Search results for: Groundnut shell reinforced polymer composite (GSRPC)
1322 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns
Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan
Abstract:
Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.
Keywords: Composite, columns, experimental, finite element, fully encased, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28631321 Volume Fraction Law for Stainless Steel on Inner Surface and Nickel on Outer Surface For FGM Cylindrical Shell
Authors: M.Hosseinjani Zamenjani, A.R.Tahmasebi Birgani, M.R.Isvandzibaei
Abstract:
Vibration of thin cylindrical shells made of a functionally gradient material composed of stainless steel and nickel is presented. The effects of the FGM configuration are studied by studying the frequencies of FG cylindrical shells. In this case FG cylindrical shell has Nickel on its outer surface and stainless steel on its inner surface. The study is carried out based on third order shear deformation shell theory. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of configurations of the constituent materials on the frequencies. The properties are graded in the thickness direction according to the volume fraction power-law distribution. Results are presented on the frequency characteristics, the influence of the constituent various volume fractions on the frequencies.Keywords: Nickel, Stainless Steel, Cylindrical shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13151320 Effect of Amine-Functionalized Carbon Nanotubes on the Properties of CNT-PAN Composite Nanofibers
Authors: O. Eren, N. Ucar, A. Onen, N. Kızıldag, O. F. Vurur, N. Demirsoy, I. Karacan
Abstract:
PAN nanofibers reinforced with amine functionalized carbon nanotubes. The effect of amine functionalization and the effect of concentration of CNT on the conductivity and mechanical and morphological properties of composite nanofibers were examined. 1%CNT-NH2 loaded PAN/CNT nanofiber showed the best mechanical properties. Conductivity increased with the incorporation of carbon nanotubes. While an increase of concentration of CNT increases the diameter of nanofiber, the use of functionalized CNT results to decrease of diameter of nanofiber.
Keywords: Amine functionalized carbon nanotube, electrospinning, nanofiber, polyacrylonitrile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41831319 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber
Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He
Abstract:
As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.
Keywords: 3D printed, carbon fiber, fiber content, recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7731318 Thermoelastic Damping of Inextensional Hemispherical Shell
Authors: S. Y. Choi, Y. H. Na, J. H. Kim
Abstract:
In this work, thermoelastic damping effect on the hemi- spherical shells is investigated. The material is selected silicon, and heat conduction equation for thermal flow is solved to obtain the temperature profile in which bending approximation with inextensional assumption of the model. Using the temperature profile, eigen-value analysis is performed to get the natural frequencies of hemispherical shells. Effects of mode numbers, radii and radial thicknesses of the model on the natural frequencies are analyzed in detail. Furthermore, the quality factor (Q-factor) is defined, and discussed for the ring and hemispherical shell.Keywords: Thermoelastic damping, hemispherical shell, quality factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20261317 Effects of Test Environment on the Sliding Wear Behaviour of Cast Iron, Zinc-Aluminium Alloy and Its Composite
Authors: Mohammad M. Khan, Gajendra Dixit
Abstract:
Partially lubricated sliding wear behaviour of a zinc-based alloy reinforced with 10wt% SiC particles has been studied as a function of applied load and solid lubricant particle size and has been compared with that of matrix alloy and conventionally used grey cast iron. The wear tests were conducted at the sliding velocities of 2.1m/sec in various partial lubricated conditions using pin on disc machine as per ASTM G-99-05. Base oil (SAE 20W-40) or mixture of the base oil with 5wt% graphite of particle sizes (7-10 µm) and (100 µm) were used for creating lubricated conditions. The matrix alloy revealed primary dendrites of a and eutectoid a + h and Î phases in the Inter dendritic regions. Similar microstructure has been depicted by the composite with an additional presence of the dispersoid SiC particles. In the case of cast iron, flakes of graphite were observed in the matrix; the latter comprised of (majority of) pearlite and (limited quantity of) ferrite. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The cast iron shows intermediate response between the matrix alloy and composite. The solid lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloy. Moreover, minimum wear rate is obtained in oil+ 5wt % graphite (7-10 µm) lubricated environment for the matrix alloy and composite while for cast iron addition of solid lubricant increases the wear rate and minimum wear rate is obtained in case of oil lubricated environment. The cast iron experienced higher frictional heating than the matrix alloy and composite in all the cases especially at higher load condition. As far as friction coefficient is concerned, a mixed trend of behaviour was noted. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.
Keywords: Solid lubricant, sliding wear grey cast iron, zinc based metal matrix composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14311316 Design and Development of a Prototype Vehicle for Shell Eco-Marathon
Authors: S. S. Dol
Abstract:
Improvement in vehicle efficiency can reduce global fossil fuels consumptions. For that sole reason, Shell Global Corporation introduces Shell Eco-marathon where student teams require to design, build and test energy-efficient vehicles. Hence, this paper will focus on design processes and the development of a fuel economic vehicle which satisfying the requirements of the competition. In this project, three components are designed and analyzed, which are the body, chassis and powertrain of the vehicle. Optimum design for each component is produced through simulation analysis and theoretical calculation in which improvement is made as the project progresses.
Keywords: Energy efficient vehicle, drag force, chassis, powertrain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57491315 Effects Edge end Free-free Boundary Conditions for Analysis Free Vibration of Functionally Graded Cylindrical Shell with Ring based on Third Order Shear Deformation Theory using Hamilton's Principle
Authors: M.R.Isvandzibaei, P.J.Awasare
Abstract:
In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15141314 Nickel on Inner Surface and Stainless Steel on Outer Surface for Functionally Graded Cylindrical Shell
Authors: A.R.Tahmasebi Birgani, M.Hosseinjani Zamenjani, M.R.Isvandzibaei
Abstract:
Study is on the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. The effects of the FGM configuration are studied by studying the frequencies of FG cylindrical shells. In this case FG cylindrical shell has Nickel on its inner surface and stainless steel on its outer surface. The study is carried out based on third order shear deformation shell theory. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of configurations of the constituent materials on the frequencies. The properties are graded in the thickness direction according to the volume fraction power-law distribution. Results are presented on the frequency characteristics, the influence of the constituent various volume fractions on the frequencies.
Keywords: Nickel, Stainless Steel, Cylindrical shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14151313 Vibration of Functionally Graded Cylindrical Shells under Effects Clamped-Clamped Boundary Conditions
Authors: M.R.Alinaghizadehand, M.R.Isvandzibaei
Abstract:
Study of the vibration cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is important. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of clampedclamped boundary conditions.Keywords: Vibration, FGM, Cylindrical shell, Hamilton's principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15361312 Design and Production of Thin-Walled UHPFRC Footbridge
Authors: P. Tej, P. Kněž, M. Blank
Abstract:
The paper presents design and production of thin-walled U-profile footbridge made of UHPFRC. The main structure of the bridge is one prefabricated shell structure made of UHPFRC with dispersed steel fibers without any conventional reinforcement. The span of the bridge structure is 10 m and the clear width of 1.5 m. The thickness of the UHPFRC shell structure oscillated in an interval of 30-45 mm. Several calculations were made during the bridge design and compared with the experiments. For the purpose of verifying the calculations, a segment of 1.5 m was first produced, followed by the whole footbridge for testing. After the load tests were done, the design was optimized to cast the final footbridge.
Keywords: Footbridge, UHPFRC, non-linear analysis, shell structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7581311 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process
Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke
Abstract:
In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.
Keywords: Composite, long fiber reinforced thermoplastics, mechanical properties, dynamic mechanical analysis, time temperature superposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17021310 Machinability Analysis in Drilling Flax Fiber-Reinforced Polylactic Acid Bio-Composite Laminates
Authors: Amirhossein Lotfi, Huaizhong Li, Dzung Viet Dao
Abstract:
Interest in natural fiber-reinforced composites (NFRC) is progressively growing both in terms of academia research and industrial applications thanks to their abundant advantages such as low cost, biodegradability, eco-friendly nature and relatively good mechanical properties. However, their widespread use is still presumed as challenging because of the specificity of their non-homogeneous structure, limited knowledge on their machinability characteristics and parameter settings, to avoid defects associated with the machining process. The present work is aimed to investigate the effect of the cutting tool geometry and material on the drilling-induced delamination, thrust force and hole quality produced when drilling a fully biodegradable flax/poly (lactic acid) composite laminate. Three drills with different geometries and material were used at different drilling conditions to evaluate the machinability of the fabricated composites. The experimental results indicated that the choice of cutting tool, in terms of material and geometry, has a noticeable influence on the cutting thrust force and subsequently drilling-induced damages. The lower value of thrust force and better hole quality was observed using high-speed steel (HSS) drill, whereas Carbide drill (with point angle of 130o) resulted in the highest value of thrust force. Carbide drill presented higher wear resistance and stability in variation of thrust force with a number of holes drilled, while HSS drill showed the lower value of thrust force during the drilling process. Finally, within the selected cutting range, the delamination damage increased noticeably with feed rate and moderately with spindle speed.
Keywords: Natural fiber-reinforced composites, machinability, thrust force, delamination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8201309 Numerical Investigation on Latent Heat Storage Unit of Different Configurations
Authors: Manish K Rathod, Jyotirmay Banerjee
Abstract:
The storage of thermal energy as a latent heat of phase change material (PCM) has created considerable interest among researchers in recent times. Here, an attempt is made to carry out numerical investigations to analyze the performance of latent heat storage units (LHSU) employing phase change material. The mathematical model developed is based on an enthalpy formulation. Freezing time of PCM packed in three different shaped containers viz. rectangular, cylindrical and cylindrical shell is compared. The model is validated with the results available in the literature. Results show that for the same mass of PCM and surface area of heat transfer, cylindrical shell container takes the least time for freezing the PCM and this geometric effect is more pronounced with an increase in the thickness of the shell than that of length of the shell.Keywords: Enthalpy Formulation, Latent heat storage unit(LHSU), Numerical Model, Phase change material (PCM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25171308 Comparative Study of Eva and Waste Polymer Modified Bitumen
Authors: Mohammed Sadeque, K. A. Patil
Abstract:
Polymer-modified bitumen is used to combat different pavement distresses and to increase the life span of pavement. Unmodified bitumen cannot perform better with the range extreme minimum and maximum pavement temperatures. The polymers commonly used to modify the bitumen are ethylene vinyl acetate (EVA) styrene butadiene styrene (SBS). The aim this study to compare the performance of EVA modified bitumen with the bitumen modified by waste low density polyethylene (LDPE), polypropylene (PP) obtained from waste carry bags and waste tyre rubber (CR) to encourage the use of waste polymer whose disposal is big problem today, in place of costly virgin polymer. From the experimental study, it was found that waste polymers are also effective in improving the properties bitumen as that of virgin polymer.
Keywords: Waste plastic, LDPE, PP, Modified bitumen, EVA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36821307 Sintering of Composite Ceramic based on Corundum with Additive in the Al2O3-TiO2-MnO System
Authors: Aung Kyaw Moe, Lukin Evgeny Stepanovich, Popova Nelya Alexandrovna
Abstract:
In this paper, the effect of the additive content in the Al2O3-TiO2-MnO system on the sintering of composite ceramics based on corundum was studied. The samples were pressed by uniaxial semi-dry pressing under 100 MPa and sintered at 1500 °С and 1550 °С. The properties of composite ceramics for porosity and flexural strength were studied. When the amount of additives increases, the properties of composite ceramic samples are better than samples without additives.Keywords: Ceramic, composite material, sintering, corundum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8731306 A Fundamental Study on the Anchor Performance of Non-Surface Treated Multi CFRP Tendons
Authors: Woo-tai Jung, Jong-sup Park, Jae-yoon Kang, Moon-seoung Keum
Abstract:
CFRP (Carbon Fiber Reinforced Polymer) is mainly used as reinforcing material for degraded structures owing to its advantages including its non-corrodibility, high strength and lightweight properties. Recently, dedicated studies focused not only on its simple bonding but also on its tensioning. The tension necessary for prestressing requires the anchoring of multi-CFRP tendons with high capacity and the surface treatment of the CFRP tendons may also constitute an important issue according to the type of anchor. The wedge type, swage type or bonded type anchor can be used to anchor the CFRP tendon. The bonded type anchor presents the disadvantage to lengthen the length of the anchor due to the low bond strength of the CFRP tendon without surface treatment. This study intends to overcome this drawback through the application of a method enlarging the bond area at the end of the CFRP tendon. This method enlarges the bond area by splitting the end of the CFRP tendon along its length and can be applied when CFRP is produced by pultrusion. The application of this method shows that the mono-CFRP tendon and 3-multi CFRP tendon secured the anchor performance corresponding to the tensile performance of the CFRP tendon and that the 7-multi tendon secured anchor performance corresponding to 90% of the tensile strength due to the occurrence of buckling in the steel tube anchorage.
Keywords: Carbon fiber reinforced polymer (CFRP), Tendon, Anchor, Tensile property, Bond strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19981305 Equilibrium, Kinetics and Thermodynamic Studies for Adsorption of Hg (II) on Palm Shell Powder
Authors: Shilpi Kushwaha, Suparna Sodaye, P. Padmaja
Abstract:
Palm shell obtained from coastal part of southern India was studied for the removal for the adsorption of Hg (II) ions. Batch adsorption experiments were carried out as a function of pH, concentration of Hg (II) ions, time, temperature and adsorbent dose. Maximum removal was seen in the range pH 4.0- pH 7.0. The palm shell powder used as adsorbent was characterized for its surface area, SEM, PXRD, FTIR, ion exchange capacity, moisture content, and bulk density, soluble content in water and acid and pH. The experimental results were analyzed using Langmuir I, II, III, IV and Freundlich adsorption isotherms. The batch sorption kinetics was studied for the first order reversible reaction, pseudo first order; pseudo second order reaction and the intra-particle diffusion reaction. The biomass was successfully used for removal Hg (II) from synthetic and industrial effluents and the technique appears industrially applicable and viable.Keywords: Biosorbent, mercury removal, borassus flabellifer, isotherms, kinetics, palm shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621304 Vibration of Functionally Graded Cylindrical Shells under Free-Free Boundary Conditions
Authors: A.R.Tahmasebi Birgani, M.Hosseinjani Zamenjani, M.R.Isvandzibaei
Abstract:
In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free boundary conditions.
Keywords: Vibration, FGM, Cylindrical shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16361303 An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry
Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R.-H. Ladstaetter
Abstract:
Lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound, tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a hybrid composite technology for aerospace industries, which was developed with the help of a special innovation and development system.
Keywords: Composite, development, hybrid, innovation, system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26011302 Micro Particles Effect on Mechanical and Thermal Properties of Ceramic Composites - A Review
Authors: S. I. Durowaye, O. P. Gbenebor, B. O. Bolasodun, I. O. Rufai, V. O. Durowaye
Abstract:
Particles are the most common and cheapest reinforcement producing discontinuous reinforced composites with isotropic properties. Conventional fabrication methods can be used to produce a wide range of product forms, making them relatively inexpensive. Optimising composite development must include consideration of all the fundamental aspect of particles including their size, shape, volume fraction, distribution and mechanical properties. Research has shown that the challenges of low fracture toughness, poor crack growth resistance and low thermal stability can be overcome by reinforcement with particles. The unique properties exhibited by micro particles reinforced ceramic composites have made them to be highly attractive in a vast array of applications.
Keywords: Ceramic composites, Mechanical properties, Microparticles, Thermal stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20171301 Detection of Salmonella in Egg Shell and Egg Content from Different Housing Systems for Laying Hens
Authors: Wiriya Loongyai, Kiettisak Promphet, Nilubol Kangsukul, Ratchawat Noppha
Abstract:
Polymerase chain reaction (PCR) assay and conventional microbiological methods were used to detect bacterial contamination of egg shells and egg content in different commercial housing systems, open house system and evaporative cooling system. A PCR assay was developed for direct detection using a set of primers specific for the invasion by A gene (invA) of Salmonella spp. PCR detected the presence of Salmonella in 2 samples of shell egg from the evaporative cooling system, while conventional cultural methods detected no Salmonella from the same samples.Keywords: egg content, egg shell, invA gene, PCR, Salmonellaspp.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33011300 Searching the Stabilizing Effects of Neutron Shell Closure via Fusion Evaporation Residue Studies
Authors: B. R. S. Babu, E. Prasad, P. V. Laveen, A. M. Vinodkumar
Abstract:
Searching the “Island of stability” is a topic of extreme interest in theoretical as well as experimental modern physics today. This “island of stability” is spanned by superheavy elements (SHE's) that are produced in the laboratory. SHE's are believed to exist primarily due to the “magic” stabilizing effects of nuclear shell structure. SHE synthesis is extremely difficult due to their very low production cross section, often of the order of pico barns or less. Stabilizing effects of shell closures at proton number Z=82 and neutron number N=126 are predicted theoretically. Though stabilizing effects of Z=82 have been experimentally verified, no concluding observations have been made with N=126, so far. We measured and analyzed the total evaporation residue (ER) cross sections for a number of systems with neutron number around 126 to explore possible shell closure effects in ER cross sections, in this work.Keywords: Superheavy element, fusion evaporation, evaporation reside, compound nucleus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261299 Oil Palm Shell Ash - Cement Mortar Mixture and Modification of Mechanical Properties
Authors: Abdoullah Namdar, Fadzil Mat Yahaya
Abstract:
The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of 7 days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated.
Keywords: Minerals, additive, flexural strength, compressive strength, modulus of elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27191298 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite
Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan
Abstract:
Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.Keywords: Natural fibers, polymer matrix composites, jute, compression molding, biodegradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10651297 Polymer Aerostatic Thrust Bearing under Circular Support for High Static Stiffness
Abstract:
A new design of aerostatic thrust bearing is proposed for high static stiffness. The bearing body, which is mead of polymer covered with metallic membrane, is held by a circular ring. Such a support helps form a concave air gap to grasp the air pressure. The polymer body, which can be made rapidly by either injection or molding is able to provide extra damping under dynamic loading. The smooth membrane not only serves as the bearing surface but also protects the polymer body. The restrictor is a capillary inside a silicone tube. It can passively compensate the variation of load by expanding the capillary diameter for more air flux. In the present example, the stiffness soars from 15.85 N/μm of typical bearing to 349.85 N/μm at bearing elevation 9.5 μm; meanwhile the load capacity also enhances from 346.86 N to 704.18 N.Keywords: Aerostatic, bearing, polymer, static stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20901296 Heat Transfer Coefficients for Particulate Airflow in Shell and Coiled Tube Heat Exchangers
Authors: W. Witchayanuwat, S. Kheawhom
Abstract:
In this work, we experimentally study heat transfer from exhaust particulate air of detergent spray drying tower to water by using coiled tube heat exchanger. Water flows in the coiled tubes, where air loaded with detergent particles of 43 micrometers in diameter flows within the shell. Four coiled tubes with different coil pitches are used in a counter-current flow configuration. We investigate heat transfer coefficients of inside and outside the heat transfer surfaces through 400 experiments. The correlations between Nusselt number and Reynolds number, Prandtl number, mass flow rate of particulates to mass flow rate of air ratio and coiled tube pitch parameter are proposed. The correlations procured can be used to predicted heat transfer between tube and shell of the heat exchanger.Keywords: Shell and coiled tube heat exchanger, Spray drying tower, Heat transfer coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23851295 Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material
Authors: Yong Ren, Yaping Zhang
Abstract:
A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system.
Keywords: Phase change material, drug release kinetics, double emulsion, microfluidics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24191294 Properties Modification of Fiber Metal Laminates by Nanofillers
Authors: R. Eslami-Farsani, S. M. S. Mousavi Bafrouyi
Abstract:
During past decades, increasing demand of modified Fiber Metal Laminates (FMLs) has stimulated a strong trend towards the development of these structures. FMLs contain several thin layers of metal bonded with composite materials. Characteristics of FMLs such as low specific mass, high bearing strength, impact resistance, corrosion resistance and high fatigue life are attractive. Nowadays, increasing development can be observed to promote the properties of polymer-based composites by nanofillers. By dispersing strong, nanofillers in polymer matrix, modified composites can be developed and tailored to individual applications. On the other hand, the synergic effects of nanoparticles such as graphene and carbon nanotube can significantly improve the mechanical, electrical and thermal properties of nanocomposites. In present paper, the modifying of FMLs by nanofillers and the dispersing of nanoparticles in the polymers matrix are discussed. The evaluations have revealed that this approach is acceptable. Finally, a prospect is presented. This paper will lead to further work on these modified FML species.Keywords: Fiber metal laminate, nanofiller, polymer matrix, property modification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11671293 Eco-Friendly Natural Filler Based Epoxy Composites
Authors: Suheyla Kocaman, Gulnare Ahmetli
Abstract:
In this study, acrylated soybean oil (AESO) was used as modifying agent for DGEBF-type epoxy resin (ER). AESO was used as a co-matrix in 50 wt % with ER. Composites with eco-friendly natural fillers-banana bark and seashell were prepared. MNA was used as a hardener. Effect of banana peel (BP) and seashell (SSh) fillers on mechanical properties, such as tensile strength, elongation at break, and hardness of M-ERs were investigated. The structure epoxy resins (M-ERs) cured with MNA and sebacic acid (SAc) hardeners were characterized by Fourier transform infrared spectroscopy (FTIR). Tensile test results show that Young’s (elastic) modulus, tensile strength and hardness of SSh particles reinforced with M-ERs were higher than the M-ERs reinforced with banana bark.
Keywords: Biobased composite, epoxy resin, mechanical properties, natural fillers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131