An Agent-Based Approach to Immune Modelling: Priming Individual Response
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
An Agent-Based Approach to Immune Modelling: Priming Individual Response

Authors: Dimitri Perrin, Heather J. Ruskin, Martin Crane

Abstract:

This study focuses on examining why the range of experience with respect to HIV infection is so diverse, especially in regard to the latency period. An agent-based approach in modelling the infection is used to extract high-level behaviour which cannot be obtained analytically from the set of interaction rules at the cellular level. A prototype model encompasses local variation in baseline properties, contributing to the individual disease experience, and is included in a network which mimics the chain of lymph nodes. The model also accounts for stochastic events such as viral mutations. The size and complexity of the model require major computational effort and parallelisation methods are used.

Keywords: HIV, Immune modelling, Agent-based system, individual response.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1330279

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277

References:


[1] J. Burns. Emergent networks in immune system shape space. PhD thesis, Dublin City University, School of Computing, 2005.
[2] R.N. Germain. The art of the probable: System control in the adaptive immune system. Science, 293(5528):240-245, 2001.
[3] J.C. Lemahieu. Le systeme immunitaire. Immunology courses (http://anne.decoster.free.fr/immuno/orgcelri/orgcelmo.htm), accessed 12/2005.
[4] D. Klatzmann, E. Champagne, S. Chamaret, J. Gruest, D. Guetard, T. Hercend, J.C. Gluckman, and L. Montagnier. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature, 312(5996):767-768, 1984.
[5] A. Decoster and J.C. Lemahieu. Les retrovirus. Virology courses (http://anne.decoster.free.fr/d1viro/vretrov0.html), accessed 12/2005.
[6] G. Solovey, F. Peruani, S. Ponce-Dawson, and R.M. Zorzenon dos Santos. On cell resistance and immune response time lag in a model for the HIV infection. Physica A, 343(2004):543-556, 2004.
[7] A. Benyoussef, N. El HafidAllah, A. ElKenz, H. Ez-Zahraouy, and M. Loulidi. Dynamics of HIV infection on 2D cellular automata. Physica A, 322(2003):506-520, 2003.
[8] U. Hershberg, Y. Louzoun, H. Atlan, and S. Solomon. HIV time hierarchy: winning the war while, loosing all the battles. Physica A, 289(2001):178-190, 2001.
[9] A. Mielke and R.B. Pandey. A computer simulation study of cell population in a fuzzy interaction model for mutating HIV. Physica A, 251(1998):430-438, 1998.
[10] R. Mannion, H.J. Ruskin, and R.B. Pandey. A Monte-Carlo approach to population dynamics of cells in a HIV immune response model. Theory in Biosciences, 121(2002):237-245, 2002.
[11] M. Wooldridge and N. Jennings. Intelligent agents : Theory and practice. The Knowledge Engineering Review, 2(10):115-152, 1995.
[12] E.H. Durfee. Scaling up agent coordination strategies. Computer, 34(7):39-46, 2001.
[13] S. Cammarata, D. McArthur, and R. Steeb. Strategies of cooperation in distributed problem solving. In Proceedings of the Eighth International Joint Conference on Artificial Intelligence (IJCAI-83), Karlsruhe, Germany, 1983.
[14] E.H. Durfee. Coordination of distributed problem solvers. Kluwer Academic Publishers, 1998.
[15] B. Hayes-Roth, M. Hewett, R. Washington, R. Hewett, and A. Seiver. Distributing intelligence within an individual. In L. Gasser and M. Huhns, editors, Distributed Artificial Intelligence Volume II, pages 385- 412. Pitman Publishing and Morgan Kaufmann, 1989.
[16] R.D. Groot. Consumers don-t play dice, influence of social networks and advertisements. Physica A, 363(2006):446-458, 2006.
[17] M. Pogson, R. Smallwood, E. Qwarnstrom, and M. Holcombea. Formal agent-based modelling of intracellular chemical interactions. BioSystems, 85(2006):37-45, 2006.
[18] S.M. Manson. Agent-based modeling and genetic programming for modeling land change in the Southern Yucatan peninsular region of Mexico. Agriculture, Ecosystems and Environment, 111(2005):47-62, 2005.
[19] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The Swarm simulation system: A toolkit for building multi-agent simulations. Working Paper 96-06-042, Santa Fe Institute, 1996.
[20] F. Bellifemine, A. Poggi, G. Rimassa, and P. Turci. An object oriented framework to realize agent systems. In Proceedings of WOA 2000 Workshop, Parma, Italy, May 2000.
[21] K. Kleinmann, R. Lazarus, and R. Tomlinson. An infrastructure for adaptive control of multi-agent systems. IEEE KIMAS-03 Conference Paper, 2003.
[22] J. Kari. Theory of cellular automata: A survey. Theoretical Computer Science, 334(2005):3-35, 2005.
[23] W.H. Press, W.T. Vetterling, S.A. Teukolsky, and B.P. Flannery. Numerical Recipes in C++: the art of scientific computing. Cambridge University Press, 2002.
[24] A. Srinivasan, M. Mascagni, and D. Ceperley. Testing parallel random number generators. Parallel Computing, 29(2003):69-94, 2003.
[25] D. Hecquet, H.J. Ruskin, and M. Crane. Optimisation and parallelisation strategies for Monte Carlo simulation of HIV infection. To appear in Computers in Biology and Medicine, 2006.
[26] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming With the Message-Passing Interface, second edition. MIT Press, 1999.
[27] W. Gropp, E. Lusk, and A. Skjellum. Using MPI-2: Advanced Features of the Message Passing Interface. MIT Press, 1999.
[28] D. Perrin, H.J. Ruskin, and M. Crane. HIV modelling: Parallel implementation strategies. accepted for presentation at the Third International Conference on Cluster and Grid Computing Systems (CGCS 2006), 2006.
[29] F. Buseyne and Y. Riviere. The flexibility of the TCR allows recognition of a large set of naturally occurring epitope variants by HIV-specific cytotoxic T lymphocytes. International Immunology, 13(7):941-950, 2001.
[30] K. Murali-Krishna, L.L. Lau, S. Sambhara, F. Lemonnier, J. Altman, and R. Ahmed. Persistence of memory CD8 T cells in MHC Class I-deficient mice. Science, 286(5443):1377-1381, 1999.
[31] A. Oxenius, D. Price, S.J. Dawson, T. Tun, P.J. Easterbrook, R.E. Phillips, and A.K. Sewell. Cross-staining of cytotoxic T lymphocyte populations with peptide-MHC class I multimers of natural HIV-1 variant antigens. AIDS, 15(1):121-122, 2001.