Search results for: ligaments.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Search results for: ligaments.

6 Multiscale Syntheses of Knee Collateral Ligament Stresses: Aggregate Mechanics as a Function of Molecular Properties

Authors: Raouf Mbarki, Fadi Al Khatib, Malek Adouni

Abstract:

Knee collateral ligaments play a significant role in restraining excessive frontal motion (varus/valgus rotations). In this investigation, a multiscale frame was developed based on structural hierarchies of the collateral ligaments starting from the bottom (tropocollagen molecule) to up where the fibred reinforced structure established. Experimental data of failure tensile test were considered as the principal driver of the developed model. This model was calibrated statistically using Bayesian calibration due to the high number of unknown parameters. Then the model is scaled up to fit the real structure of the collateral ligaments and simulated under realistic boundary conditions. Predications have been successful in describing the observed transient response of the collateral ligaments during tensile test under pre- and post-damage loading conditions. Collateral ligaments maximum stresses and strengths were observed near to the femoral insertions, a results that is in good agreement with experimental investigations. Also for the first time, damage initiation and propagation were documented with this model as a function of the cross-link density between tropocollagen molecules.

Keywords: Multiscale model, tropocollagen, fibrils, ligaments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
5 A Constitutive Model of Ligaments and Tendons Accounting for Fiber-Matrix Interaction

Authors: Ratchada Sopakayang, Gerhard A. Holzapfel

Abstract:

In this study, a new constitutive model is developed to describe the hyperelastic behavior of collagenous tissues with a parallel arrangement of collagen fibers such as ligaments and tendons. The model is formulated using a continuum approach incorporating the structural changes of the main tissue components: collagen fibers, proteoglycan-rich matrix and fiber-matrix interaction. The mechanical contribution of the interaction between the fibers and the matrix is simply expressed by a coupling term. The structural change of the collagen fibers is incorporated in the constitutive model to describe the activation of the fibers under tissue straining. Finally, the constitutive model can easily describe the stress-stretch nonlinearity which occurs when a ligament/tendon is axially stretched. This study shows that the interaction between the fibers and the matrix contributes to the mechanical tissue response. Therefore, the model may lead to a better understanding of the physiological mechanisms of ligaments and tendons under axial loading.

Keywords: Hyperelasticity, constitutive model, fiber-matrix interaction, ligament, tendon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
4 Intact and ACL-Deficient Knee MODEL Evaluation

Authors: A. Vairis, M. Petousis, B. Kandyla, C. Chrisoulakis

Abstract:

The human knee joint has a three dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. To produce the necessary joint compliance and stability for optimal daily function various menisci and ligaments are present while muscle forces are used to this effect. Therefore, knowledge of the complex mechanical interactions of these load bearing structures is necessary when treatment of relevant diseases is evaluated and assisting devices are designed. Numerical tools such as finite element analysis are suitable for modeling such joints in order to understand their physics. They have been used in the current study to develop an accurate human knee joint and model its mechanical behavior. To evaluate the efficacy of this articulated model, static load cases were used for comparison purposes with previous experimentally verified modeling works drawn from literature.

Keywords: biomechanics, finite element modeling, knee joint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
3 Comparison of Alternative Models to Predict Lean Meat Percentage of Lamb Carcasses

Authors: Vasco A. P. Cadavez, Fernando C. Monteiro

Abstract:

The objective of this study was to develop and compare alternative prediction equations of lean meat proportion (LMP) of lamb carcasses. Forty (40) male lambs, 22 of Churra Galega Bragançana Portuguese local breed and 18 of Suffolk breed were used. Lambs were slaughtered, and carcasses weighed approximately 30 min later in order to obtain hot carcass weight (HCW). After cooling at 4º C for 24-h a set of seventeen carcass measurements was recorded. The left side of carcasses was dissected into muscle, subcutaneous fat, inter-muscular fat, bone, and remainder (major blood vessels, ligaments, tendons, and thick connective tissue sheets associated with muscles), and the LMP was evaluated as the dissected muscle percentage. Prediction equations of LMP were developed, and fitting quality was evaluated through the coefficient of determination of estimation (R2 e) and standard error of estimate (SEE). Models validation was performed by k-fold crossvalidation and the coefficient of determination of prediction (R2 p) and standard error of prediction (SEP) were computed. The BT2 measurement was the best single predictor and accounted for 37.8% of the LMP variation with a SEP of 2.30%. The prediction of LMP of lamb carcasses can be based simple models, using as predictors the HCW and one fat thickness measurement.

Keywords: Bootstrap, Carcass, Lambs, Lean meat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
2 Detente and Power - Conceptual Determination, Forms and Means of Education at the Preteen Age

Authors: Constantin Pehoiu

Abstract:

The scientific perspective, the practice area of physical education and sports activities improve power capacity in all its forms of expression, being a generator of the research topics. Today theories that strength training athletes and slow down development progress will affect the strength and flexibility are discredited. On the other hand there are sectors and / or samples whose results are sports of the way higher manifestation of power as a result of the composition of the force and velocity, being based in this respect on the systematic and continuous development of both bio-motric capacities said. Training of force for children was and is controversial. Teama de accidentări sau a stopării premature a procesului de creştere a făcut ca în trecut copiii să fie ţinuţi departe de lucrul cu diferite greutăţi.Fear of injury or premature stop the growth process in the past made the children to be kept away from working with different weights. Recent studies have shown that the risk of accidents is relatively small and the strength training can help prevent them. For example, most accidents occur at the level of athletics ligaments and tendons. From this point of view, it can be said that a progressive intervention of force training, optimal design, will help enhancing their process, such as athlete much better prepared to meet training requests and competitions. Preparation of force provides a solid basis for further phases in the highest performance.

Keywords: Detente, education, effort will, power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
1 Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility

Authors: Ali Hamadi Dicko, Nicolas Tong-Yette, Benjamin Gilles, François Faure, Olivier Palombi

Abstract:

A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.

Keywords: Hybrid, modeling, fast simulation, lumbar spine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382