Search results for: discrete element modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2391

Search results for: discrete element modelling

2211 Finite Element Analysis of Crack Welding Process

Authors: Thomas Jin-Chee Liu

Abstract:

The numerical simulation of the crack welding process is reported in this paper. The thermo-electro-structural coupled-field finite element analysis is adopted to investigate the welding process of crack surfaces. In the simulation, the pressure-dependent and temperature-dependent electrical contact conditions are considered. From the results, the crack surfaces can melt and weld together under the compressive load and electric current. The contact pressure effect must be considered in the finite element analysis to obtain more practical results.

Keywords: Crack welding, contact pressure, Joule heating, finite element, coupled-field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
2210 Performance Analysis of a Discrete-time GeoX/G/1 Queue with Single Working Vacation

Authors: Shan Gao, Zaiming Liu

Abstract:

This paper treats a discrete-time batch arrival queue with single working vacation. The main purpose of this paper is to present a performance analysis of this system by using the supplementary variable technique. For this purpose, we first analyze the Markov chain underlying the queueing system and obtain its ergodicity condition. Next, we present the stationary distributions of the system length as well as some performance measures at random epochs by using the supplementary variable method. Thirdly, still based on the supplementary variable method we give the probability generating function (PGF) of the number of customers at the beginning of a busy period and give a stochastic decomposition formulae for the PGF of the stationary system length at the departure epochs. Additionally, we investigate the relation between our discretetime system and its continuous counterpart. Finally, some numerical examples show the influence of the parameters on some crucial performance characteristics of the system.

Keywords: Discrete-time queue, batch arrival, working vacation, supplementary variable technique, stochastic decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
2209 Informal Inferential Reasoning Using a Modelling Approach within a Computer-Based Simulation

Authors: Theodosia Prodromou

Abstract:

The article investigates how 14- to 15- year-olds build informal conceptions of inferential statistics as they engage in a modelling process and build their own computer simulations with dynamic statistical software. This study proposes four primary phases of informal inferential reasoning for the students in the statistical modeling and simulation process. Findings show shifts in the conceptual structures across the four phases and point to the potential of all of these phases for fostering the development of students- robust knowledge of the logic of inference when using computer based simulations to model and investigate statistical questions.

Keywords: Inferential reasoning, learning, modelling, statistical inference, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
2208 Active Learning in Computer Exercises on Electronics

Authors: Zoja Raud, Valery Vodovozov

Abstract:

Modelling and simulation provide effective way to acquire engineering experience. An active approach to modelling and simulation proposed in the paper involves, beside the compulsory part directed by the traditional step-by-step instructions, the new optional part basing on the human’s habits to design thus stimulating the efforts towards success in active learning. Computer exercises as a part of engineering curriculum incorporate a set of effective activities. In addition to the knowledge acquired in theoretical training, the described educational arrangement helps to develop problem solutions, computation skills, and experimentation performance along with enhancement of practical experience and qualification.

Keywords: Modelling, simulation, engineering education, electronics, active learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
2207 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos

Abstract:

A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.

Keywords: Layered Structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 481
2206 Mathematical Modelling of Single Phase Unity Power Factor Boost Converter

Authors: Sanjay L. Kurkute, Pradeep M. Patil, Kakasaheb C. Mohite

Abstract:

An optimal control strategy based on simple model, a single phase unity power factor boost converter is presented with an evaluation of first order differential equations. This paper presents an evaluation of single phase boost converter having power factor correction. The simple discrete model of boost converter is formed and optimal control is obtained, digital PI is adopted to adjust control error. The method of instantaneous current control is proposed in this paper for its good tracking performance of dynamic response. The simulation and experimental results verified our design.

Keywords: Single phase, boost converter, Power factor correction (PFC), Pulse Width Modulation (PWM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3399
2205 Dense Chaos in Coupled Map Lattices

Authors: Tianxiu Lu, Peiyong Zhu

Abstract:

This paper is mainly concerned with a kind of coupled map lattices (CMLs). New definitions of dense δ-chaos and dense chaos (which is a special case of dense δ-chaos with δ = 0) in discrete spatiotemporal systems are given and sufficient conditions for these systems to be densely chaotic or densely δ-chaotic are derived.

Keywords: Discrete spatiotemporal systems, coupled map lattices, dense δ-chaos, Li-Yorke pairs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
2204 Seismic Safety Evaluation of Weir Structures Using the Finite and Infinite Element Method

Authors: Ho Young Son, Bu Seog Ju, Woo Young Jung

Abstract:

This study presents the seismic safety evaluation of weir structure subjected to strong earthquake ground motions, as a flood defense structure in civil engineering structures. The seismic safety analysis procedure was illustrated through development of Finite Element (FE) and InFinite Element (IFE) method in ABAQUS platform. The IFE model was generated by CINPS4, 4-node linear one-way infinite model as a sold continuum infinite element in foundation areas of the weir structure and then nonlinear FE model using friction model for soil-structure interactions was applied in this study. In order to understand the complex behavior of weir structures, nonlinear time history analysis was carried out. Consequently, it was interesting to note that the compressive stress gave more vulnerability to the weir structure, in comparison to the tensile stress, during an earthquake. The stress concentration of the weir structure was shown at the connection area between the weir body and stilling basin area. The stress both tension and compression was reduced in IFE model rather than FE model of weir structures.

Keywords: Weir, Finite Element, Infinite Element, Nonlinear, Earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
2203 Natural Frequency Analysis of a Porous Functionally Graded Shaft System

Authors: Natural Frequency Analysis of a Porous Functionally Graded Shaft System

Abstract:

The vibration characteristics of a functionally graded (FG) rotor model having porosities and micro-voids is investigated using three-dimensional finite element analysis. The FG shaft is mounted with a steel disc located at the midspan. The shaft ends are supported on isotropic bearings. The FG material is composed of a metallic (stainless-steel) and ceramic phase (zirconium oxide) as its constituent phases. The layer wise material property variation is governed by power law. Material property equations are developed for the porosity modelling. Python code is developed to assign the material properties to each layer including the effect of porosities. ANSYS commercial software is used to extract the natural frequencies and whirl frequencies for the FG shaft system. The obtained results show the influence of porosity volume fraction and power-law index, on the vibration characteristics of the ceramic-based FG shaft system.

Keywords: Finite element method, functionally graded material, porosity volume fraction, power law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 738
2202 An Adaptive Least-squares Mixed Finite Element Method for Pseudo-parabolic Integro-differential Equations

Authors: Zilong Feng, Hong Li, Yang Liu, Siriguleng He

Abstract:

In this article, an adaptive least-squares mixed finite element method is studied for pseudo-parabolic integro-differential equations. The solutions of least-squares mixed weak formulation and mixed finite element are proved. A posteriori error estimator is constructed based on the least-squares functional and the posteriori errors are obtained.

Keywords: Pseudo-parabolic integro-differential equation, least squares mixed finite element method, adaptive method, a posteriori error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
2201 An Agent-Based Approach to Immune Modelling: Priming Individual Response

Authors: Dimitri Perrin, Heather J. Ruskin, Martin Crane

Abstract:

This study focuses on examining why the range of experience with respect to HIV infection is so diverse, especially in regard to the latency period. An agent-based approach in modelling the infection is used to extract high-level behaviour which cannot be obtained analytically from the set of interaction rules at the cellular level. A prototype model encompasses local variation in baseline properties, contributing to the individual disease experience, and is included in a network which mimics the chain of lymph nodes. The model also accounts for stochastic events such as viral mutations. The size and complexity of the model require major computational effort and parallelisation methods are used.

Keywords: HIV, Immune modelling, Agent-based system, individual response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
2200 Robust Control for Discrete-Time Sector Bounded Systems with Time-Varying Delay

Authors: Ju H. Park, S.M. Lee

Abstract:

In this paper, we propose a robust controller design method for discrete-time systems with sector-bounded nonlinearities and time-varying delay. Based on the Lyapunov theory, delaydependent stabilization criteria are obtained in terms of linear matrix inequalities (LMIs) by constructing the new Lyapunov-Krasovskii functional and using some inequalities. A robust state feedback controller is designed by LMI framework and a reciprocally convex combination technique. The effectiveness of the proposed method is verified throughout a numerical example.

Keywords: Lur'e systems, Time-delay, Stabilization, LMIs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
2199 Embedded Systems Energy Consumption Analysis Through Co-modelling and Simulation

Authors: José Antonio Esparza Isasa, Finn Overgaard Hansen, Peter Gorm Larsen

Abstract:

This paper presents a new methodology to study power and energy consumption in mechatronic systems early in the development process. This new approach makes use of two modeling languages to represent and simulate embedded control software and electromechanical subsystems in the discrete event and continuous time domain respectively within a single co-model. This co-model enables an accurate representation of power and energy consumption and facilitates the analysis and development of both software and electro-mechanical subsystems in parallel. This makes the engineers aware of energy-wise implications of different design alternatives and enables early trade-off analysis from the beginning of the analysis and design activities.

Keywords: Energy consumption, embedded systems, modeldriven engineering, power awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
2198 Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer

Authors: Sumit Tiwari, Rohit Tripathi, G. N. Tiwari

Abstract:

Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively.

Keywords: Characteristics curve, Photovoltaic, Thermal modelling, Thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
2197 M-band Wavelet and Cosine Transform Based Watermark Algorithm Using Randomization and Principal Component Analysis

Authors: Tong Liu, Xuan Xu, Xiaodi Wang

Abstract:

Computational techniques derived from digital image processing are playing a significant role in the security and digital copyrights of multimedia and visual arts. This technology has the effect within the domain of computers. This research presents discrete M-band wavelet transform (MWT) and cosine transform (DCT) based watermarking algorithm by incorporating the principal component analysis (PCA). The proposed algorithm is expected to achieve higher perceptual transparency. Specifically, the developed watermarking scheme can successfully resist common signal processing, such as geometric distortions, and Gaussian noise. In addition, the proposed algorithm can be parameterized, thus resulting in more security. To meet these requirements, the image is transformed by a combination of MWT & DCT. In order to improve the security further, we randomize the watermark image to create three code books. During the watermark embedding, PCA is applied to the coefficients in approximation sub-band. Finally, first few component bands represent an excellent domain for inserting the watermark.

Keywords: discrete M-band wavelet transform , discrete M-band wavelet transform, randomized watermark, principal component analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
2196 Analytical Analysis of Image Representation by Their Discrete Wavelet Transform

Authors: R. M. Farouk

Abstract:

In this paper, we present an analytical analysis of the representation of images as the magnitudes of their transform with the discrete wavelets. Such a representation plays as a model for complex cells in the early stage of visual processing and of high technical usefulness for image understanding, because it makes the representation insensitive to small local shifts. We found that if the signals are band limited and of zero mean, then reconstruction from the magnitudes is unique up to the sign for almost all signals. We also present an iterative reconstruction algorithm which yields very good reconstruction up to the sign minor numerical errors in the very low frequencies.

Keywords: Wavelets, Image processing signal processing, Image reconstruction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
2195 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments

Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady

Abstract:

In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method. 

Keywords: Cable ampacity, Finite element method, underground cable, thermal rating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5799
2194 On the Variability of Tool Wear and Life at Disparate Operating Parameters

Authors: S. E. Oraby, A.M. Alaskari

Abstract:

The stochastic nature of tool life using conventional discrete-wear data from experimental tests usually exists due to many individual and interacting parameters. It is a common practice in batch production to continually use the same tool to machine different parts, using disparate machining parameters. In such an environment, the optimal points at which tools have to be changed, while achieving minimum production cost and maximum production rate within the surface roughness specifications, have not been adequately studied. In the current study, two relevant aspects are investigated using coated and uncoated inserts in turning operations: (i) the accuracy of using machinability information, from fixed parameters testing procedures, when variable parameters situations are emerged, and (ii) the credibility of tool life machinability data from prior discrete testing procedures in a non-stop machining. A novel technique is proposed and verified to normalize the conventional fixed parameters machinability data to suit the cases when parameters have to be changed for the same tool. Also, an experimental investigation has been established to evaluate the error in the tool life assessment when machinability from discrete testing procedures is employed in uninterrupted practical machining.

Keywords: Machinability, tool life, tool wear, wear variability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
2193 Maximum Norm Analysis of a Nonmatching Grids Method for Nonlinear Elliptic Boundary Value Problem −Δu = f(u)

Authors: Abida Harbi

Abstract:

We provide a maximum norm analysis of a finite element Schwarz alternating method for a nonlinear elliptic boundary value problem of the form -Δu = f(u), on two overlapping sub domains with non matching grids. We consider a domain which is the union of two overlapping sub domains where each sub domain has its own independently generated grid. The two meshes being mutually independent on the overlap region, a triangle belonging to one triangulation does not necessarily belong to the other one. Under a Lipschitz assumption on the nonlinearity, we establish, on each sub domain, an optimal L∞ error estimate between the discrete Schwarz sequence and the exact solution of the boundary value problem.

Keywords: Error estimates, Finite elements, Nonlinear PDEs, Schwarz method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719
2192 Torsional Statics of Circular Nanostructures: Numerical Approach

Authors: M.Z. Islam, C.W. Lim

Abstract:

Based on the standard finite element method, a new finite element method which is known as nonlocal finite element method (NL-FEM) is numerically implemented in this article to study the nonlocal effects for solving 1D nonlocal elastic problem. An Eringen-type nonlocal elastic model is considered. In this model, the constitutive stress-strain law is expressed interms of integral equation which governs the nonlocal material behavior. The new NL-FEM is adopted in such a way that the postulated nonlocal elastic behavior of material is captured by a finite element endowed with a set of (cross-stiffness) element itself by the other elements in mesh. An example with their analytical solutions and the relevant numerical findings for various load and boundary conditions are presented and discussed in details. It is observed from the numerical solutions that the torsional deformation angle decreases with increasing nonlocal nanoscale parameter. It is also noted that the analytical solution fails to capture the nonlocal effect in some cases where numerical solutions handle those situation effectively which prove the reliability and effectiveness of numerical techniques.

Keywords: NL-FEM, nonlocal elasticity, nanoscale, torsion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
2191 Dynamic-Stochastic Influence Diagrams: Integrating Time-Slices IDs and Discrete Event Systems Modeling

Authors: Xin Zhao, Yin-fan Zhu, Wei-ping Wang, Qun Li

Abstract:

The Influence Diagrams (IDs) is a kind of Probabilistic Belief Networks for graphic modeling. The usage of IDs can improve the communication among field experts, modelers, and decision makers, by showing the issue frame discussed from a high-level point of view. This paper enhances the Time-Sliced Influence Diagrams (TSIDs, or called Dynamic IDs) based formalism from a Discrete Event Systems Modeling and Simulation (DES M&S) perspective, for Exploring Analysis (EA) modeling. The enhancements enable a modeler to specify times occurred of endogenous events dynamically with stochastic sampling as model running and to describe the inter- influences among them with variable nodes in a dynamic situation that the existing TSIDs fails to capture. The new class of model is named Dynamic-Stochastic Influence Diagrams (DSIDs). The paper includes a description of the modeling formalism and the hiberarchy simulators implementing its simulation algorithm, and shows a case study to illustrate its enhancements.

Keywords: Time-sliced influence diagrams, discrete event systems, dynamic-stochastic influence diagrams, modeling formalism, simulation algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
2190 Stability Analysis of Neural Networks with Leakage, Discrete and Distributed Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

This paper deals with the problem of stability of neural networks with leakage, discrete and distributed delays. A new Lyapunov functional which contains some new double integral terms are introduced. By using appropriate model transformation that shifts the considered systems into the neutral-type time-delay system, and by making use of some inequality techniques, delay-dependent criteria are developed to guarantee the stability of the considered system. Finally, numerical examples are provided to illustrate the usefulness of the proposed main results.

Keywords: Neural networks, Stability, Time-varying delays, Linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
2189 Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System

Authors: Alpesh Adeshara, Rajendrasinh Jadeja, Praghnesh Bhatt

Abstract:

Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of supervisory control and data acquisition system (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide area measurement system (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of Matlab based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study.

Keywords: DFT-Discrete Fourier Transform, GPS-Global Positioning System, PMU-Phasor Measurement System, WAMS-Wide Area Monitoring System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681
2188 Transient Energy and its Impact on Transmission Line Faults

Authors: Mamta Patel, R. N. Patel

Abstract:

Transmission and distribution lines are vital links between the generating unit and consumers. They are exposed to atmosphere, hence chances of occurrence of fault in transmission line is very high which has to be immediately taken care of in order to minimize damage caused by it. In this paper Discrete wavelet transform of voltage signals at the two ends of transmission lines have been analyzed. The transient energy of the detail information of level five is calculated for different fault conditions. It is observed that the variation of transient energy of healthy and faulted line can give important information which can be very useful in classifying and locating the fault.

Keywords: Wavelet, Discrete wavelet transform, Multiresolution analysis, Transient energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389
2187 Localization by DKF Multi Sensor Fusion in the Uncertain Environments for Mobile Robot

Authors: Omid Sojodishijani, Saeed Ebrahimijam, Vahid Rostami

Abstract:

This paper presents an optimized algorithm for robot localization which increases the correctness and accuracy of the estimating position of mobile robot to more than 150% of the past methods [1] in the uncertain and noisy environment. In this method the odometry and vision sensors are combined by an adapted well-known discrete kalman filter [2]. This technique also decreased the computation process of the algorithm by DKF simple implementation. The experimental trial of the algorithm is performed on the robocup middle size soccer robot; the system can be used in more general environments.

Keywords: Discrete Kalman filter, odometry sensor, omnidirectional vision sensor, Robot Localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
2186 Stability Criteria for Uncertainty Markovian Jumping Parameters of BAM Neural Networks with Leakage and Discrete Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper, the problem of stability criteria for Markovian jumping BAM neural networks with leakage and discrete delays has been investigated. Some new sufficient condition are derived based on a novel Lyapunov-Krasovskii functional approach. These new criteria based on delay partitioning idea are proved to be less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, one numerical example is given to illustrate the the usefulness and feasibility of the proposed main results.

Keywords: Stability, Markovian jumping neural networks, Timevarying delays, Linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5106
2185 A Reconfigurable Processing Element Implementation for Matrix Inversion Using Cholesky Decomposition

Authors: Aki Happonen, Adrian Burian, Erwin Hemming

Abstract:

Fixed-point simulation results are used for the performance measure of inverting matrices using a reconfigurable processing element. Matrices are inverted using the Cholesky decomposition algorithm. The reconfigurable processing element is capable of all required mathematical operations. The fixed-point word length analysis is based on simulations of different condition numbers and different matrix sizes.

Keywords: Cholesky Decomposition, Fixed-point, Matrixinversion, Reconfigurable processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
2184 Design of Synchronous Torque Couplers

Authors: M. H. Nagrial, J. Rizk, A. Hellany

Abstract:

This paper presents the design, analysis and development of permanent magnet (PM) torque couplers. These couplers employ rare-earth magnets. Based on finite element analysis and earlier analytical works both concentric and face-type synchronous type couplers have been designed and fabricated. The experimental performance has good correlation with finite element calculations.

Keywords: Finite Element Analysis, Synchronous TorqueCouplers, Permanent Magnet Torque Couplers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3000
2183 Modelling of Induction Motor Including Skew Effect Using MWFA for Performance Improvement

Authors: M. Harir, A. Bendiabdellah, A. Chaouch, N. Benouzza

Abstract:

This paper deals with the modelling and simulation of the squirrel cage induction motor by taking into account all space harmonic components as well as the introduction of the bars skew in the calculation of the linear evolution of the magnetomotive force (MMF) between the slots extremities. The model used is based on multiple coupled circuits and the modified winding function approach (MWFA). The effect of skewing is included in the calculation of motors inductances with an axial asymmetry in the rotor. The simulation results in both time and spectral domains show the effectiveness and merits of the model and the error that may be caused if the skew of the bars are neglected.

Keywords: Modelling, MWFA, Skew effect, Squirrel cage induction motor, Spectral domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3245
2182 A Computer Proven Application of the Discrete Logarithm Problem

Authors: Sebastian Kusch, Markus Kaiser

Abstract:

In this paper we analyze the application of a formal proof system to the discrete logarithm problem used in publickey cryptography. That means, we explore a computer verification of the ElGamal encryption scheme with the formal proof system Isabelle/HOL. More precisely, the functional correctness of this algorithm is formally verified with computer support. Besides, we present a formalization of the DSA signature scheme in the Isabelle/HOL system. We show that this scheme is correct what is a necessary condition for the usefulness of any cryptographic signature scheme.

Keywords: Formal proof system, higher-order logic, formal verification, cryptographic signature scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524