Change Detection and Non Stationary Signals Tracking by Adaptive Filtering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33104
Change Detection and Non Stationary Signals Tracking by Adaptive Filtering

Authors: Mounira RouaÐùnia, Noureddine Doghmane

Abstract:

In this paper we consider the problem of change detection and non stationary signals tracking. Using parametric estimation of signals based on least square lattice adaptive filters we consider for change detection statistical parametric methods using likelihood ratio and hypothesis tests. In order to track signals dynamics, we introduce a compensation procedure in the adaptive estimation. This will improve the adaptive estimation performances and fasten it-s convergence after changes detection.

Keywords: Change detection, Hypothesis test, likelihood ratioleast square lattice adaptive filters.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1331755

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635

References:


[1] P. Diniz, Adaptive filtering: Algorithms and practical implementation. Kluwer academic pub, 2002.
[2] M.Basseville, I.Nikiforov. Detection of abrupt changes: Theory and application. Prentice Hall, 1997.
[3] M. Basseville. Detecting changes in signals and systems - A survey-. Automatica, V-24, 1988. p 309-325.
[4] I. Nikiforov, Two strategies in the problem of change detection and isolation. IEEE Trans on information theory. V43(2) 1997 p 770-776.
[5] M.Seck, R.Blouet, F.Bimbot. Comparaison de critères de segmentation par détection de rupture sur un signal sonore. 17ème colloque GRETSI sur le traitement du signal et des imagesV4(1)1999 p 989-992.
[6] G. V. Moustakides. Optimal stopping times for detecting changes in distribution. The annals of statistics. V 14.1986 p 1479-1487.
[7] Ramdani. Détection de rupture: outil de diagnostic d-adaptativité dans le cas non stationnaire. ICSS Alger, 1994. p III45-III49.
[8] D. Siegmund, Sequential analysis tests and confidence intervals. Series in statistics, Springer, 1985.