Search results for: Modified maximum urgency first
539 Multiscale Syntheses of Knee Collateral Ligament Stresses: Aggregate Mechanics as a Function of Molecular Properties
Authors: Raouf Mbarki, Fadi Al Khatib, Malek Adouni
Abstract:
Knee collateral ligaments play a significant role in restraining excessive frontal motion (varus/valgus rotations). In this investigation, a multiscale frame was developed based on structural hierarchies of the collateral ligaments starting from the bottom (tropocollagen molecule) to up where the fibred reinforced structure established. Experimental data of failure tensile test were considered as the principal driver of the developed model. This model was calibrated statistically using Bayesian calibration due to the high number of unknown parameters. Then the model is scaled up to fit the real structure of the collateral ligaments and simulated under realistic boundary conditions. Predications have been successful in describing the observed transient response of the collateral ligaments during tensile test under pre- and post-damage loading conditions. Collateral ligaments maximum stresses and strengths were observed near to the femoral insertions, a results that is in good agreement with experimental investigations. Also for the first time, damage initiation and propagation were documented with this model as a function of the cross-link density between tropocollagen molecules.
Keywords: Multiscale model, tropocollagen, fibrils, ligaments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599538 Selection and Exergy Analysis of Fuel Cell System to Meet all Energy Needs of Residential Buildings
Authors: G.R. Ashari, N.Hedayat, S. Shalbaf, E.Hajidavalloo
Abstract:
In this paper a polymer electrolyte membrane (PEM) fuel cell power system including burner, steam reformer, heat exchanger and water heater has been considered to meet the electrical, heating, cooling and domestic hot water loads of residential building which in Tehran. The system uses natural gas as fuel and works in CHP mode. Design and operating conditions of a PEM fuel cell system is considered in this study. The energy requirements of residential building and the number of fuel cell stacks to meet them have been estimated. The method involved exergy analysis and entropy generation thorough the months of the year. Results show that all the energy needs of the building can be met with 12 fuel cell stacks at a nominal capacity of 8.5 kW. Exergy analysis of the CHP system shows that the increase in the ambient air temperature from 1oC to 40oC, will have an increase of entropy generation by 5.73%.Maximum entropy generates for 15 hour in 15th of June and 15th of July is estimated to amount at 12624 (kW/K). Entropy generation of this system through a year is estimated to amount to 1004.54 GJ/k.year.Keywords: CHP mode, entropy, exergy, no of fuel cell stacks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899537 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating
Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho
Abstract:
The characteristics of temperature distribution and electric field in a natural rubber glove (NRG) using microwave energy during microwave heating process are investigated numerically and experimentally. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.
Keywords: Electric field, Finite element method, Microwave energy, Natural rubber glove.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191536 Method of Intelligent Fault Diagnosis of Preload Loss for Single Nut Ball Screws through the Sensed Vibration Signals
Authors: Yi-Cheng Huang, Yan-Chen Shin
Abstract:
This paper proposes method of diagnosing ball screw preload loss through the Hilbert-Huang Transform (HHT) and Multiscale entropy (MSE) process. The proposed method can diagnose ball screw preload loss through vibration signals when the machine tool is in operation. Maximum dynamic preload of 2 %, 4 %, and 6 % ball screws were predesigned, manufactured, and tested experimentally. Signal patterns are discussed and revealed using Empirical Mode Decomposition(EMD)with the Hilbert Spectrum. Different preload features are extracted and discriminated using HHT. The irregularity development of a ball screw with preload loss is determined and abstracted using MSE based on complexity perception. Experiment results show that the proposed method can predict the status of ball screw preload loss. Smart sensing for the health of the ball screw is also possible based on a comparative evaluation of MSE by the signal processing and pattern matching of EMD/HHT. This diagnosis method realizes the purposes of prognostic effectiveness on knowing the preload loss and utilizing convenience.Keywords: Empirical Mode Decomposition, Hilbert-Huang Transform, Multi-scale Entropy, Preload Loss, Single-nut Ball Screw
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842535 Analysis of Evaporation of Liquid Ammonia in a Vertical Cylindrical Storage Tank
Authors: S. Chikh, S. Boulifa
Abstract:
The present study addresses the problem of ammonia evaporation during filling of a vertical cylindrical tank and the influence of various external factors on the stability of storage by determining the conditions for minimum evaporation. Numerical simulation is carried out by solving the governing equations namely, continuity, momentum, energy, and diffusion of species. The effect of temperature of surrounding air, the filling speed of the reservoir and the temperature of the filling liquid ammonia on the evaporation rate is investigated. Results show that the temperature of the filling liquid has little effect on the liquid ammonia for a short period, which, in fact, is function of the filling speed. The evaporation rate along the free surface of the liquid is non-uniform. The inlet temperature affects the vapor ammonia temperature because of pressure increase. The temperature of the surrounding air affects the temperature of the vapor phase rather than the liquid phase. The maximum of evaporation is reached at the final step of filling. In order to minimize loss of ammonia vapors automatically causing losses in quantity of the liquid stored, it is suggested to ensure the proper insulation for the walls and roof of the reservoir and to increase the filling speed.Keywords: Evaporation, liquid ammonia, storage tank, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459534 A 3 Dimensional Simulation of the Repeated Load Triaxial Test
Authors: Bao Thach Nguyen, Abbas Mohajerani
Abstract:
A typical flexible pavement structure consists of the surface, base, sub-base and subgrade soil. The loading traffic is transferred from the top layer with higher stiffness to the layer below with less stiffness. Under normal traffic loading, the behaviour of flexible pavement is very complex and can be predicted by using the repeated load triaxial test equipment in the laboratory. However, the nature of the repeated load triaxial testing procedure is considered time-consuming, complicated and expensive, and it is a challenge to carry out as a routine test in the laboratory. Therefore, the current paper proposes a numerical approach to simulate the repeated load triaxial test by employing the discrete element method. A sample with particle size ranging from 2.36mm to 19.0mm was constructed. Material properties, which included normal stiffness, shear stiffness, coefficient of friction, maximum dry density and particle density, were used as the input for the simulation. The sample was then subjected to a combination of deviator and confining stress and it was found that the discrete element method is able to simulate the repeated load triaxial test in the laboratory.
Keywords: Discrete element method, repeated load triaxial, pavement materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3153533 Comparison on Electrode and Ground Arrangements Effect on Heat Transfer under Electric Force in a Channel and a Cavity Flow
Authors: Suwimon Saneewong Na Ayuttaya, Chainarong Chaktranond, Phadungsak Rattanadecho
Abstract:
This study numerically investigates the effects of Electrohydrodynamic on flow patterns and heat transfer enhancement within a cavity which is on the lower wall of channel. In this simulation, effects of using ground wire and ground plate on the flow patterns are compared. Moreover, the positions of electrode wire respecting with ground are tested in the range of angles θ = 0 - 180o. High electrical voltage exposes to air is 20 kV. Bulk mean velocity and temperature of inlet air are controlled at 0.1 m/s and 60 OC, respectively. The result shows when electric field is applied, swirling flow is appeared in the channel. In addition, swirling flow patterns in the main flow of using ground plate are widely spreader than that of using ground wire. Moreover, direction of swirling flow also affects the flow pattern and heat transfer in a cavity. These cause the using ground wire to give the maximum temperature and heat transfer higher than using ground plate. Furthermore, when the angle is at θ = 60o, high shear flow effect is obtained. This results show high strength of swirling flow and effective heat transfer enhancement.
Keywords: Swirling Flow, Heat Transfer, Electrohydrodynamic, Numerical Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124532 FPGA Based Parallel Architecture for the Computation of Third-Order Cross Moments
Authors: Syed Manzoor Qasim, Shuja Abbasi, Saleh Alshebeili, Bandar Almashary, Ateeq Ahmad Khan
Abstract:
Higher-order Statistics (HOS), also known as cumulants, cross moments and their frequency domain counterparts, known as poly spectra have emerged as a powerful signal processing tool for the synthesis and analysis of signals and systems. Algorithms used for the computation of cross moments are computationally intensive and require high computational speed for real-time applications. For efficiency and high speed, it is often advantageous to realize computation intensive algorithms in hardware. A promising solution that combines high flexibility together with the speed of a traditional hardware is Field Programmable Gate Array (FPGA). In this paper, we present FPGA-based parallel architecture for the computation of third-order cross moments. The proposed design is coded in Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) and functionally verified by implementing it on Xilinx Spartan-3 XC3S2000FG900-4 FPGA. Implementation results are presented and it shows that the proposed design can operate at a maximum frequency of 86.618 MHz.Keywords: Cross moments, Cumulants, FPGA, Hardware Implementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735531 Conversion of Jatropha curcas Oil to Ester Biolubricant Using Solid Catalyst Derived from Saltwater Clam Shell Waste (SCSW)
Authors: Said Nurdin, Fatimah A. Misebah, Rosli M. Yunus, Mohd S. Mahmud, Ahmad Z. Sulaiman
Abstract:
The discarded clam shell waste, fossil and edible oil as biolubricant feedstocks create environmental impacts and food chain dilemma, thus this work aims to circumvent these issues by using activated saltwater clam shell waste (SCSW) as solid catalyst for conversion of Jatropha curcas oil as non-edible sources to ester biolubricant. The characterization of solid catalyst was done by Differential Thermal Analysis-Thermo Gravimetric Analysis (DTATGA), X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. The calcined catalyst was used in the transesterification of Jatropha oil to methyl ester as the first step, and the second stage was involved the reaction of Jatropha methyl ester (JME) with trimethylolpropane (TMP) based on the various process parameters. The formated biolubricant was analyzed using the capillary column (DB-5HT) equipped Gas Chromatography (GC). The conversion results of Jatropha oil to ester biolubricant can be found nearly 96.66%, and the maximum distribution composition mainly contains 72.3% of triester (TE).
Keywords: Conversion, ester biolubricant, Jatropha curcas oil, solid catalyst.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606530 Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance
Authors: Akan C. Offong, E. J. Anthony, Vasilije Manovic
Abstract:
A modified steady-state numerical model is developed for the electrochemical reduction of CO2 to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm2), FE-faradaic efficiency (~98%) and conversion (~80%) for CO2 electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF4]) electrolyte, on CD, FE and CO2 conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF4]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO2 mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO2 conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H2 formations. However, H2 formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO2 flow rate increases, CD, FE and CO2 conversion increases.
Keywords: Carbon dioxide, electro-chemical reduction, microfluidics, ionic liquids, modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097529 Experimental Study of Fuel Tank Filling
Authors: Maurizio Mastroianni, Lou Savoni, Paul Henshaw, Gary W. Rankin
Abstract:
The refueling of a transparent rectangular fuel tank fitted with a standard filler pipe and roll-over valve was experimentally studied. A fuel-conditioning cart, capable of handling fuels of different Reid vapor pressure at a constant temperature, was used to dispense fuel at the desired rate. The experimental protocol included transient recording of the tank and filler tube pressures while video recording the flow patterns in the filler tube and tank during the refueling process. This information was used to determine the effect of changes in the vent tube diameter, fuel-dispense flow rate and fuel Reid vapor pressure on the pressure-time characteristics and the occurrence of premature fuel filling shut-off and fuel spill-back. Pressure-time curves for the case of normal shut-off demonstrated the classic, three-phase characteristic noted in the literature. The variation of the maximum values of tank dome and filler tube pressures are analyzed in relation to the occurrence of premature shut-off.Keywords: experimental study, fuel tank filling, premature shutoff, spill-back
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4204528 Oxidation of Amitriptyline by Bromamine-T in Acidic Buffer Medium: A Kinetic and Mechanistic Approach
Authors: Chandrashekar, R. T. Radhika, B. M. Venkatesha, S. Ananda, Shivalingegowda, T. S. Shashikumar, H. Ramachandra
Abstract:
The kinetics of the oxidation of amitriptyline (AT) by sodium N-bromotoluene sulphonamide (C6H5SO2NBrNa) has been studied in an acidic buffer medium of pH 1.2 at 303 K. The oxidation reaction of AT was followed spectrophotometrically at maximum wavelength, 410 nm. The reaction rate shows a first order dependence each on concentration of AT and concentration of sodium N-bromotoluene sulphonamide. The reaction also shows an inverse fractional order dependence at low or high concentration of HCl. The dielectric constant of the solvent shows negative effect on the rate of reaction. The addition of halide ions and the reduction product of BAT have no significant effect on the rate. The rate is unchanged with the variation in the ionic strength (NaClO4) of the medium. Addition of reaction mixtures to be aqueous acrylamide solution did not initiate polymerization, indicating the absence of free radical species. The stoichiometry of the reaction was found to be 1:1 and oxidation product of AT is identified. The Michaelis-Menton type of kinetics has been proposed. The CH3C6H5SO2NHBr has been assumed to be the reactive oxidizing species. Thermodynamical parameters were computed by studying the reactions at different temperatures. A mechanism consistent with observed kinetics is presented.
Keywords: Amitriptyline, bromamine-T, kinetics, oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452527 A Study of Mode Choice Model Improvement Considering Age Grouping
Authors: Young-Hyun Seo, Hyunwoo Park, Dong-Kyu Kim, Seung-Young Kho
Abstract:
The purpose of this study is providing an improved mode choice model considering parameters including age grouping of prime-aged and old age. In this study, 2010 Household Travel Survey data were used and improper samples were removed through the analysis. Chosen alternative, date of birth, mode, origin code, destination code, departure time, and arrival time are considered from Household Travel Survey. By preprocessing data, travel time, travel cost, mode, and ratio of people aged 45 to 55 years, 55 to 65 years and over 65 years were calculated. After the manipulation, the mode choice model was constructed using LIMDEP by maximum likelihood estimation. A significance test was conducted for nine parameters, three age groups for three modes. Then the test was conducted again for the mode choice model with significant parameters, travel cost variable and travel time variable. As a result of the model estimation, as the age increases, the preference for the car decreases and the preference for the bus increases. This study is meaningful in that the individual and households characteristics are applied to the aggregate model.
Keywords: Age grouping, aging, mode choice model, multinomial logit model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614526 Dependence of Equilibrium, Kinetics and Thermodynamics of Zn (II) Ions Sorption from Water on Particle Size of Natural Hydroxyapatite Extracted from Bone Ash
Authors: Reza Bazargan-Lari, Mohammad Ebrahim Bahrololoom, Afshin Nemati
Abstract:
Heavy metals have bad effects on environment and soils and it can uptake by natural HAP .natural Hap is an inexpensive material that uptake large amounts of various heavy metals like Zn (II) .Natural HAP (N-HAP), extracted from bovine cortical bone ash, is a good choice for substitution of commercial HAP. Several experiments were done to investigate the sorption capacity of Zn (II) to N-HAP in various particles sizes, temperatures, initial concentrations, pH and reaction times. In this study, the sorption of Zinc ions from a Zn solution onto HAP particles with sizes of 1537.6 nm and 47.6 nm at three initial pH values of 4.50, 6.00 and 7.50 was studied. The results showed that better performance was obtained through a 47.6 nm particle size and higher pH values. The experimental data were analyzed using Langmuir, Freundlich, and Arrhenius equations for equilibrium, kinetic and thermodynamic studies. The analysis showed a maximum adsorption capacity of NHAP as being 1.562 mmol/g at a pH of 7.5 and small particle size. Kinetically, the prepared N-HAP is a feasible sorbent that retains Zn (II) ions through a favorable and spontaneous sorption process.Keywords: Natural Hydroxyapatite, Heavy metal ions, Adsorption, Zn removal, kinetic model, bone ash
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152525 An Assessment of Ozone Levels in Typical Urban Areas in the Malaysian Peninsular
Authors: Negar Banan, Mohd Talib Latif, Liew Juneng
Abstract:
Air quality studies were carried out in the towns of Putrajaya, Petaling Jaya and Nilai in the Malaysian Peninsular. In this study, the variations of Ozone (O3) concentrations over a four year period (2008-2011) were investigated using data obtained from the Malaysian Department of the Environment (DOE). This study aims to identify and describe the daily and monthly variations of O3 concentrations at the monitoring sites mentioned. The SPPS program (Statistical Package for the Social Science) was used to analyze this data in order to obtain the variations of O3 and also to clarify the relationship between the stations. The findings of the study revealed that the highest concentration of O3 occurred during the midday and afternoon (between 13:00-15:00 hrs). The comparison between stations also showed that highest O3 concentrations were recorded in Putrajaya. The comparisons of average and maximum concentrations of O3 for the three stations showed that the strongest significant correlation was recorded in the Petaling Jaya station with the value R2= 0.667. Results from this study indicate that in the urban areas of Peninsular Malaysia, the concentration of O3 depends on the concentration of NOx. Furthermore, HYSPLIT back trajectories (-72h) indicated that air-mass transport patterns can also influence the O3 concentration in the areas studied.Keywords: Ozone, Precursors, Urban, HYSPLIT trajectory analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733524 Seasonal Based Pollution Performance of 11kV and 33kV Silicon Composite Insulators
Authors: N. Sumathi, R. Srinivasa Rao
Abstract:
This paper presents the experimental results of 11 kV and 33 kV silicon composite insulators under artificial salt and urea polluted conditions. The tests were carried out under different seasons like summer, winter, and monsoon. The artificial pollution is prepared by properly dissolving the salt and urea in the water. The prepared salt and urea pollutions are sprayed on the insulators and dried up for sufficiently large time. The process is continued until a uniform layer is formed on the surface of insulator. For each insulator rating, four samples were tested. The maximum leakage current and breakdown voltage were measured. From experimental data, performance of test specimen is evaluated by comparing breakdown voltage and leakage current during different seasons when exposed to salt and urea polluted conditions. From these results the performance of the insulators can be predicted when they are installed in industrial, agricultural, and coastal areas. The experimental tests were carried out in the High Voltage laboratory using two stage cascade transformer having the rating of 1000 kVA, 500 kV.Keywords: Silicon composite insulators, Urea pollution, Leakage current, Breakdown voltage, salt pollution, artificial pollution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875523 Analysis on Precipitation Variation Patterns of Chenzhou City
Authors: Li Wu
Abstract:
By using linear regression methodology to analyze the data of daily precipitation from 1961-2012, this paper studied the variation tendency of precipitation in Chenzhou. The outcome showed: (1) The annual precipitation was decreasing for 52 years and the difference of precipitation variation tendency among four seasons was remarkable. The precipitation of spring and autumn showed more remarkable decrease than of summer; but the precipitation of winter significantly increased. (2) The annual precipitation frequency tended to lower, which was consistent with the tendency of yearly variation. The seasonal precipitation frequency was greatly different, namely, precipitation frequency in spring and autumn decreased, co-occurring with the phenomenon of mutation; but the winter precipitation frequency increased notably. (3) The precipitation intensity displayed a tendency of increase, including spring, autumn and winter; among them, winter had the most obvious tendency to increase, and autumn had the most yearly variation. Summer was the only season with a tendency of decreasing in precipitation intensity. (4) Annual extreme precipitation tended to reduce, spring, summer and autumn are all included; whereas, winter extreme precipitation tended to increase at the rate of 0.1d/10a. (5) The daily maximum precipitation intensity increased slightly and it varied greatly.
Keywords: Chenzhou, precipitation variation, precipitation frequency, precipitation intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865522 Dynamics and Driving Forces of the Alpine Wetlands in the Yarlung Zangbo River Basin of Tibet, China
Authors: Weishou Shen, Dong Liu, Di Ji, Haoyun Shen, Naifeng Lin
Abstract:
Based on the field investigation and long term remote sensing data, the dynamics of the alpine wetland in the river basin and their response to climate change were studied. Results showed the alpine wetlands accounted for 3.73% of total basin in 2010. Lake and river appeared an increasing trend in the past 30 years, with an increase of 34.36 % and 24.57%. However, swamp exhibited a tendency of decreasing with 233.74 km2. Annual average temperature, maximum temperature, minimum temperature and precipitation in the river basin all exhibited an increasing trend, whereas relative humidity exhibited a decreasing trend. Ice and snow melting are main reasons of lake and river area enhancement and swamp area descend. There existed 91.78%-97.86% of reduced swamp converted into lakes on the basis of remote sensing image interpretation. China-s government policy of implementing development in the river basin is the major driving force of artificial wetland growth.Keywords: alpine wetland dynamics, climate change, Yarlung Zangbo River basin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654521 Medical Image Fusion Based On Redundant Wavelet Transform and Morphological Processing
Authors: P. S. Gomathi, B. Kalaavathi
Abstract:
The process in which the complementary information from multiple images is integrated to provide composite image that contains more information than the original input images is called image fusion. Medical image fusion provides useful information from multimodality medical images that provides additional information to the doctor for diagnosis of diseases in a better way. This paper represents the wavelet based medical image fusion algorithm on different multimodality medical images. In order to fuse the medical images, images are decomposed using Redundant Wavelet Transform (RWT). The high frequency coefficients are convolved with morphological operator followed by the maximum-selection (MS) rule. The low frequency coefficients are processed by MS rule. The reconstructed image is obtained by inverse RWT. The quantitative measures which includes Mean, Standard Deviation, Average Gradient, Spatial frequency, Edge based Similarity Measures are considered for evaluating the fused images. The performance of this proposed method is compared with Pixel averaging, PCA, and DWT fusion methods. When compared with conventional methods, the proposed framework provides better performance for analysis of multimodality medical images.
Keywords: Discrete Wavelet Transform (DWT), Image Fusion, Morphological Processing, Redundant Wavelet Transform (RWT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157520 Patterns of Malignant and Benign Breast Lesions in Hail Region: A Retrospective Study at King Khalid Hospital
Authors: Laila Seada, Ashraf Ibrahim, Amjad Al Shammari
Abstract:
Background and Objectives: Breast carcinoma is the most common cancer of females in Hail region, accounting for 31% of all diagnosed cancer cases followed by thyroid carcinoma (25%) and colorectal carcinoma (13%). Methods: In the present retrospective study, all cases of breast lesions received at the histopathology department in King Khalid Hospital, Hail, during the period from May 2011 to April 2016 have been retrieved from department files. For all cases, a trucut biopsy, lumpectomy, or modified radical mastectomy was available for histopathologic diagnosis, while 105/140 (75%) had, as well, preoperative fine needle aspirates (FNA). Results: 49 cases out of 140 (35%) breast lesions were carcinomas: 44/49 (89.75%) was invasive ductal, 2/49(4.1%) invasive lobular carcinomas, 1/49(2.05%) intracystic low grade papillary carcinoma and 2/49 (4.1%) ductal carcinoma in situ (DCIS). Mean age for malignant cases was 45.06 (+/-10.58): 32.6% were below the age of 40 and 30.6 below 50 years, 18.3% below 60 and 16.3% below 70 years. For the benign group, mean age was 32.52 (+/10.5) years. Benign lesions were in order of frequency: 34 fibroadenomas, 14 fibrocystic disease, 12 chronic mastitis, five granulomatous mastitis, three intraductal papillomas, and three benign phyllodes tumor. Tubular adenoma, lipoma, skin nevus, pilomatrixoma, and breast reduction specimens constituted the remaining specimens. Conclusion: Breast lesions are common in our series and invasive carcinoma accounts for more than 1/3rd of the lumps, with 63.2% incidence in pre-menopausal ladies, below the age of 50 years. FNA as a non-invasive procedure, proved to be an effective tool in diagnosing both benign and malignant/suspicious breast lumps and should continue to be used as a first assessment line of palpable breast masses.
Keywords: Age incidence, breast carcinoma, fine needle aspiration, Hail Region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937519 Predicting Crack Initiation Due to Ratchetting in Rail Heads Using Critical Element Analysis
Authors: I. U. Wickramasinghe, D. J. Hargreaves, D. V. De Pellegrin
Abstract:
This paper presents a strategy to predict the lifetime of rails subjected to large rolling contact loads that induce ratchetting strains in the rail head. A critical element concept is used to calculate the number of loading cycles needed for crack initiation to occur in the rail head surface. In this technique the finite element method (FEM) is used to determine the maximum equivalent ratchetting strain per load cycle, which is calculated by combining longitudinal and shear stains in the critical element. This technique builds on a previously developed critical plane concept that has been used to calculate the number of cycles to crack initiation in rolling contact fatigue under ratchetting failure conditions. The critical element concept simplifies the analytical difficulties of critical plane analysis. Finite element analysis (FEA) is used to identify the critical element in the mesh, and then the strain values of the critical element are used to calculate the ratchetting rate analytically. Finally, a ratchetting criterion is used to calculate the number of cycles to crack initiation from the ratchetting rate calculated.
Keywords: Critical element analysis, finite element modeling (FEM), wheel/rail contact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933518 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method
Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad
Abstract:
The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.
Keywords: Structure analysis, aluminum piston, MgZrO3, YTZ, mullite and alumina.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784517 Apparent Temperature Distribution on Scaffoldings during Construction Works
Authors: I. Szer, J. Szer, K. Czarnocki, E. Błazik-Borowa
Abstract:
People on construction scaffoldings work in dynamically changing, often unfavourable climate. Additionally, this kind of work is performed on low stiffness structures at high altitude, which increases the risk of accidents. It is therefore desirable to define the parameters of the work environment that contribute to increasing the construction worker occupational safety level. The aim of this article is to present how changes in microclimate parameters on scaffolding can impact the development of dangerous situations and accidents. For this purpose, indicators based on the human thermal balance were used. However, use of this model under construction conditions is often burdened by significant errors or even impossible to implement due to the lack of precise data. Thus, in the target model, the modified parameter was used – apparent environmental temperature. Apparent temperature in the proposed Scaffold Use Risk Assessment Model has been a perceived outdoor temperature, caused by the combined effects of air temperature, radiative temperature, relative humidity and wind speed (wind chill index, heat index). In the paper, correlations between component factors and apparent temperature for facade scaffolding with a width of 24.5 m and a height of 42.3 m, located at south-west side of building are presented. The distribution of factors on the scaffolding has been used to evaluate fitting of the microclimate model. The results of the studies indicate that observed ranges of apparent temperature on the scaffolds frequently results in a worker’s inability to adapt. This leads to reduced concentration and increased fatigue, adversely affects health, and consequently increases the risk of dangerous situations and accidental injuries
Keywords: Apparent temperature, health, safety work, scaffoldings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 929516 Ultrasound Assisted Cooling Crystallization of Lactose Monohydrate
Authors: Sanjaykumar R. Patel, Parth R. Kayastha
Abstract:
α-lactose monohydrate is widely used in the pharmaceutical industries as an inactive substance that acts as a vehicle or a medium for a drug or other active substance. It is a byproduct of dairy industries, and the recovery of lactose from whey not only boosts the improvement of the economics of whey utilization but also causes a reduction in pollution as lactose recovery can reduce the BOD of whey by more than 80%. In the present study, levels of process parameters were kept as initial lactose concentration (30-50% w/w), sonication amplitude (20-40%), sonication time (2-6 hours), and crystallization temperature (10-20 oC) for the recovery of lactose in ultrasound assisted cooling crystallization. In comparison with cooling crystallization, the use of ultrasound enhanced the lactose recovery by 39.17% (w/w). The parameters were optimized for the lactose recovery using Taguchi Method. The optimum conditions found were initial lactose concentration at level 3 (50% w/w), amplitude of sonication at level 2 (40%), the sonication time at level 3 (6 hours), and crystallization temperature at level 1 (10 °C). The maximum recovery was found to be 85.85% at the optimum conditions. Sonication time and the initial lactose concentration were found to be significant parameters for the lactose recovery.
Keywords: Crystallization, Taguchi method, ultrasound, lactose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006515 Respirator System For Total Liquid Ventilation
Authors: Miguel A. Gómez , Enrique Hilario , Francisco J. Alvarez , Elena Gastiasoro , Antonia Alvarez, Juan L. Larrabe
Abstract:
Total liquid ventilation can support gas exchange in animal models of lung injury. Clinical application awaits further technical improvements and performance verification. Our aim was to develop a liquid ventilator, able to deliver accurate tidal volumes, and a computerized system for measuring lung mechanics. The computer-assisted, piston-driven respirator controlled ventilatory parameters that were displayed and modified on a real-time basis. Pressure and temperature transducers along with a lineal displacement controller provided the necessary signals to calculate lung mechanics. Ten newborn lambs (<6 days old) with respiratory failure induced by lung lavage, were monitored using the system. Electromechanical, hydraulic and data acquisition/analysis components of the ventilator were developed and tested in animals with respiratory failure. All pulmonary signals were collected synchronized in time, displayed in real-time, and archived on digital media. The total mean error (due to transducers, A/D conversion, amplifiers, etc.) was less than 5% compared to calibrated signals. Improvements in gas exchange and lung mechanics were observed during liquid ventilation, without impairment of cardiovascular profiles. The total liquid ventilator maintained accurate control of tidal volumes and the sequencing of inspiration/expiration. The computerized system demonstrated its ability to monitor in vivo lung mechanics, providing valuable data for early decision-making.
Keywords: immature lamb, perfluorocarbon, pressure-limited, total liquid ventilation, ventilator; volume-controlled
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533514 Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix
Authors: Jiri Plocek, Petr Holec, Simona Kubickova, Barbara Pacakova, Irena Matulkova, Alice Mantlikova, Ivan Nemec, Daniel Niznansky, Jana Vejpravova
Abstract:
This article presents summary on preparation and characterization of zinc, copper, cadmium and cobalt chromite nanocrystals, embedded in an amorphous silica matrix. The ZnCr2O4/SiO2, CuCr2O4/SiO2, CdCr2O4/SiO2 and CoCr2O4/SiO2 nanocomposites were prepared by a conventional sol-gel method under acid catalysis. Final heat treatment of the samples was carried out at temperatures in the range of 900−1200 ◦C to adjust the phase composition and the crystallite size, respectively. The resulting samples were characterized by Powder X-ray diffraction (PXRD), High Resolution Transmission Electron Microscopy (HRTEM), Raman/FTIR spectroscopy and magnetic measurements. Formation of the spinel phase was confirmed in all samples. The average size of the nanocrystals was determined from the PXRD data and by direct particle size observation on HRTEM; both results were correlated. The mean particle size (reviewed by HRTEM) was in the range from ∼4 to 46 nm. The results showed that the sol-gel method can be effectively used for preparation of the spinel chromite nanoparticles embedded in the silica matrix and the particle size is driven by the type of the cation A2+ in the spinel structure and the temperature of the final heat treatment. Magnetic properties of the nanocrystals were found to be just moderately modified in comparison to the bulk phases.
Keywords: Chromite, Fourier transform infrared spectroscopy, agnetic properties, nanocomposites, Raman spectroscopy, Rietveld refinement, sol-gel method, spinel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2821513 Studying the Effect of Ethanol and Operating Temperature on Purification of Lactulose Syrup Containing Lactose
Authors: N. Zanganeh, M. Zabet
Abstract:
Lactulose is a synthetic disaccharide which has remarkable applications in food and pharmaceutical fields. Lactulose is not found in nature and it is produced by isomerization reaction of lactose in an alkaline environment. It should be noted that this reaction has a very low yield since significant amount of lactose stays un-reacted in the system. Basically, purification of lactulose is difficult and costly. Previous studies have revealed that solubility of lactose and lactulose are significantly different in ethanol. Considering the fact that solubility is also affected by temperature itself, we investigated the effect of ethanol and temperature on separation process of lactose from the syrup containing lactose and lactulose. For this purpose, a saturated solution containing lactulose and lactose was made at three different temperatures; 25⁰C (room temperature), 31⁰C, and 37⁰C first. Five samples containing 2g saturated solution was taken and then 2g, 3g, 4g, 5g, and 6g ethanol separately was added to the sampling tubes. Sampling tubes were kept at respective temperatures afterward. The concentration of lactose and lactulose after separation process measured and analyzed by High Performance Liquid Chromatography (HPLC). Results showed that ethanol has such a greater impact than operating temperature on purification process. Also, it was observed that the maximum rate of separation occurred at initial amount of added ethanol.
Keywords: Ethanol, lactose, lactulose syrup, purification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1121512 Influence of Compactive Efforts on Cement- Bagasse Ash Treatment of Expansive Black Cotton Soil
Authors: Moses, G, Osinubi, K. J.
Abstract:
A laboratory study on the influence of compactive effort on expansive black cotton specimens treated with up to 8% ordinary Portland cement (OPC) admixed with up to 8% bagasse ash (BA) by dry weight of soil and compacted using the energies of the standard Proctor (SP), West African Standard (WAS) or “intermediate” and modified Proctor (MP) were undertaken. The expansive black cotton soil was classified as A-7-6 (16) or CL using the American Association of Highway and Transportation Officials (AASHTO) and Unified Soil Classification System (USCS), respectively. The 7day unconfined compressive strength (UCS) values of the natural soil for SP, WAS and MP compactive efforts are 286, 401 and 515kN/m2 respectively, while peak values of 1019, 1328 and 1420kN/m2 recorded at 8% OPC/ 6% BA, 8% OPC/ 2% BA and 6% OPC/ 4% BA treatments, respectively were less than the UCS value of 1710kN/m2 conventionally used as criterion for adequate cement stabilization. The soaked California bearing ratio (CBR) values of the OPC/BA stabilized soil increased with higher energy level from 2, 4 and 10% for the natural soil to Peak values of 55, 18 and 8% were recorded at 8% OPC/4% BA 8% OPC/2% BA and 8% OPC/4% BA, treatments when SP, WAS and MP compactive effort were used, respectively. The durability of specimens was determined by immersion in water. Soils treatment at 8% OPC/ 4% BA blend gave a value of 50% resistance to loss in strength value which is acceptable because of the harsh test condition of 7 days soaking period specimens were subjected instead of the 4 days soaking period that specified a minimum resistance to loss in strength of 80%. Finally An optimal blend of is 8% OPC/ 4% BA is recommended for treatment of expansive black cotton soil for use as a sub-base material.
Keywords: Bagasse ash, California bearing ratio, Compaction, Durability, Ordinary Portland cement, Unconfined compressive strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3563511 Bioprocessing of Proximally Analyzed Wheat Straw for Enhanced Cellulase Production through Process Optimization with Trichodermaviride under SSF
Authors: Ishtiaq Ahmed, Muhammad Anjum Zia, Hafiz Muhammad Nasir Iqbal
Abstract:
The purpose of the present work was to study the production and process parameters optimization for the synthesis of cellulase from Trichoderma viride in solid state fermentation (SSF) using an agricultural wheat straw as substrates; as fungal conversion of lignocellulosic biomass for cellulase production is one among the major increasing demand for various biotechnological applications. An optimization of process parameters is a necessary step to get higher yield of product. Several kinetic parameters like pretreatment, extraction solvent, substrate concentration, initial moisture content, pH, incubation temperature and inoculum size were optimized for enhanced production of third most demanded industrially important cellulase. The maximum cellulase enzyme activity 398.10±2.43 μM/mL/min was achieved when proximally analyzed lignocellulosic substrate wheat straw inocubated at 2% HCl as pretreatment tool along with distilled water as extraction solvent, 3% substrate concentration 40% moisture content with optimum pH 5.5 at 45°C incubation temperature and 10% inoculum size.Keywords: Cellulase, Lignocellulosic residue, Processoptimization, Proximal analysis, SSF, Trichoderma viride.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2538510 Estimation of Vertical Handover Probability in an Integrated UMTS and WLAN Networks
Authors: Diganta Kumar Pathak, Manashjyoti Bhuyan, Vaskar Deka
Abstract:
Vertical Handover(VHO) among different communication technologies ensuring uninterruption and service continuity is one of the most important performance parameter in Heterogenous networks environment. In an integrated Universal Mobile Telecommunicatin System(UMTS) and Wireless Local Area Network(WLAN), WLAN is given an inherent priority over UMTS because of its high data rates with low cost. Therefore mobile users want to be associated with WLAN maximum of the time while roaming, to enjoy best possible services with low cost. That encourages reduction of number of VHO. In this work the reduction of number of VHO with respect to varying number of WLAN Access Points(APs) in an integrated UMTS and WLAN network is investigated through simulation to provide best possible cost effective service to the users. The simulation has been carried out for an area (7800 × 9006)m2 where COST-231 Hata model and 3GPP (TR 101 112 V 3.1.0) specified models are used for WLAN and UMTS path loss models respectively. The handover decision is triggered based on the received signal level as compared to the fade margin. Fade margin gives a probabilistic measure of the reliability of the communication link. A relationship between number of WLAN APs and the number of VHO is also established in this work.
Keywords: VHO, UMTS, WLAN, MT, AP, BS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036