Search results for: Desirability Function Approach.
6568 Robust Stabilization against Unknown Consensus Network
Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha
Abstract:
This paper studies a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. From an existing robust stabilization result, we present sufficient conditions for a robust stabilization of an agent against unknown network topology.
Keywords: Multi-agent System, Robust Stabilization, Transfer Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18696567 Predicting the Success of Bank Telemarketing Using Artificial Neural Network
Authors: Mokrane Selma
Abstract:
The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.
Keywords: Bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31506566 A New Method for Multiobjective Optimization Based on Learning Automata
Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri
Abstract:
The necessity of solving multi dimensional complicated scientific problems beside the necessity of several objective functions optimization are the most motive reason of born of artificial intelligence and heuristic methods. In this paper, we introduce a new method for multiobjective optimization based on learning automata. In the proposed method, search space divides into separate hyper-cubes and each cube is considered as an action. After gathering of all objective functions with separate weights, the cumulative function is considered as the fitness function. By the application of all the cubes to the cumulative function, we calculate the amount of amplification of each action and the algorithm continues its way to find the best solutions. In this Method, a lateral memory is used to gather the significant points of each iteration of the algorithm. Finally, by considering the domination factor, pareto front is estimated. Results of several experiments show the effectiveness of this method in comparison with genetic algorithm based method.Keywords: Function optimization, Multiobjective optimization, Learning automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16786565 X-Corner Detection for Camera Calibration Using Saddle Points
Authors: Abdulrahman S. Alturki, John S. Loomis
Abstract:
This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.Keywords: Camera Calibration, Corner Detector, Saddle Points, X-Corners.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31536564 French Managers and Their Subordinates’ Well-Being
Authors: B. Gangloff, N. Malleh
Abstract:
Well-being at work has many positive aspects. Our general hypothesis is that employees who feel well-being at work will be positively valued by their superiors, and that this positive value, which evokes the concept of social norms, allows us to assign to well-being at work a normative status. Three populations (line managers, students destined to become human resource managers, and employees) responded to a well-being questionnaire. Managers had to indicate, for each item, if they appreciated (or not) an employee feeling the well-being presented in the item; students had to indicate which items an employee should check if s/he wants to be positively (versus negatively) appreciated by his/her superior; and employees had to indicate to what degree each item corresponded to the well-being they used to feel. Three hypotheses are developed and confirmed: Managers positively value employees feeling some sense of well-being; students are aware of this positivity; spontaneously employees show a state of well-being, which means, knowing that spontaneous self-presentation is often produced by social desirability, that employees are aware of the well-being positivity. These data are discussed under a conceptual and applied angle.
Keywords: Normativity, well-being at work, organization, evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11266563 Application of Wavelet Neural Networks in Optimization of Skeletal Buildings under Frequency Constraints
Authors: Mohammad Reza Ghasemi, Amin Ghorbani
Abstract:
The main goal of the present work is to decrease the computational burden for optimum design of steel frames with frequency constraints using a new type of neural networks called Wavelet Neural Network. It is contested to train a suitable neural network for frequency approximation work as the analysis program. The combination of wavelet theory and Neural Networks (NN) has lead to the development of wavelet neural networks. Wavelet neural networks are feed-forward networks using wavelet as activation function. Wavelets are mathematical functions within suitable inner parameters, which help them to approximate arbitrary functions. WNN was used to predict the frequency of the structures. In WNN a RAtional function with Second order Poles (RASP) wavelet was used as a transfer function. It is shown that the convergence speed was faster than other neural networks. Also comparisons of WNN with the embedded Artificial Neural Network (ANN) and with approximate techniques and also with analytical solutions are available in the literature.Keywords: Weight Minimization, Frequency Constraints, Steel Frames, ANN, WNN, RASP Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17406562 Impact of the Existence of One-Way Functionson the Conceptual Difficulties of Quantum Measurements
Authors: Arkady Bolotin
Abstract:
One-way functions are functions that are easy to compute but hard to invert. Their existence is an open conjecture; it would imply the existence of intractable problems (i.e. NP-problems which are not in the P complexity class). If true, the existence of one-way functions would have an impact on the theoretical framework of physics, in particularly, quantum mechanics. Such aspect of one-way functions has never been shown before. In the present work, we put forward the following. We can calculate the microscopic state (say, the particle spin in the z direction) of a macroscopic system (a measuring apparatus registering the particle z-spin) by the system macroscopic state (the apparatus output); let us call this association the function F. The question is: can we compute the function F in the inverse direction? In other words, can we compute the macroscopic state of the system through its microscopic state (the preimage F -1)? In the paper, we assume that the function F is a one-way function. The assumption implies that at the macroscopic level the Schrödinger equation becomes unfeasible to compute. This unfeasibility plays a role of limit of the validity of the linear Schrödinger equation.Keywords: One-way functions, P versus NP problem, quantummeasurements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13086561 Effect of a Linear-Exponential Penalty Functionon the GA-s Efficiency in Optimization of a Laminated Composite Panel
Authors: A. Abedian, M. H. Ghiasi, B. Dehghan-Manshadi
Abstract:
A stiffened laminated composite panel (1 m length × 0.5m width) was optimized for minimum weight and deflection under several constraints using genetic algorithm. Here, a significant study on the performance of a penalty function with two kinds of static and dynamic penalty factors was conducted. The results have shown that linear dynamic penalty factors are more effective than the static ones. Also, a specially combined linear-exponential function has shown to perform more effective than the previously mentioned penalty functions. This was then resulted in the less sensitivity of the GA to the amount of penalty factor.Keywords: Genetic algorithms, penalty function, stiffenedcomposite panel, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16786560 The Statistical Properties of Filtered Signals
Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.
Abstract:
In this paper, the statistical properties of filtered or convolved signals are considered by deriving the resulting density functions as well as the exact mean and variance expressions given a prior knowledge about the statistics of the individual signals in the filtering or convolution process. It is shown that the density function after linear convolution is a mixture density, where the number of density components is equal to the number of observations of the shortest signal. For circular convolution, the observed samples are characterized by a single density function, which is a sum of products.
Keywords: Circular Convolution, linear Convolution, mixture density function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15166559 A Reversible CMOS AD / DA Converter Implemented with Pseudo Floating-Gate
Authors: Omid Mirmotahari, Yngvar Berg, Ahmad Habibizad Navin
Abstract:
Reversible logic is becoming more and more prominent as the technology sets higher demands on heat, power, scaling and stability. Reversible gates are able at any time to "undo" the current step or function. Multiple-valued logic has the advantage of transporting and evaluating higher bits each clock cycle than binary. Moreover, we demonstrate in this paper, combining these disciplines we can construct powerful multiple-valued reversible logic structures. In this paper a reversible block implemented by pseudo floatinggate can perform AD-function and a DA-function as its reverse application.Keywords: Reversible logic, bi-directional, Pseudo floating-gate(PFG), multiple-valued logic (MVL).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16046558 Piezoelectric Transducer Modeling: with System Identification (SI) Method
Authors: Nora Taghavi, Ali Sadr
Abstract:
System identification is the process of creating models of dynamic process from input- output signals. The aim of system identification can be identified as “ to find a model with adjustable parameters and then to adjust them so that the predicted output matches the measured output". This paper presents a method of modeling and simulating with system identification to achieve the maximum fitness for transformation function. First by using optimized KLM equivalent circuit for PVDF piezoelectric transducer and assuming different inputs including: sinuside, step and sum of sinusides, get the outputs, then by using system identification toolbox in MATLAB, we estimate the transformation function from inputs and outputs resulted in last program. Then compare the fitness of transformation function resulted from using ARX,OE(Output- Error) and BJ(Box-Jenkins) models in system identification toolbox and primary transformation function form KLM equivalent circuit.Keywords: PVDF modeling, ARX, BJ(Box-Jenkins), OE(Output-Error), System Identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27456557 Ψ-Eventual Stability of Differential System with Impulses
Authors: Bhanu Gupta
Abstract:
In this paper, the criteria of Ψ-eventual stability have been established for generalized impulsive differential systems of multiple dependent variables. The sufficient conditions have been obtained using piecewise continuous Lyapunov function. An example is given to support our theoretical result.
Keywords: impulsive differential equations, Lyapunov function, eventual stability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40526556 The Hyperbolic Smoothing Approach for Automatic Calibration of Rainfall-Runoff Models
Authors: Adilson Elias Xavier, Otto Corrêa Rotunno Filho, Paulo Canedo de Magalhães
Abstract:
This paper addresses the issue of automatic parameter estimation in conceptual rainfall-runoff (CRR) models. Due to threshold structures commonly occurring in CRR models, the associated mathematical optimization problems have the significant characteristic of being strongly non-differentiable. In order to face this enormous task, the resolution method proposed adopts a smoothing strategy using a special C∞ differentiable class function. The final estimation solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original conceptual problem. The use of this technique, called Hyperbolic Smoothing Method (HSM), makes possible the application of the most powerful minimization algorithms, and also allows for the main difficulties presented by the original CRR problem to be overcome. A set of computational experiments is presented for the purpose of illustrating both the reliability and the efficiency of the proposed approach.
Keywords: Rainfall-runoff models, optimization procedure, automatic parameter calibration, hyperbolic smoothing method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4096555 Digital Manufacturing: Evolution and a Process Oriented Approach to Align with Business Strategy
Authors: Abhimanyu Pati, Prabir K. Bandyopadhyay
Abstract:
The paper intends to highlight the significance of Digital Manufacturing (DM) strategy in support and achievement of business strategy and goals of any manufacturing organization. Towards this end, DM initiatives have been given a process perspective, while not undermining its technological significance, with a view to link its benefits directly with fulfilment of customer needs and expectations in a responsive and cost-effective manner. A digital process model has been proposed to categorize digitally enabled organizational processes with a view to create synergistic groups, which adopt and use digital tools having similar characteristics and functionalities. This will throw future opportunities for researchers and developers to create a unified technology environment for integration and orchestration of processes. Secondly, an effort has been made to apply “what” and “how” features of Quality Function Deployment (QFD) framework to establish the relationship between customers’ needs – both for external and internal customers, and the features of various digital processes, which support for the achievement of these customer expectations. The paper finally concludes that in the present highly competitive environment, business organizations cannot thrive to sustain unless they understand the significance of digital strategy and integrate it with their business strategy with a clearly defined implementation roadmap. A process-oriented approach to DM strategy will help business executives and leaders to appreciate its value propositions and its direct link to organization’s competitiveness.
Keywords: Digital manufacturing, digital process model, quality function deployment, business strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13176554 Monotonicity of Dependence Concepts from Independent Random Vector into Dependent Random Vector
Authors: Guangpu Chen
Abstract:
When the failure function is monotone, some monotonic reliability methods are used to gratefully simplify and facilitate the reliability computations. However, these methods often work in a transformed iso-probabilistic space. To this end, a monotonic simulator or transformation is needed in order that the transformed failure function is still monotone. This note proves at first that the output distribution of failure function is invariant under the transformation. And then it presents some conditions under which the transformed function is still monotone in the newly obtained space. These concern the copulas and the dependence concepts. In many engineering applications, the Gaussian copulas are often used to approximate the real word copulas while the available information on the random variables is limited to the set of marginal distributions and the covariances. So this note catches an importance on the conditional monotonicity of the often used transformation from an independent random vector into a dependent random vector with Gaussian copulas.
Keywords: Monotonic, Rosenblatt, Nataf transformation, dependence concepts, completely positive matrices, Gaussiancopulas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12116553 Eigenvalues of Particle Bound in Single and Double Delta Function Potentials through Numerical Analysis
Authors: Edward Aris D. Fajardo, Hamdi Muhyuddin D. Barra
Abstract:
This study employs the use of the fourth order Numerov scheme to determine the eigenstates and eigenvalues of particles, electrons in particular, in single and double delta function potentials. For the single delta potential, it is found that the eigenstates could only be attained by using specific potential depths. The depth of the delta potential well has a value that varies depending on the delta strength. These depths are used for each well on the double delta function potential and the eigenvalues are determined. There are two bound states found in the computation, one with a symmetric eigenstate and another one which is antisymmetric.Keywords: Double Delta Potential, Eigenstates, Eigenvalue, Numerov Method, Single Delta Potential
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30626552 Evolution of Quality Function Deployment (QFD) via Fuzzy Concepts and Neural Networks
Authors: M. Haghighi, M. Zowghi, B. Zohouri
Abstract:
Quality Function Deployment (QFD) is an expounded, multi-step planning method for delivering commodity, services, and processes to customers, both external and internal to an organization. It is a way to convert between the diverse customer languages expressing demands (Voice of the Customer), and the organization-s languages expressing results that sate those demands. The policy is to establish one or more matrices that inter-relate producer and consumer reciprocal expectations. Due to its visual presence is called the “House of Quality" (HOQ). In this paper, we assumed HOQ in multi attribute decision making (MADM) pattern and through a proposed MADM method, rank technical specifications. Thereafter compute satisfaction degree of customer requirements and for it, we apply vagueness and uncertainty conditions in decision making by fuzzy set theory. This approach would propound supervised neural network (perceptron) for MADM problem solving.
Keywords: MADM, fuzzy set, QFD, supervised neural network (perceptron).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17426551 Organization of the Purchasing Function for Innovation
Authors: Jasna Prester, Ivana Rašić Bakarić, Božidar Matijević
Abstract:
Innovations not only contribute to competitiveness of the company but have also positive effects on revenues. On average, product innovations account to 14 percent of companies’ sales. Innovation management has substantially changed during the last decade, because of growing reliance on external partners. As a consequence, a new task for purchasing arises, as firms need to understand which suppliers actually do have high potential contributing to the innovativeness of the firm and which do not. Proper organization of the purchasing function is important since for the majority of manufacturing companies deal with substantial material costs which pass through the purchasing function. In the past the purchasing function was largely seen as a transaction-oriented, clerical function but today purchasing is the intermediate with supply chain partners contributing to innovations, be it product or process innovations. Therefore, purchasing function has to be organized differently to enable firm innovation potential. However, innovations are inherently risky. There are behavioral risk (that some partner will take advantage of the other party), technological risk in terms of complexity of products and processes of manufacturing and incoming materials and finally market risks, which in fact judge the value of the innovation. These risks are investigated in this work. Specifically, technological risks which deal with complexity of the products, and processes will be investigated more thoroughly. Buying components or such high edge technologies necessities careful investigation of technical features and therefore is usually conducted by a team of experts. Therefore it is hypothesized that higher the technological risk, higher will be the centralization of the purchasing function as an interface with other supply chain members. Main contribution of this research lies is in the fact that analysis was performed on a large data set of 1493 companies, from 25 countries collected in the GMRG 4 survey. Most analyses of purchasing function are done by case study analysis of innovative firms. Therefore this study contributes with empirical evaluations that can be generalized.
Keywords: Purchasing function organization, innovation, technological risk, GMRG 4 survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37216550 Green Function and Eshelby Tensor Based on Mindlin’s 2nd Gradient Model: An Explicit Study of Spherical Inclusion Case
Authors: A. Selmi, A. Bisharat
Abstract:
Using Fourier transform and based on the Mindlin's 2nd gradient model that involves two length scale parameters, the Green's function, the Eshelby tensor, and the Eshelby-like tensor for a spherical inclusion are derived. It is proved that the Eshelby tensor consists of two parts; the classical Eshelby tensor and a gradient part including the length scale parameters which enable the interpretation of the size effect. When the strain gradient is not taken into account, the obtained Green's function and Eshelby tensor reduce to its analogue based on the classical elasticity. The Eshelby tensor in and outside the inclusion, the volume average of the gradient part and the Eshelby-like tensor are explicitly obtained. Unlike the classical Eshelby tensor, the results show that the components of the new Eshelby tensor vary with the position and the inclusion dimensions. It is demonstrated that the contribution of the gradient part should not be neglected.
Keywords: Eshelby tensor, Eshelby-like tensor, Green’s function, Mindlin’s 2nd gradient model, Spherical inclusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7246549 A Robust Optimization Method for Service Quality Improvement in Health Care Systems under Budget Uncertainty
Authors: H. Ashrafi, S. Ebrahimi, H. Kamalzadeh
Abstract:
With the development of business competition, it is important for healthcare providers to improve their service qualities. In order to improve service quality of a clinic, four important dimensions are defined: tangibles, responsiveness, empathy, and reliability. Moreover, there are several service stages in hospitals such as financial screening and examination. One of the most challenging limitations for improving service quality is budget which impressively affects the service quality. In this paper, we present an approach to address budget uncertainty and provide guidelines for service resource allocation. In this paper, a service quality improvement approach is proposed which can be adopted to multistage service processes to improve service quality, while controlling the costs. A multi-objective function based on the importance of each area and dimension is defined to link operational variables to service quality dimensions. The results demonstrate that our approach is not ultra-conservative and it shows the actual condition very well. Moreover, it is shown that different strategies can affect the number of employees in different stages.
Keywords: Service quality assessment, healthcare resource allocation, robust optimization, budget uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11196548 A Serial Hierarchical Support Vector Machine and 2D Feature Sets Act for Brain DTI Segmentation
Authors: Mohammad Javadi
Abstract:
Serial hierarchical support vector machine (SHSVM) is proposed to discriminate three brain tissues which are white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). SHSVM has novel classification approach by repeating the hierarchical classification on data set iteratively. It used Radial Basis Function (rbf) Kernel with different tuning to obtain accurate results. Also as the second approach, segmentation performed with DAGSVM method. In this article eight univariate features from the raw DTI data are extracted and all the possible 2D feature sets are examined within the segmentation process. SHSVM succeed to obtain DSI values higher than 0.95 accuracy for all the three tissues, which are higher than DAGSVM results.
Keywords: Brain segmentation, DTI, hierarchical, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18566547 The Classification Performance in Parametric and Nonparametric Discriminant Analysis for a Class- Unbalanced Data of Diabetes Risk Groups
Authors: Lily Ingsrisawang, Tasanee Nacharoen
Abstract:
The problems arising from unbalanced data sets generally appear in real world applications. Due to unequal class distribution, many researchers have found that the performance of existing classifiers tends to be biased towards the majority class. The k-nearest neighbors’ nonparametric discriminant analysis is a method that was proposed for classifying unbalanced classes with good performance. In this study, the methods of discriminant analysis are of interest in investigating misclassification error rates for classimbalanced data of three diabetes risk groups. The purpose of this study was to compare the classification performance between parametric discriminant analysis and nonparametric discriminant analysis in a three-class classification of class-imbalanced data of diabetes risk groups. Data from a project maintaining healthy conditions for 599 employees of a government hospital in Bangkok were obtained for the classification problem. The employees were divided into three diabetes risk groups: non-risk (90%), risk (5%), and diabetic (5%). The original data including the variables of diabetes risk group, age, gender, blood glucose, and BMI were analyzed and bootstrapped for 50 and 100 samples, 599 observations per sample, for additional estimation of the misclassification error rate. Each data set was explored for the departure of multivariate normality and the equality of covariance matrices of the three risk groups. Both the original data and the bootstrap samples showed nonnormality and unequal covariance matrices. The parametric linear discriminant function, quadratic discriminant function, and the nonparametric k-nearest neighbors’ discriminant function were performed over 50 and 100 bootstrap samples and applied to the original data. Searching the optimal classification rule, the choices of prior probabilities were set up for both equal proportions (0.33: 0.33: 0.33) and unequal proportions of (0.90:0.05:0.05), (0.80: 0.10: 0.10) and (0.70, 0.15, 0.15). The results from 50 and 100 bootstrap samples indicated that the k-nearest neighbors approach when k=3 or k=4 and the defined prior probabilities of non-risk: risk: diabetic as 0.90: 0.05:0.05 or 0.80:0.10:0.10 gave the smallest error rate of misclassification. The k-nearest neighbors approach would be suggested for classifying a three-class-imbalanced data of diabetes risk groups.Keywords: Bootstrap, diabetes risk groups, error rate, k-nearest neighbors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20086546 Ordinary Differential Equations with Inverted Functions
Authors: Thomas Kampke
Abstract:
Equations with differentials relating to the inverse of an unknown function rather than to the unknown function itself are solved exactly for some special cases and numerically for the general case. Invertibility combined with differentiability over connected domains forces solutions always to be monotone. Numerical function inversion is key to all solution algorithms which either are of a forward type or a fixed point type considering whole approximate solution functions in each iteration. The given considerations are restricted to ordinary differential equations with inverted functions (ODEIs) of first order. Forward type computations, if applicable, admit consistency of order one and, under an additional accuracy condition, convergence of order one.
Keywords: Euler method, fixed points, golden section, multi-step procedures, Runge Kutta methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14486545 Distribution Feeder Reconfiguration Considering Distributed Generators
Authors: R. Khorshidi , T. Niknam, M. Nayeripour
Abstract:
Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. Fueling the attention have been the possibilities of international agreements to reduce greenhouse gas emissions, electricity sector restructuring, high power reliability requirements for certain activities, and concern about easing transmission and distribution capacity bottlenecks and congestion. So it is necessary that impact of these kinds of generators on distribution feeder reconfiguration would be investigated. This paper presents an approach for distribution reconfiguration considering Distributed Generators (DGs). The objective function is summation of electrical power losses A Tabu search optimization is used to solve the optimal operation problem. The approach is tested on a real distribution feeder.
Keywords: Distributed Generator, Daily Optimal Operation, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17136544 Aircraft Supplier Selection Process with Fuzzy Proximity Measure Method using Multiple Criteria Group Decision Making Analysis
Authors: C. Ardil
Abstract:
Being effective in every organizational activity has become necessary due to the escalating level of competition in all areas of corporate life. In the context of supply chain management, aircraft supplier selection is currently one of the most crucial activities. It is possible to choose the best aircraft supplier and deliver efficiency in terms of cost, quality, delivery time, economic status, and institutionalization if a systematic supplier selection approach is used. In this study, an effective multiple criteria decision-making methodology, proximity measure method (PMM), is used within a fuzzy environment based on the vague structure of the real working environment. The best appropriate aircraft suppliers are identified and ranked after the proposed multiple criteria decision making technique is used in a real-life scenario.
Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, proximity measure method, Minkowski distance family function, Hausdorff distance function, PMM, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3446543 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even-dough decreases at these extreme wind speeds but are not infinite. Moreover, we also fund that it is possible to stabilize the power coefficient (stabilizing the output power)above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.Keywords: Probability, Stochastic, Probability density function, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17456542 Pure Scalar Equilibria for Normal-Form Games
Authors: H. W. Corley
Abstract:
A scalar equilibrium (SE) is an alternative type of equilibrium in pure strategies for an n-person normal-form game G. It is defined using optimization techniques to obtain a pure strategy for each player of G by maximizing an appropriate utility function over the acceptable joint actions. The players’ actions are determined by the choice of the utility function. Such a utility function could be agreed upon by the players or chosen by an arbitrator. An SE is an equilibrium since no players of G can increase the value of this utility function by changing their strategies. SEs are formally defined, and examples are given. In a greedy SE, the goal is to assign actions to the players giving them the largest individual payoffs jointly possible. In a weighted SE, each player is assigned weights modeling the degree to which he helps every player, including himself, achieve as large a payoff as jointly possible. In a compromise SE, each player wants a fair payoff for a reasonable interpretation of fairness. In a parity SE, the players want their payoffs to be as nearly equal as jointly possible. Finally, a satisficing SE achieves a personal target payoff value for each player. The vector payoffs associated with each of these SEs are shown to be Pareto optimal among all such acceptable vectors, as well as computationally tractable.
Keywords: Compromise equilibrium, greedy equilibrium, normal-form game, parity equilibrium, pure strategies, satisficing equilibrium, scalar equilibria, utility function, weighted equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516541 Tidal Data Analysis using ANN
Authors: Ritu Vijay, Rekha Govil
Abstract:
The design of a complete expansion that allows for compact representation of certain relevant classes of signals is a central problem in signal processing applications. Achieving such a representation means knowing the signal features for the purpose of denoising, classification, interpolation and forecasting. Multilayer Neural Networks are relatively a new class of techniques that are mathematically proven to approximate any continuous function arbitrarily well. Radial Basis Function Networks, which make use of Gaussian activation function, are also shown to be a universal approximator. In this age of ever-increasing digitization in the storage, processing, analysis and communication of information, there are numerous examples of applications where one needs to construct a continuously defined function or numerical algorithm to approximate, represent and reconstruct the given discrete data of a signal. Many a times one wishes to manipulate the data in a way that requires information not included explicitly in the data, which is done through interpolation and/or extrapolation. Tidal data are a very perfect example of time series and many statistical techniques have been applied for tidal data analysis and representation. ANN is recent addition to such techniques. In the present paper we describe the time series representation capabilities of a special type of ANN- Radial Basis Function networks and present the results of tidal data representation using RBF. Tidal data analysis & representation is one of the important requirements in marine science for forecasting.Keywords: ANN, RBF, Tidal Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16566540 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset
Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli
Abstract:
Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are increasingly important in automated customer service. These models, adept at recognizing complex relationships between input and output sequences, are essential for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the model’s focus during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the context of chatbots utilizing the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Using the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k = 3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k = 3). These findings emphasize the crucial influence of selecting an appropriate attention-scoring function to enhance the performance of seq2seq models for chatbots, particularly highlighting the model integrating tanh activation as a promising approach to improving chatbot quality in customer support contexts.
Keywords: Attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916539 An Integrated DEMATEL-QFD Model for Medical Supplier Selection
Authors: Mehtap Dursun, Zeynep Şener
Abstract:
Supplier selection is considered as one of the most critical issues encountered by operations and purchasing managers to sharpen the company’s competitive advantage. In this paper, a novel fuzzy multi-criteria group decision making approach integrating quality function deployment (QFD) and decision making trial and evaluation laboratory (DEMATEL) method is proposed for supplier selection. The proposed methodology enables to consider the impacts of inner dependence among supplier assessment criteria. A house of quality (HOQ) which translates purchased product features into supplier assessment criteria is built using the weights obtained by DEMATEL approach to determine the desired levels of supplier assessment criteria. Supplier alternatives are ranked by a distance-based method.
Keywords: DEMATEL, Group decision making, QFD, Supplier selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2824