact that Multi State Network Classification is essential for performance enhancement of Transport protocols over Satellite based Networks. A model to classify Multi State network condition taking into consideration both congestion and channel error is evolved. In order to arrive at such a model an analysis of the impact of congestion and channel error on RTT values has been carried out using ns2. The analysis results are also reported in the paper. The inference drawn from this analysis is used to develop a novel statistical RTT based model for multi state network classification. An Adaptive Multi State Proactive Transport Protocol consisting of Proactive Slow Start, State based Error Recovery, Timeout Action and Proactive Reduction is proposed which uses the multi state network state classification model. This paper also confirms through detail simulation and analysis that a prior knowledge about the overall characteristics of the network helps in enhancing the performance of the protocol over satellite channel which is significantly affected due to channel noise and congestion. The necessary augmentation of ns2 simulator is done for simulating the multi state network classification logic. This simulation has been used in detail evaluation of the protocol under varied levels of congestion and channel noise. The performance enhancement of this protocol with reference to established protocols namely TCP SACK and Vegas has been discussed. The results as discussed in this paper clearly reveal that the proposed protocol always outperforms its peers and show a significant improvement in very high error conditions as envisaged in the design of the protocol.Keywords: GEO, ns2, Proactive TCP, SACK, Vegas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142910812 Adaptive Total Variation Based on Feature Scale
Authors: Jianbo Hu, Hongbao Wang
Abstract:
The widely used Total Variation de-noising algorithm can preserve sharp edge, while removing noise. However, since fixed regularization parameter over entire image, small details and textures are often lost in the process. In this paper, we propose a modified Total Variation algorithm to better preserve smaller-scaled features. This is done by allowing an adaptive regularization parameter to control the amount of de-noising in any region of image, according to relative information of local feature scale. Experimental results demonstrate the efficient of the proposed algorithm. Compared with standard Total Variation, our algorithm can better preserve smaller-scaled features and show better performance.
Keywords: Adaptive, de-noising, feature scale, regularizationparameter, Total Variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 123710811 Experimental Studies of Position Control of Linkage based Robotic Finger
Authors: N. Z. Azlan, H. Yamaura
Abstract:
The experimental study of position control of a light weight and small size robotic finger during non-contact motion is presented in this paper. The finger possesses fingertip pinching and self adaptive grasping capabilities, and is made of a seven bar linkage mechanism with a slider in the middle phalanx. The control system is tested under the Proportional Integral Derivative (PID) control algorithm and Recursive Least Square (RLS) based Feedback Error Learning (FEL) control scheme to overcome the uncertainties present in the plant. The experiments conducted in Matlab Simulink and xPC Target environments show that the overall control strategy is efficient in controlling the finger movement.Keywords: Anthropomorphic finger, position control, feedback error learning, experimental study
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157710810 Model Predictive Control of Gantry Crane with Input Nonlinearity Compensation
Authors: Steven W. Su , Hung Nguyen, Rob Jarman, Joe Zhu, David Lowe, Peter McLean, Shoudong Huang, Nghia T. Nguyen, Russell Nicholson, Kaili Weng
Abstract:
This paper proposed a nonlinear model predictive control (MPC) method for the control of gantry crane. One of the main motivations to apply MPC to control gantry crane is based on its ability to handle control constraints for multivariable systems. A pre-compensator is constructed to compensate the input nonlinearity (nonsymmetric dead zone with saturation) by using its inverse function. By well tuning the weighting function matrices, the control system can properly compromise the control between crane position and swing angle. The proposed control algorithm was implemented for the control of gantry crane system in System Control Lab of University of Technology, Sydney (UTS), and achieved desired experimental results.Keywords: Model Predictive Control, Control constraints, Input nonlinearity compensation, Overhead gantry crane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198610809 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model
Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed
Abstract:
Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.
Keywords: Lithium-Ion batteries, genetic algorithm optimization, battery aging test, and parameter identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154510808 Modeling and Control of a Quadrotor UAV with Aerodynamic Concepts
Authors: Wei Dong, Guo-Ying Gu, Xiangyang Zhu, Han Ding
Abstract:
This paper presents preliminary results on modeling and control of a quadrotor UAV. With aerodynamic concepts, a mathematical model is firstly proposed to describe the dynamics of the quadrotor UAV. Parameters of this model are identified by experiments with Matlab Identify Toolbox. A group of PID controllers are then designed based on the developed model. To verify the developed model and controllers, simulations and experiments for altitude control, position control and trajectory tracking are carried out. The results show that the quadrotor UAV well follows the referenced commands, which clearly demonstrates the effectiveness of the proposed approach.Keywords: Quadrotor UAV, Modeling, Control, Aerodynamics, System Identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 712110807 Analysis of Equal cost Adaptive Routing Algorithms using Connection-Oriented and Connectionless Protocols
Authors: ER. Yashpaul Singh, A. Swarup
Abstract:
This research paper evaluates and compares the performance of equal cost adaptive multi-path routing algorithms taking the transport protocols TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) using network simulator ns2 and concludes which one is better.Keywords: Multi-path routing algorithm, Datagram, Virtual Circuit, Throughput, Network services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499