Search results for: Nonlinear vibrations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1189

Search results for: Nonlinear vibrations

1009 Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis

Authors: Liliia N. Butymova, Vladimir Ya Modorskii

Abstract:

To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С.

Keywords: Aeroelasticity, labyrinth packings, oscillation phase shift, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
1008 Robust H State-Feedback Control for Uncertain Fuzzy Markovian Jump Systems: LMI-Based Design

Authors: Wudhichai Assawinchaichote, Sing Kiong Nguang

Abstract:

This paper investigates the problem of designing a robust state-feedback controller for a class of uncertain Markovian jump nonlinear systems that guarantees the L2-gain from an exogenous input to a regulated output is less than or equal to a prescribed value. First, we approximate this class of uncertain Markovian jump nonlinear systems by a class of uncertain Takagi-Sugeno fuzzy models with Markovian jumps. Then, based on an LMI approach, LMI-based sufficient conditions for the uncertain Markovian jump nonlinear systems to have an H performance are derived. An illustrative example is used to illustrate the effectiveness of the proposed design techniques.

Keywords: Robust H, Fuzzy Control, Markovian Jump Systems, LMI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
1007 Instability of Soliton Solutions to the Schamel-nonlinear Schrödinger Equation

Authors: Sarun Phibanchon, Michael A. Allen

Abstract:

A variational method is used to obtain the growth rate of a transverse long-wavelength perturbation applied to the soliton solution of a nonlinear Schr¨odinger equation with a three-half order potential. We demonstrate numerically that this unstable perturbed soliton will eventually transform into a cylindrical soliton.

Keywords: Soliton, instability, variational method, spectral method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3700
1006 Transient Population Dynamics of Phase Singularities in 2D Beeler-Reuter Model

Authors: Hidetoshi Konno, Akio Suzuki

Abstract:

The paper presented a transient population dynamics of phase singularities in 2D Beeler-Reuter model. Two stochastic modelings are examined: (i) the Master equation approach with the transition rate (i.e., λ(n, t) = λ(t)n and μ(n, t) = μ(t)n) and (ii) the nonlinear Langevin equation approach with a multiplicative noise. The exact general solution of the Master equation with arbitrary time-dependent transition rate is given. Then, the exact solution of the mean field equation for the nonlinear Langevin equation is also given. It is demonstrated that transient population dynamics is successfully identified by the generalized Logistic equation with fractional higher order nonlinear term. It is also demonstrated the necessity of introducing time-dependent transition rate in the master equation approach to incorporate the effect of nonlinearity.

Keywords: Transient population dynamics, Phase singularity, Birth-death process, Non-stationary Master equation, nonlinear Langevin equation, generalized Logistic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
1005 Diagnosis of Multivariate Process via Nonlinear Kernel Method Combined with Qualitative Representation of Fault Patterns

Authors: Hyun-Woo Cho

Abstract:

The fault detection and diagnosis of complicated production processes is one of essential tasks needed to run the process safely with good final product quality. Unexpected events occurred in the process may have a serious impact on the process. In this work, triangular representation of process measurement data obtained in an on-line basis is evaluated using simulation process. The effect of using linear and nonlinear reduced spaces is also tested. Their diagnosis performance was demonstrated using multivariate fault data. It has shown that the nonlinear technique based diagnosis method produced more reliable results and outperforms linear method. The use of appropriate reduced space yielded better diagnosis performance. The presented diagnosis framework is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. The use of reduced model space helps to mitigate the sensitivity of the fault pattern to noise.

Keywords: Real-time Fault diagnosis, triangular representation of patterns in reduced spaces, Nonlinear kernel technique, multivariate statistical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1004 On Symmetries and Exact Solutions of Einstein Vacuum Equations for Axially Symmetric Gravitational Fields

Authors: Nisha Goyal, R.K. Gupta

Abstract:

Einstein vacuum equations, that is a system of nonlinear partial differential equations (PDEs) are derived from Weyl metric by using relation between Einstein tensor and metric tensor. The symmetries of Einstein vacuum equations for static axisymmetric gravitational fields are obtained using the Lie classical method. We have examined the optimal system of vector fields which is further used to reduce nonlinear PDE to nonlinear ordinary differential equation (ODE). Some exact solutions of Einstein vacuum equations in general relativity are also obtained.

Keywords: Gravitational fields, Lie Classical method, Exact solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
1003 A Fully Implicit Finite-Difference Solution to One Dimensional Coupled Nonlinear Burgers’ Equations

Authors: Vineet K. Srivastava, Mukesh K. Awasthi, Mohammad Tamsir

Abstract:

A fully implicit finite-difference method has been proposed for the numerical solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh points. The method forms a system of nonlinear difference equations which is to be solved at each iteration. Newton’s iterative method has been implemented to solve this nonlinear assembled system of equations. The linear system has been solved by Gauss elimination method with partial pivoting algorithm at each iteration of Newton’s method. Three test examples have been carried out to illustrate the accuracy of the method. Computed solutions obtained by proposed scheme have been compared with analytical solutions and those already available in the literature by finding L2 and L∞ errors.

Keywords: Burgers’ equation, Implicit Finite-difference method, Newton’s method, Gauss elimination with partial pivoting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5945
1002 A C1-Conforming Finite Element Method for Nonlinear Fourth-Order Hyperbolic Equation

Authors: Yang Liu, Hong Li, Siriguleng He, Wei Gao, Zhichao Fang

Abstract:

In this paper, the C1-conforming finite element method is analyzed for a class of nonlinear fourth-order hyperbolic partial differential equation. Some a priori bounds are derived using Lyapunov functional, and existence, uniqueness and regularity for the weak solutions are proved. Optimal error estimates are derived for both semidiscrete and fully discrete schemes.

Keywords: Nonlinear fourth-order hyperbolic equation, Lyapunov functional, existence, uniqueness and regularity, conforming finite element method, optimal error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
1001 On the System of Nonlinear Rational Difference Equations

Authors: Qianhong Zhang, Wenzhuan Zhang

Abstract:

This paper is concerned with the global asymptotic behavior of positive solution for a system of two nonlinear rational difference equations. Moreover, some numerical examples are given to illustrate results obtained.

Keywords: Difference equations, stability, unstable, global asymptotic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
1000 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion

Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen

Abstract:

In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.

Keywords: Adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
999 Adaptive Neural Network Control of Autonomous Underwater Vehicles

Authors: Ahmad Forouzantabar, Babak Gholami, Mohammad Azadi

Abstract:

An adaptive neural network controller for autonomous underwater vehicles (AUVs) is presented in this paper. The AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. In this regards, a nonlinear neural network is used to approximate the nonlinear uncertainties of AUV dynamics, thus overcoming some limitations of conventional controllers and ensure good performance. The uniform ultimate boundedness of AUV tracking errors and the stability of the proposed control system are guaranteed based on Lyapunov theory. Numerical simulation studies for motion control of an AUV are performed to demonstrate the effectiveness of the proposed controller.

Keywords: Autonomous Underwater Vehicle (AUV), Neural Network Controller, Composite Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
998 Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure

Authors: N. Dumitru, S. Dumitru, C. Copilusi, N. Ploscaru

Abstract:

On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests.

Keywords: Modal dynamic analysis, oil pump, vibrations, flexible elements, frequency response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
997 A New Iterative Method for Solving Nonlinear Equations

Authors: Ibrahim Abu-Alshaikh

Abstract:

In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.

Keywords: Iterative method, root-finding method, sine-polynomial equations, nonlinear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
996 Study Punching Shear of Steel Fiber Reinforced Self Compacting Concrete Slabs by Nonlinear Analysis

Authors: Khaled S. Ragab

Abstract:

This paper deals with behavior and capacity of punching shear force for flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC) by application nonlinear finite element method. Nonlinear finite element analysis on nine slab specimens was achieved by using ANSYS software. A general description of the finite element method, theoretical modeling of concrete and reinforcement are presented. The nonlinear finite element analysis program ANSYS is utilized owing to its capabilities to predict either the response of reinforced concrete slabs in the post elastic range or the ultimate strength of a flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC). In order to verify the analytical model used in this research using test results of the experimental data, the finite element analysis were performed then a parametric study of the effect ratio of flexural reinforcement, ratio of the upper reinforcement, and volume fraction of steel fibers were investigated. A comparison between the experimental results and those predicted by the existing models are presented. Results and conclusions may be useful for designers, have been raised, and represented.

Keywords: Nonlinear FEM, Punching shear behavior, Flat slabs and Steel fiber reinforced self compacting concrete (SFRSCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4256
995 Nonlinear Controller for Fuzzy Model of Double Inverted Pendulums

Authors: I. Zamani, M. H. Zarif

Abstract:

In this paper a method for designing of nonlinear controller for a fuzzy model of Double Inverted Pendulum is proposed. This system can be considered as a fuzzy large-scale system that includes offset terms and disturbance in each subsystem. Offset terms are deterministic and disturbances are satisfied a matching condition that is mentioned in the paper. Based on Lyapunov theorem, a nonlinear controller is designed for this fuzzy system (as a model reference base) which is simple in computation and guarantees stability. This idea can be used for other fuzzy large- scale systems that include more subsystems Finally, the results are shown.

Keywords: Controller, Fuzzy Double Inverted Pendulums, Fuzzy Large-Scale Systems, Lyapunov Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2514
994 Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation

Authors: Tsun-Hui Huang, Shyue-Cheng Yang, Chiou-Fen Shieh

Abstract:

In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.

Keywords: Polynomial constitutive equation, solitary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
993 Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter

Authors: H. Bouadi, M. Tadjine

Abstract:

In this paper; we are interested in dynamic modelling of quadrotor while taking into account the high-order nonholonomic constraints as well as the various physical phenomena, which can influence the dynamics of a flying structure. These permit us to introduce a new state-space representation and new control scheme. We present after the development and the synthesis of a stabilizing control laws design based on sliding mode in order to perform best tracking results. It ensures locally asymptotic stability and desired tracking trajectories. Nonlinear observer is then synthesized in order to estimate the unmeasured states and the effects of the external disturbances such as wind and noise. Finally simulation results are also provided in order to illustrate the performances of the proposed controllers.

Keywords: Dynamic modelling, nonholonomic constraints, sliding mode, nonlinear observer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2960
992 Robust Fuzzy Control of Nonlinear Fuzzy Impulsive Singular Perturbed Systems with Time-varying Delay

Authors: Caigen Zhou, Haibo Jiang

Abstract:

The problem of robust fuzzy control for a class of nonlinear fuzzy impulsive singular perturbed systems with time-varying delay is investigated by employing Lyapunov functions. The nonlinear delay system is built based on the well-known T–S fuzzy model. The so-called parallel distributed compensation idea is employed to design the state feedback controller. Sufficient conditions for global exponential stability of the closed-loop system are derived in terms of linear matrix inequalities (LMIs), which can be easily solved by LMI technique. Some simulations illustrate the effectiveness of the proposed method.

Keywords: T–S fuzzy model, singular perturbed systems, time-varying delay, robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
991 FEA for Transient Responses of an S-Shaped Force Transducer with a Viscoelastic Absorber Using a Nonlinear Complex Spring

Authors: T. Yamaguchi, Y. Fujii, A. Takita, T. Kanai

Abstract:

To compute dynamic characteristics of nonlinear viscoelastic springs with elastic structures having huge degree-of-freedom, Yamaguchi proposed a new fast numerical method using finite element method [1]-[2]. In this method, restoring forces of the springs are expressed using power series of their elongation. In the expression, nonlinear hysteresis damping is introduced. In this expression, nonlinear complex spring constants are introduced. Finite element for the nonlinear spring having complex coefficients is expressed and is connected to the elastic structures modeled by linear solid finite element. Further, to save computational time, the discrete equations in physical coordinate are transformed into the nonlinear ordinary coupled equations using normal coordinate corresponding to linear natural modes. In this report, the proposed method is applied to simulation for impact responses of a viscoelastic shock absorber with an elastic structure (an S-shaped structure) by colliding with a concentrated mass. The concentrated mass has initial velocities and collides with the shock absorber. Accelerations of the elastic structure and the concentrated mass are measured using Levitation Mass Method proposed by Fujii [3]. The calculated accelerations from the proposed FEM, corresponds to the experimental ones. Moreover, using this method, we also investigate dynamic errors of the S-shaped force transducer due to elastic mode in the S-shaped structure.

Keywords: Transient response, Finite Element analysis, Numerical analysis, Viscoelastic shock absorber, Force transducer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
990 Dynamic Analysis of Reduced Order Large Rotating Vibro-Impact Systems

Authors: Miroslav Byrtus

Abstract:

Large rotating systems, especially gear drives and gearboxes, occur as parts of many mechanical devices transmitting the torque with relatively small loss of power. With the increased demand for high speed machinery, mathematical modeling and dynamic analysis of gear drives gained importance. Mathematical description of such mechanical systems is a complex task evolving for several decades. In gear drive dynamic models, which include flexible shafts, bearings and gearing and use the finite elements, nonlinear effects due to gear mesh and bearings are usually ignored, for such models have large number of degrees of freedom (DOF) and it is computationally expensive to analyze nonlinear systems with large number of DOF. Therefore, these models are not suitable for simulation of nonlinear behavior with amplitude jumps in frequency response. The contribution uses a methodology of nonlinear large rotating system modeling which is based on degrees of freedom (DOF) number reduction using modal synthesis method (MSM). The MSM enables significant DOF number reduction while keeping the nonlinear behavior of the system in a specific frequency range. Further, the MSM with DOF number reduction is suitable for including detail models of nonlinear couplings (mainly gear and bearing couplings) into the complete gear drive models. Since each subsystem is modeled separately using different FEM systems, it is advantageous to parameterize models of subsystems and to use the parameterization for optimization of chosen design parameters. Final complex model of gear drive is assembled in MATLAB and MATLAB tools are used for dynamical analysis of the nonlinear system. The contribution is further focused on developing of a methodology for investigation of behavior of the system by Nonlinear Normal Modes with combination of the MSM using numerical continuation method. The proposed methodology will be tested using a two-stage gearbox including its housing.

Keywords: Vibro-impact system, rotating system, gear drive, modal synthesis method, numerical continuation method, periodic solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401
989 Stabilization and Control of a UAV Flight Attitude Angles using the Backstepping Method

Authors: Mihai Lungu

Abstract:

The paper presents the design of a mini-UAV attitude controller using the backstepping method. Starting from the nonlinear dynamic equations of the mini-UAV, by using the backstepping method, the author of this paper obtained the expressions of the elevator, rudder and aileron deflections, which stabilize the UAV, at each moment, to the desired values of the attitude angles. The attitude controller controls the attitude angles, the angular rates, the angular accelerations and other variables that describe the UAV longitudinal and lateral motions. To design the nonlinear controller, by using the backstepping technique, the nonlinear equations and the Lyapunov analysis have been directly used. The designed controller has been implemented in Matlab/Simulink environment and its effectiveness has been tested with a campaign of numerical simulations using data from the UAV flight tests. The obtained results are very good and they are better than the ones found in previous works.

Keywords: Attitude angles, Backstepping, Controller, UAV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
988 A New Nonlinear Excitation Controller for Transient Stability Enhancement in Power Systems

Authors: M. Ouassaid, A. Nejmi, M. Cherkaoui, M. Maaroufi

Abstract:

The very nonlinear nature of the generator and system behaviour following a severe disturbance precludes the use of classical linear control technique. In this paper, a new approach of nonlinear control is proposed for transient and steady state stability analysis of a synchronous generator. The control law of the generator excitation is derived from the basis of Lyapunov stability criterion. The overall stability of the system is shown using Lyapunov technique. The application of the proposed controller to simulated generator excitation control under a large sudden fault and wide range of operating conditions demonstrates that the new control strategy is superior to conventional automatic voltage regulator (AVR), and show very promising results.

Keywords: Excitation control, Lyapunov technique, non linearcontrol, synchronous generator, transient stability, voltage regulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
987 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma

Authors: A. Abdikian

Abstract:

Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.

Keywords: Bifurcation theory, magnetized electron-positron plasma, phase portrait, the Zakharov-Kuznetsov equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367
986 Non-Linear Control Based on State Estimation for the Convoy of Autonomous Vehicles

Authors: M-M. Mohamed Ahmed, Nacer K. M’Sirdi, Aziz Naamane

Abstract:

In this paper, a longitudinal and lateral control approach based on a nonlinear observer is proposed for a convoy of autonomous vehicles to follow a desired trajectory. To authors best knowledge, this topic has not yet been sufficiently addressed in the literature for the control of multi vehicles. The modeling of the convoy of the vehicles is revisited using a robotic method for simulation purposes and control design. With these models, a sliding mode observer is proposed to estimate the states of each vehicle in the convoy from the available sensors, then a sliding mode control based on this observer is used to control the longitudinal and lateral movement. The validation and performance evaluation are done using the well-known driving simulator Scanner-Studio. The results are presented for different maneuvers of 5 vehicles.

Keywords: Autonomous vehicles, convoy, nonlinear control, nonlinear observer, sliding mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
985 Nonlinear Integral-Type Sliding Surface for Synchronization of Chaotic Systems with Unknown Parameters

Authors: Hongji Tang, Yanbo Gao, Yue Yu

Abstract:

This paper presents a new nonlinear integral-type sliding surface for synchronizing two different chaotic systems with parametric uncertainty. On the basis of Lyapunov theorem and average dwelling time method, we obtain the control gains of controllers which are derived to achieve chaos synchronization. In order to reduce the gains, the error system is modeled as a switching system. We obtain the sufficient condition drawn for the robust stability of the error dynamics by stability analysis. Then we apply it to guide the design of the controllers. Finally, numerical examples are used to show the robustness and effectiveness of the proposed control strategy.

Keywords: Chaos synchronization, Nonlinear sliding surface, Control gains, Sliding mode control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
984 A First Course in Numerical Methods with “Mathematica“

Authors: Andrei A. Kolyshkin

Abstract:

In the present paper some recommendations for the use of software package “Mathematica" in a basic numerical analysis course are presented. The methods which are covered in the course include solution of systems of linear equations, nonlinear equations and systems of nonlinear equations, numerical integration, interpolation and solution of ordinary differential equations. A set of individual assignments developed for the course covering all the topics is discussed in detail.

Keywords: Numerical methods, "Mathematica", e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3670
983 An Optimized Method for Calculating the Linear and Nonlinear Response of SDOF System Subjected to an Arbitrary Base Excitation

Authors: Hossein Kabir, Mojtaba Sadeghi

Abstract:

Finding the linear and nonlinear responses of a typical single-degree-of-freedom system (SDOF) is always being regarded as a time-consuming process. This study attempts to provide modifications in the renowned Newmark method in order to make it more time efficient than it used to be and make it more accurate by modifying the system in its own non-linear state. The efficacy of the presented method is demonstrated by assigning three base excitations such as Tabas 1978, El Centro 1940, and MEXICO CITY/SCT 1985 earthquakes to a SDOF system, that is, SDOF, to compute the strength reduction factor, yield pseudo acceleration, and ductility factor.

Keywords: Single-degree-of-freedom system, linear acceleration method, nonlinear excited system, equivalent displacement method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
982 Mathematical Modeling and Analysis of Forced Vibrations in Micro-Scale Microstretch Thermoelastic Simply Supported Beam

Authors: Geeta Partap, Nitika Chugh

Abstract:

The present paper deals with the flexural vibrations of homogeneous, isotropic, generalized micropolar microstretch thermoelastic thin Euler-Bernoulli beam resonators, due to Exponential time varying load. Both the axial ends of the beam are assumed to be at simply supported conditions. The governing equations have been solved analytically by using Laplace transforms technique twice with respect to time and space variables respectively. The inversion of Laplace transform in time domain has been performed by using the calculus of residues to obtain deflection.The analytical results have been numerically analyzed with the help of MATLAB software for magnesium like material. The graphical representations and interpretations have been discussed for Deflection of beam under Simply Supported boundary condition and for distinct considered values of time and space as well. The obtained results are easy to implement for engineering analysis and designs of resonators (sensors), modulators, actuators.

Keywords: Microstretch, deflection, exponential load, Laplace transforms, Residue theorem, simply supported.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
981 Development of Admire Longitudinal Quasi-Linear Model by using State Transformation Approach

Authors: Jianqiao. Yu, Jianbo. Wang, Xinzhen. He

Abstract:

This paper presents a longitudinal quasi-linear model for the ADMIRE model. The ADMIRE model is a nonlinear model of aircraft flying in the condition of high angle of attack. So it can-t be considered to be a linear system approximately. In this paper, for getting the longitudinal quasi-linear model of the ADMIRE, a state transformation based on differentiable functions of the nonscheduling states and control inputs is performed, with the goal of removing any nonlinear terms not dependent on the scheduling parameter. Since it needn-t linear approximation and can obtain the exact transformations of the nonlinear states, the above-mentioned approach is thought to be appropriate to establish the mathematical model of ADMIRE. To verify this conclusion, simulation experiments are done. And the result shows that this quasi-linear model is accurate enough.

Keywords: quasi-linear model, simulation, state transformation approach, the ADMIRE model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
980 Modeling and Identification of Hammerstein System by using Triangular Basis Functions

Authors: K. Elleuch, A. Chaari

Abstract:

This paper deals with modeling and parameter identification of nonlinear systems described by Hammerstein model having Piecewise nonlinear characteristics such as Dead-zone nonlinearity characteristic. The simultaneous use of both an easy decomposition technique and the triangular basis functions leads to a particular form of Hammerstein model. The approximation by using Triangular basis functions for the description of the static nonlinear block conducts to a linear regressor model, so that least squares techniques can be used for the parameter estimation. Singular Values Decomposition (SVD) technique has been applied to separate the coupled parameters. The proposed approach has been efficiently tested on academic examples of simulation.

Keywords: Identification, Hammerstein model, Piecewisenonlinear characteristic, Dead-zone nonlinearity, Triangular basisfunctions, Singular Values Decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920