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Abstract—In this paper a study on the vibration of thin
cylindrical shells with ring supports and made of functionally
graded materials (FGMs) composed of stainless steel and
nickel is presented. Material properties vary along the
thickness direction of the shell according to volume fraction
power law. The cylindrical shells have ring supports which are
arbitrarily placed along the shell and impose zero lateral
deflections. The study is carried out based on third order shear
deformation shell theory (T.S.D.T). The analysis is carried out
using Hamilton’s principle. The governing equations of motion of
FGM cylindrical shells are derived based on shear deformation
theory. Results are presented on the frequency characteristics,
influence of ring support position and the influence of boundary
conditions. The present analysis is validated by comparing results
with those available in the literature.
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I. INTRODUCTION

YLINDRICAL shells have found many applications in

the industry. They are often used as load bearing
structures for aircrafts, ships and buildings. Understanding of
vibration behavior of cylindrical shells is an important aspect
for the successful applications of cylindrical shells.
Researches on free vibrations of cylindrical shells have been
carried out extensively [1-5]. Recently, the present authors
presented studies on the influence of boundary conditions on
the frequencies of a multi-layered cylindrical shell [6]. In all
the above works, different thin shell theories based on Love—
hypothesis were used. Vibration of cylindrical shells with ring
support is considered by Loy and Lam [7]. The concept of
functionally graded materials (FGMs) was first introduced in
1984 by a group of materials scientists in Japan [8-9] as a
means of preparing thermal barrier materials. Since then,
FGMs have attracted much interest as heat-shielding
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materials. FGMs are made by combining different materials
using power metallurgy methods [10]. They possess variations
in constituent volume fractions that lead to continuous change
in the composition, microstructure, porosity, etc., resulting in
gradients in the mechanical and thermal properties [11-12].

Vibration study of FGM shell structures is important.
However, study of the vibration of FGM shells with ring
supports is limited. In this paper a study on the vibration of FG
cylindrical shells with ring supports is presented. The FGMs
considered are composed of stainless steel and nickel where
the volume fractions follow a power-law distribution. The
study is carried out based on third order shear deformation
shell theory. The analysis is carried out using Hamilton’s
principle. Studies are carried out for cylindrical shells with
free—free F—F boundary conditions with an arbitrarily ring
support along the axial direction of the cylindrical shell.
Results presented include the frequency characteristics of
cylindrical shells with ring supports, the influence of ring
support position and the influence of boundary conditions. The
present analysis is validated by comparing results with others
in the literature.

Il. FUNCTIONALLY GRADED MATERIALS

For the cylindrical shell made of FGM the material
properties such as the modulus of elasticity E, Poisson
ratiov and the mass density 0 are assumed to be functions of
the volume fraction of the constituent materials when the
coordinate axis across the shell thickness is denoted by Z and
measured from the shell’s middle plane. The functional
relationships between E,v and p with Z for a stainless
steel and nickel FGM shell are assumed as [13].
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The strain-displacement relationships for a thin shell [14].
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Fig. 1 Geometry of a generic shell
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where Ay and A, are the fundamental form parameters or Lame
parameters,U;, U, and U5 are the displacement at any point
(aq,05,03), R and Ry are the radius of curvature related to

04,0, and ag respectively. The third- order theory of Reddy

used in the present study is based on the following
displacement field:

U = ul(alr 052) + %-ﬂ(% 052) + a32 -‘/’1(“1: az) + Ofg -ﬂl(% 0‘2)
U, = uz(al,a2)+a3.¢z(a1,a2)+0§ .z//z(al,az)+a§.ﬂ2(al,a2)
Us = Us(ey, )

(11)
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These equations can be reduced by satisfying the stress-free
conditions on the top and bottom faces of the laminates, which

are equivalent to g;;=e,,=0at 7 = ih Thus,
2
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Wherec, = . Substituting Eqg. (12) into nonlinear strain-

3n?
displacement relation (4) - (9), it can be obtained for the third-
order theory of Reddy
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Where (z°,,°) are the membranes strains and (k k’,y*,y*) are
the bending strains, known as the curvatures.

I11. FORMULATION
Consider a cylindrical shell with ring supports as shown in

Figure 2, where R is the radius, L the length, h the thickness,
and a the position of the ring support along the axial
direction of the cylindrical shell. The reference surface is
chosen to be the middle surface of the cylindrical shell where

an orthogonal coordinate system X,6,Z is fixed. The
displacements of the shell with reference to this coordinate
system are denoted by U;,U, and U3 inthe X,6 and Z
directions, respectively.

SUpport

Fig. 2 Geometry of a cylindrical shell with ring support

For a thin cylindrical shell, the stress -strain relationship are
defined as

On Q. Q, 0 0 0 €n
O Q, Q, 0 0 0 €2 (21)
0y =0 0 Qu O 0 €2
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For a isotropic cylindrical shell the reduced stiffness Qij(i,
j=1, 2 and 6) are defined as

E v E

Qi = Q2 =12 Qpp = 1,2 (22)
E
Qua = Qs5 = Qg6 =m (23)
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where E is the Young's modulus and v is Poisson's ratio.
Defining

A8 OERGHQLaddddals @9

where Qij are functions of z for functionally gradient
materials. Here A; denote the extensional stiffness, Dj; the
bending stiffness, Bj;
ii» Fij» Gij.»
coupling, and higher-order stiffness.

For a thin cylindrical shell the force and moment results are
defined as

the bending-extensional coupling

stiffness and E Hj; are the extensional, bending,
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IV. The equations of motion for vibration of a generic shell

The equations of motion for vibration of a generic shell can be
derived by using Hamilton's principle which is described by

5L‘2(H—K)dt=o . MmM=U-V (28)
Where K,IT,U and V are the total kinetic, potential, strain

and loading energies, t, and t,are arbitrary time. The kinetic,

strain and loading energies of a cylindrical shell can be written
as:
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The infinitesimal volume is given by h _
I, = [% pa ida, (38)
dVv = AAda,da,da, (32) 2
with the use of Egs. (11)-(20) and substituting into Eq. (28), ) ) o o
we get the equations of motions a generic shell. V. Equations of motion for vibration of cylindrical shell
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order theory of Reddy are converted to
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For Egs. (33) — (37) are defining as 9. = B4 sin(nd)cos(@)
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where, A,B,C ,D and E are the constants denoting the
amplitudes of the vibrations in the X, and z
directions, @, and ¢, are the displacement fields for higher
order deformation theories for a cylindrical shell, ¢(x) is the

axial function that satisfies the geometric boundary conditions.
The axial function ¢ (X) is chosen as the beam function as

400 =7, COSH) 17,05~ G int) 17,sinf)
L L

The geometric boundary conditions for free boundary
conditions can be expressed mathematically in terms of

¢ (x)as:

(46)

Free boundary condition
¢"(0)=¢"(L)=0

Substituting Eq. (45) into Egs. (40) - (44) for third order
theory we can be expressed

(47)

det(C; -M; ®°) =0 (48)
Expanding this determinant, a polynomial in even powers
of @ is obtained

ﬂoa’m +ﬂ1w8 +/32w6 +ﬁ3w4 +ﬁ4w2 +fs =0 (49)

where g, (i=0,1,2,3,4,5) are some constants. Eq. (49) is solved

five positive and five negative roots are obtained. The five
positive roots obtained are the natural angular frequencies of
the cylindrical shell based third-order theory. The smallest of
the five roots is the natural angular frequency studied in the
present study.

V1. RESULTS AND DISCUSSION
To validate the present analysis, results for cylindrical
shells are compared with Loy and Lam [15] and with
M.R.Isvandzibaei [16]. The comparisons show that the present
results agreed well with those in the literature.

TABLE | COMPARISON OF NATURAL FREQUENCY (HZ) FOR A SIMPLY
SUPPORTED ISOTROPIC CYLINDRICAL SHELL

L=203cm, R=508cm, h=0.25cm , E=2.07788<10"'Nm? ,»=0.31775¢
p=8166kgm>

n m Loy[15] M.R.Isvandzibaei [16] Present

2 1 20438 2043.6 2045.1
2 56354 5635.2 5624.6
3 89325 8932.1 8821.5
4 114075 11407.2 11437
5 132532 13252.8 13197.5
6 14790.0 14789.8 14790.6
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In this paper, studied are presented for vibration of FG
cylindrical shell. Free-Free (F-F) boundary conditions, are
considered in the study. Figure 3 shows the variation of the
natural frequency with the circumferential wave number n for
a FG cylindrical shell with a ring support at a=0.3L. The
frequencies for free-free boundary conditions increased with
the circumferential wave number. This increase in frequencies
is most significant when n increased from 1 to 2 and for n
greater than 2 the frequencies increase gradually with the
circumferential wave number.

1 -
0.9
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0.1 |

0 ‘ \ \

0 5 10 15

Natural frequency (Hz)

Circumferential wave number (n)

Fig. 3 The natural frequencies (Hz) with circumferential wave
number n for a FG cylindrical shell with a ring support

Figure 4 shows the natural frequencies with position of the
ring support. For a FG cylindrical shell with ring support with
same end-conditions applied in both edges, such F-F boundary
conditions, the natural frequencies are the greatest when the
ring support is in the middle of the cylindrical shell. The
natural frequencies decreased as the ring support moved away
from center towards either end of the shell. Thus the natural
frequencies curve is symmetrical about the centre of the shell.

0.7 o—F-F

0.6
05 /_‘_N\\\
04 ¢

0.3
0.2 |

Natural frequency (Hz)

0.1 |

0 0.5 1 1.5
Ring support position(a/L)

Fig. 4 The natural frequencies (Hz) versus position of the ring
support a/L for F-F boundary conditions

Figures 5 show the variation of the natural frequencies
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cylindrical shell with position of the ring support a/L at
different L/R ratios for F-F boundary conditions. From the
figure, the influence of the ring support position on the natural
frequencies is generally significant at large L/R ratio. It can be
seen that boundary conditions have some effects on this
influence.

1.2 - —o—L/R=2
—=— | /R=6
~ 1 m —a—L/R=10
o L
> 081
c
g
0.6
g
T 04
=]
I
Z 02
0+ ‘ ‘ ‘
0 0.5 1 15
Ring support position (a/L)

Fig. 5 Variation of the natural frequencies FG cylindrical shell with
the position of the ring support a/L at different L/R ratios for F-F
boundary conditions (m=1, n=1, h/R=0.01)

Figure 6 show the variation of the natural frequencies FG
cylindrical shell with position of the ring support a/L at
different h/R ratios for F-F boundary conditions. From the
figure it is apparent that the frequencies are higher at larger
h/R ratios. The influence of the ring support position is
significant at small h/R ratios. The frequencies are also higher
at large h/R ratios.

—e— h/R=0.002
—a—h/R=0.01
—a—h/R=0.05

18
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1.2

0.8
0.6
0.4
0.2

0+ . . )
0 0.5 1 15

Natural frequency (Hz)
=

Ring support position (a/L)

Fig. 6. Variation of the natural frequencies FG cylindrical shell
with the position of the ring support a/L at different h/R ratios for F-F
boundary conditions. (m=1, n=10, L/R=20)

VIl. CONCLUSIONS
A study on the vibration of functionally graded (FG)
cylindrical shell with a ring support arbitrarily placed along
the shell composed of stainless steel and nickel has been
presented. Material properties are graded in the thickness
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direction of the shell according to volume fraction power law
distribution. The study is carried out using third shear
deformation shell theory with Hamilton’s principle. Studies
are carried out for cylindrical shells with free-free F-F
boundary conditions with an arbitrarily ring support along the
axial direction of the cylindrical shell.

Studied were made on the frequency characteristics, the
influence of ring support position and the influence of
boundary conditions. The study showed that a ring support has
significant influence on the frequencies and the extent of this
influence depends on the position of the ring support and the
boundary conditions of the functionally graded cylindrical
shell. However, because of the functionally graded cylindrical
shells exhibit interesting frequency characteristics when the
constituent volume fractions are varied. This is done by
varying the power law exponent N. The study showed that For
a functionally graded cylindrical shell with ring support with
same end-conditions applied in both edges, such F-F boundary
conditions, the natural frequencies are the greatest when the
ring support is in the middle of the functionally graded
cylindrical shell and natural frequencies decreased as the ring
support moved away from center towards either end of the
shell, Thus the natural frequencies curve is symmetrical about
the centre of the shell, This symmetry of the frequency curve
is as expected since the end conditions are symmetrical about
the ring support. The present analysis is validated by
comparing results with those available in the literature.
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