Search results for: Discontinuous Finite Element
126 Ground Response Analyses in Budapest Based on Site Investigations and Laboratory Measurements
Authors: Zsolt Szilvágyi, Jakub Panuska, Orsolya Kegyes-Brassai, Ákos Wolf, Péter Tildy, Richard P. Ray
Abstract:
Near-surface loose sediments and local ground conditions in general have a major influence on seismic response of structures. It is a difficult task to model ground behavior in seismic soil-structure-foundation interaction problems, fully account for them in seismic design of structures, or even properly consider them in seismic hazard assessment. In this study, we focused on applying seismic soil investigation methods, used for determining soil stiffness and damping properties, to response analysis used in seismic design. A site in Budapest, Hungary was investigated using Multichannel Analysis of Surface Waves, Seismic Cone Penetration Tests, Bender Elements, Resonant Column and Torsional Shear tests. Our aim was to compare the results of the different test methods and use the resulting soil properties for 1D ground response analysis. Often in practice, there are little-to no data available on dynamic soil properties and estimated parameters are used for design. Therefore, a comparison is made between results based on estimated parameters and those based on detailed investigations. Ground response results are also compared to Eurocode 8 design spectra.
Keywords: Bender element, ground response analysis, MASW, resonant column test, SCPT, torsional shear test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124125 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm
Authors: Wilayat Ali, Li Sheng, Waleed Ahmed
Abstract:
The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.Keywords: SLAM, ROS, navigation, localization and mapping, Gazebo, Rviz, Turtlebot2, SLAM algorithms, 2d Indoor environment, Cartographer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232124 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations
Authors: A. Javed, K. Djidjeli, J. T. Xing
Abstract:
The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.
Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830123 Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation
Authors: Praveen Kumar, Nitin Kumar, Hemant Kumar
Abstract:
The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid–liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5° pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5° pipe bend for two-phase (solid and liquid) flow using finite volume method with standard k-ε turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline.Keywords: Computational fluid dynamics, erosion, slurry transportation, k-ε Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918122 Studies on Pre-Ignition Chamber Dynamics of Solid Rockets with Different Port Geometries
Authors: S. Vivek, Sharad Sharan, R. Arvind, D. V. Praveen, J. Vigneshwar, S. Ajith, V. R. Sanal Kumar
Abstract:
In this paper numerical studies have been carried out to examine the pre-ignition flow features of high-performance solid propellant rocket motors with two different port geometries but with same propellant loading density. Numerical computations have been carried out using a validated 3D, unsteady, 2nd-order implicit, SST k- ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create preignition pressure oscillations leading to thrust oscillations due to the flow unsteadiness and recirculation. We have also observed that the igniter temperature fluctuations are diminished rapidly thereby reaching the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.Keywords: Pre-Ignition chamber dynamics, starting transient, solid rockets, thrust oscillations in SRMs, ignition transient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265121 Constitutive Equations for Human Saphenous Vein Coronary Artery Bypass Graft
Authors: Hynek Chlup, Lukas Horny, Rudolf Zitny, Svatava Konvickova, Tomas Adamek
Abstract:
Coronary artery bypass grafts (CABG) are widely studied with respect to hemodynamic conditions which play important role in presence of a restenosis. However, papers which concern with constitutive modeling of CABG are lacking in the literature. The purpose of this study is to find a constitutive model for CABG tissue. A sample of the CABG obtained within an autopsy underwent an inflation–extension test. Displacements were recoredered by CCD cameras and subsequently evaluated by digital image correlation. Pressure – radius and axial force – elongation data were used to fit material model. The tissue was modeled as onelayered composite reinforced by two families of helical fibers. The material is assumed to be locally orthotropic, nonlinear, incompressible and hyperelastic. Material parameters are estimated for two strain energy functions (SEF). The first is classical exponential. The second SEF is logarithmic which allows interpretation by means of limiting (finite) strain extensibility. Presented material parameters are estimated by optimization based on radial and axial equilibrium equation in a thick-walled tube. Both material models fit experimental data successfully. The exponential model fits significantly better relationship between axial force and axial strain than logarithmic one.Keywords: Constitutive model, coronary artery bypass graft, digital image correlation, fiber reinforced composite, inflation test, saphenous vein.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643120 Culture Dimensions of Information Systems Security in Saudi Arabia National Health Services
Authors: Saleh Alumaran, Giampaolo Bella, Feng Chen
Abstract:
The study of organisations’ information security cultures has attracted scholars as well as healthcare services industry to research the topic and find appropriate tools and approaches to develop a positive culture. The vast majority of studies in Saudi national health services are on the use of technology to protect and secure health services information. On the other hand, there is a lack of research on the role and impact of an organisation’s cultural dimensions on information security. This research investigated and analysed the role and impact of cultural dimensions on information security in Saudi Arabia health service. Hypotheses were tested and two surveys were carried out in order to collect data and information from three major hospitals in Saudi Arabia (SA). The first survey identified the main cultural-dimension problems in SA health services and developed an initial information security culture framework model. The second survey evaluated and tested the developed framework model to test its usefulness, reliability and applicability. The model is based on human behaviour theory, where the individual’s attitude is the key element of the individual’s intention to behave as well as of his or her actual behaviour. The research identified a set of cultural and sub-cultural dimensions in SA health information security and services.
Keywords: Behaviour theory, Culture dimensions, Electronic health records, Information security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338119 Analysis of the Influence of Reshoring on the Structural Behavior of Reinforced Concrete Beams
Authors: Keith Danila Aquino Neves, Júlia Borges dos Santos
Abstract:
There is little published research about the influence of execution methods on structural behavior. Structural analysis is typically based on a constructed building, considering the actions of all forces under which it was designed. However, during construction, execution loads do not match those designed, and in some cases the loads begin to act when the concrete has not yet reached its maximum strength. Changes to structural element support conditions may occur, resulting in unforeseen alterations to the structure’s behavior. Shoring is an example of a construction process that, if executed improperly, will directly influence the structural performance, and may result in unpredicted cracks and displacements. The NBR 14931/2004 standard, which guides the execution of reinforced concrete structures, mentions that shoring must be executed in a way that avoids unpredicted loads and that it may be removed after previous analysis of the structure’s behavior by the professional responsible for the structure’s design. Differences in structural behavior are reduced for small spans. It is important to qualify and quantify how the incorrect placement of shores can compromise a structure’s safety. The results of this research allowed a more precise acknowledgment of the relationship between spans and loads, for which the influence of execution processes can be considerable, and reinforced that civil engineering practice must be performed with the presence of a qualified professional, respecting existing standards’ guidelines.
Keywords: Structural analysis, structural behavior, reshoring, static scheme, reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776118 A Novel Multiple Valued Logic OHRNS Modulo rn Adder Circuit
Authors: Mehdi Hosseinzadeh, Somayyeh Jafarali Jassbi, Keivan Navi
Abstract:
Residue Number System (RNS) is a modular representation and is proved to be an instrumental tool in many digital signal processing (DSP) applications which require high-speed computations. RNS is an integer and non weighted number system; it can support parallel, carry-free, high-speed and low power arithmetic. A very interesting correspondence exists between the concepts of Multiple Valued Logic (MVL) and Residue Number Arithmetic. If the number of levels used to represent MVL signals is chosen to be consistent with the moduli which create the finite rings in the RNS, MVL becomes a very natural representation for the RNS. There are two concerns related to the application of this Number System: reaching the most possible speed and the largest dynamic range. There is a conflict when one wants to resolve both these problem. That is augmenting the dynamic range results in reducing the speed in the same time. For achieving the most performance a method is considere named “One-Hot Residue Number System" in this implementation the propagation is only equal to one transistor delay. The problem with this method is the huge increase in the number of transistors they are increased in order m2 . In real application this is practically impossible. In this paper combining the Multiple Valued Logic and One-Hot Residue Number System we represent a new method to resolve both of these two problems. In this paper we represent a novel design of an OHRNS-based adder circuit. This circuit is useable for Multiple Valued Logic moduli, in comparison to other RNS design; this circuit has considerably improved the number of transistors and power consumption.
Keywords: Computer Arithmetic, Residue Number System, Multiple Valued Logic, One-Hot, VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843117 A Design of Elliptic Curve Cryptography Processor Based on SM2 over GF(p)
Authors: Shiji Hu, Lei Li, Wanting Zhou, Daohong Yang
Abstract:
The data encryption is the foundation of today’s communication. On this basis, to improve the speed of data encryption and decryption is always an important goal for high-speed applications. This paper proposed an elliptic curve crypto processor architecture based on SM2 prime field. Regarding hardware implementation, we optimized the algorithms in different stages of the structure. For modulo operation on finite field, we proposed an optimized improvement of the Karatsuba-Ofman multiplication algorithm and shortened the critical path through the pipeline structure in the algorithm implementation. Based on SM2 recommended prime field, a fast modular reduction algorithm is used to reduce 512-bit data obtained from the multiplication unit. The radix-4 extended Euclidean algorithm was used to realize the conversion between the affine coordinate system and the Jacobi projective coordinate system. In the parallel scheduling point operations on elliptic curves, we proposed a three-level parallel structure of point addition and point double based on the Jacobian projective coordinate system. Combined with the scalar multiplication algorithm, we added mutual pre-operation to the point addition and double point operation to improve the efficiency of the scalar point multiplication. The proposed ECC hardware architecture was verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms, and each 256-bit scalar multiplication operation took 0.275ms. The performance for handling scalar multiplication is 32 times that of CPU (dual-core ARM Cortex-A9).
Keywords: Elliptic curve cryptosystems, SM2, modular multiplication, point multiplication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257116 Silicon Application and Nitrogen on Yield and Yield Components in Rice (Oryza sativa L.) in Two Irrigation Systems
Authors: Abbas Ghanbari-Malidareh
Abstract:
Silicon is a beneficial element for plant growth. It helps plants to overcome multiple stresses, alleviates metal toxicity and improves nutrient imbalance. Field experiment was conducted as split-split plot arranged in a randomized complete block design with four replications. Irrigation system include continues flooding and deficit as main plots and nitrogen rates N0, N46, N92, and N138 kg/ha as sub plots and silicon rates Si0 & Si500 kg/ha as sub-subplots. Results indicate that grain yield had not significant difference between irrigation systems. Flooding irrigation had higher biological yield than deficit irrigation whereas, no significant difference in grain and straw yield. Nitrogen application increased grain, biological and straw yield. Silicon application increased grain, biological and straw yield but, decreased harvest index. Flooding irrigation had higher number of total tillers / hill than deficit irrigation, but deficit irrigation had higher number of fertile tillers / hill than flooding irrigation. Silicon increased number of filled spikelet and decreased blank spikelet. With high nitrogen application decreased 1000-grain weight. It can be concluded that if the nitrogen application was high and water supplied was available we could have silicon application until increase grain yield.Keywords: Grain yield, Irrigation, Nitrogen, Rice, Silicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3262115 Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis
Authors: Mrinalini Amritkar, Disha Patil, Swapna Kulkarni, Sukratu Barve, Suresh Gosavi
Abstract:
Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.
Keywords: Lab-on-chip, micro-mixer, OpenFOAM, PDMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789114 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios
Authors: Revoti Prasad Bora, Nikita Katyal
Abstract:
Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.
Keywords: Halo, cannibalization, promotion, baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324113 An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy
Authors: Asma Perveen, M. P. Jahan
Abstract:
Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy.Keywords: Micro EDM, Ni alloy, discharge energy, micro-holes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335112 Ice Load Measurements on Known Structures Using Image Processing Methods
Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.
Keywords: Camera calibration, Ice detection, ice load measurements, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257111 Numerical Investigation of Developing Mixed Convection in Isothermal Circular and Annular Sector Ducts
Authors: Ayad A. Abdalla, Elhadi I. Elhadi, Hisham A. Elfergani
Abstract:
Developing mixed convection in circular and annular sector ducts is investigated numerically for steady laminar flow of an incompressible Newtonian fluid with Pr = 0.7 and a wide range of Grashof number (0 £ Gr £ 107). Investigation is limited to the case of heating in circular and annular sector ducts with apex angle of 2ϕ = π/4 for the thermal boundary condition of uniform wall temperature axially and peripherally. A numerical, finite control volume approach based on the SIMPLER algorithm is employed to solve the 3D governing equations. Numerical analysis is conducted using marching technique in the axial direction with axial conduction, axial mass diffusion, and viscous dissipation within the fluid are assumed negligible. The results include developing secondary flow patterns, developing temperature and axial velocity fields, local Nusselt number, local friction factor, and local apparent friction factor. Comparisons are made with the literature and satisfactory agreement is obtained. It is found that free convection enhances the local heat transfer in some cases by up to 2.5 times from predictions which account for forced convection only and the enhancement increases as Grashof number increases. Duct geometry and Grashof number strongly influence the heat transfer and pressure drop characteristics.
Keywords: Mixed convection, annular and circular sector ducts, heat transfer enhancement, pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 547110 Rapid Determination of Biochemical Oxygen Demand
Authors: Mayur Milan Kale, Indu Mehrotra
Abstract:
Biochemical Oxygen Demand (BOD) is a measure of the oxygen used in bacteria mediated oxidation of organic substances in water and wastewater. Theoretically an infinite time is required for complete biochemical oxidation of organic matter, but the measurement is made over 5-days at 20 0C or 3-days at 27 0C test period with or without dilution. Researchers have worked to further reduce the time of measurement. The objective of this paper is to review advancement made in BOD measurement primarily to minimize the time and negate the measurement difficulties. Survey of literature review in four such techniques namely BOD-BARTTM, Biosensors, Ferricyanidemediated approach, luminous bacterial immobilized chip method. Basic principle, method of determination, data validation and their advantage and disadvantages have been incorporated of each of the methods. In the BOD-BARTTM method the time lag is calculated for the system to change from oxidative to reductive state. BIOSENSORS are the biological sensing element with a transducer which produces a signal proportional to the analyte concentration. Microbial species has its metabolic deficiencies. Co-immobilization of bacteria using sol-gel biosensor increases the range of substrate. In ferricyanidemediated approach, ferricyanide has been used as e-acceptor instead of oxygen. In Luminous bacterial cells-immobilized chip method, bacterial bioluminescence which is caused by lux genes was observed. Physiological responses is measured and correlated to BOD due to reduction or emission. There is a scope to further probe into the rapid estimation of BOD.Keywords: BOD, Four methods, Rapid estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3641109 Inferring User Preference Using Distance Dependent Chinese Restaurant Process and Weighted Distribution for a Content Based Recommender System
Authors: Bagher Rahimpour Cami, Hamid Hassanpour, Hoda Mashayekhi
Abstract:
Nowadays websites provide a vast number of resources for users. Recommender systems have been developed as an essential element of these websites to provide a personalized environment for users. They help users to retrieve interested resources from large sets of available resources. Due to the dynamic feature of user preference, constructing an appropriate model to estimate the user preference is the major task of recommender systems. Profile matching and latent factors are two main approaches to identify user preference. In this paper, we employed the latent factor and profile matching to cluster the user profile and identify user preference, respectively. The method uses the Distance Dependent Chines Restaurant Process as a Bayesian nonparametric framework to extract the latent factors from the user profile. These latent factors are mapped to user interests and a weighted distribution is used to identify user preferences. We evaluate the proposed method using a real-world data-set that contains news tweets of a news agency (BBC). The experimental results and comparisons show the superior recommendation accuracy of the proposed approach related to existing methods, and its ability to effectively evolve over time.Keywords: Content-based recommender systems, dynamic user modeling, extracting user interests, predicting user preference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815108 Music in the Early Stages of Life: Considerations from Working with Groups of Mothers and Babies
Authors: Ana Paula Melchiors Stahlschmidt
Abstract:
This paper discusses the role of music as a ludic activity and constituent element of voice in the construction and consolidation of the relationship of the baby and his/her mother or caretaker, evaluating its implications in his/her psychic structure and constitution as a subject. The work was based on the research developed as part of the author’s doctoral activities carried out from her insertion in a project of the Music Department of Federal University of Rio Grande do Sul - UFRGS, which objective was the development of musical activities with groups of babies from 0 to 24 months old and their caretakers. Observations, video recordings of the meetings, audio testemonies, and evaluation tools applied to group participants were used as instruments for this research. Information was collected on the participation of 195 babies, among which 8 were more focused on through interviews with their mothers or caretakers. These interviews were analyzed based on the referential of French Discourse Analysis, Psychoanalysis, Psychology of Development and Musical Education. The results of the research were complemented by other posterior experiences that the author developed with similar groups, in a context of a private clinic. The information collected allowed the observation of the ludic and structural functions of musical activities, when developed in a structured environment, as well as the importance of the musicality of the mother’s voice to the psychical structuring of the baby, allowing his/her insertion in the language and his/her constitution as a subject.
Keywords: Music and babies, maternal voice, Psychoanalysis and music, Psychology and music.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2870107 Indications and Characteristics of Clinical Application of Periodontal Suturing
Authors: Saimir Heta, Ilma Robo, Vera Ostreni, Glorja Demika, Sonila Kapaj
Abstract:
Suturing, as a procedure of joining the lips of the lembo or wound, is important at the beginning of the healing process. This procedure helps to pass the healing process from the procedure per secundam to the stages of healing per primam, thus logically reducing the healing time of the wound. The purpose of this article is to publish some data on the clinical characteristics of periodontal suturing, presenting the advantages and disadvantages of different types of suture threads. The article is a mini-review type of articles selected from the application of keywords on the PubMed page. The number of articles extracted from this article publication page is in accordance with the 10-year publication time limit. The element that remains in the individual selection of the dentist applying the suture is the selection of the suture material. At a moment when some types of sutures are offered for use, some elements should be considered in the selection of the suture depending on the constituent material, the cross-section of the suture elements, and whether it collects bacteria in the "pits" created by the material. The presence of bacteria is a source of infection and possible delay in the healing of the sutured wound. The marketing of suture types offers a variety of materials, from which the selection of the most suitable suture type for specific application cases is a personal indication of the dental surgeon based on professional experiences and knowledge in this field.
Keywords: Suture, suture material, types of sutures, clinical application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146106 Non-Coplanar Nuclei in Heavy-Ion Reactions
Authors: Sahila Chopra, Hemdeep, Arshdeep Kaur, Raj K. Gupta
Abstract:
In recent times, we noticed an interesting and important role of non-coplanar degree-of-freedom (Φ = 00) in heavy ion reactions. Using the dynamical cluster-decay model (DCM) with Φ degree-of-freedom included, we have studied three compound systems 246Bk∗, 164Yb∗ and 105Ag∗. Here, within the DCM with pocket formula for nuclear proximity potential, we look for the effects of including compact, non-coplanar configurations (Φc = 00) on the non-compound nucleus (nCN) contribution in total fusion cross section σfus. For 246Bk∗, formed in 11B+235U and 14N+232Th reaction channels, the DCM with coplanar nuclei (Φc = 00) shows an nCN contribution for 11B+235U channel, but none for 14N+232Th channel, which on including Φ gives both reaction channels as pure compound nucleus decays. In the case of 164Yb∗, formed in 64Ni+100Mo, the small nCN effects for Φ=00 are reduced to almost zero for Φ = 00. Interestingly, however, 105Ag∗ for Φ = 00 shows a small nCN contribution, which gets strongly enhanced for Φ = 00, such that the characteristic property of PCN presents a change of behaviour, like that of a strongly fissioning superheavy element to a weakly fissioning nucleus; note that 105Ag∗ is a weakly fissioning nucleus and Psurv behaves like one for a weakly fissioning nucleus for both Φ = 00 and Φ = 00. Apparently, Φ is presenting itself like a good degree-of-freedom in the DCM.Keywords: Dynamical cluster-decay model, fusion cross sections, non-compound nucleus effects, non-coplanarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186105 Compact Optical Sensors for Harsh Environments
Authors: Branislav Timotijevic, Yves Petremand, Markus Luetzelschwab, Dara Bayat, Laurent Aebi
Abstract:
Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.
Keywords: Accelerometer, harsh environment, optical MEMS, pressure sensor, remote sensing, temperature sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130104 A Study of the Built Environment Design Elements Embedded into the Multiple Criteria Strategic Planning Model for an Urban Renewal
Authors: Wann-Ming Wey
Abstract:
The link between urban planning and design principles and the built environment of an urban renewal area is of interest to the field of urban studies. During the past decade, there has also been increasing interest in urban planning and design; this interest is motivated by the possibility that design policies associated with the built environment can be used to control, manage, and shape individual activity and behavior. However, direct assessments and design techniques of the links between how urban planning design policies influence individuals are still rare in the field. Recent research efforts in urban design have focused on the idea that land use and design policies can be used to increase the quality of design projects for an urban renewal area-s built environment. The development of appropriate design techniques for the built environment is an essential element of this research. Quality function deployment (QFD) is a powerful tool for improving alternative urban design and quality for urban renewal areas, and for procuring a citizen-driven quality system. In this research, we propose an integrated framework based on QFD and an Analytic Network Process (ANP) approach to determine the Alternative Technical Requirements (ATRs) to be considered in designing an urban renewal planning and design alternative. We also identify the research designs and methodologies that can be used to evaluate the performance of urban built environment projects. An application in an urban renewal built environment planning and design project evaluation is presented to illustrate the proposed framework.
Keywords: Analytic Network Process, Built Environment, Quality Function Deployment, Urban Design, Urban Renewal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089103 Numerical Simulations of Fire in Typical Air Conditioned Railway Coach
Authors: Manoj Sarda, Abhishek Agarwal, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das
Abstract:
Railways in India remain primary mode of transport having one of the largest networks in the world and catering to billions of transits yearly. Catastrophic economic damage and loss to life is encountered over the past few decades due to fire to locomotives. Study of fire dynamics and fire propagation plays an important role in evacuation planning and reducing losses. Simulation based study of propagation of fire and soot inside an air conditioned coach of Indian locomotive is done in this paper. Finite difference based solver, Fire Dynamic Simulator (FDS) version 6 has been used for analysis. A single air conditioned 3 tier coupe closed to ambient surroundings by glass windows having occupancy for 8 people is the basic unit of the domain. A system of three such coupes combined is taken to be fundamental unit for the entire study to resemble effect to an entire coach. Analysis of flame and soot contours and concentrations is done corresponding to variations in heat release rate per unit volume (HRRPUA) of fire source, variations in conditioned air velocity being circulated inside coupes by vents and an alternate fire initiation and propagation mechanism via ducts. Quantitative results of fractional area in top and front view of the three coupes under fire and smoke are obtained using MATLAB (IMT). Present simulations and its findings will be useful for organizations like Commission of Railway Safety and others in designing and implementing safety and evacuation measures.Keywords: Air-conditioned coaches, fire propagation, flame contour, soot flow, train fire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295102 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure
Authors: T. Nozu, K. Hibi, T. Nishiie
Abstract:
This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.
Keywords: Deflagration, Large Eddy Simulation, Turbulent combustion, Vented enclosure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477101 Two Lessons Learnt in Defining Intersections and Interfaces in Numerical Modeling with Plaxis
Authors: Mahdi Sadeghian, Somaye Sadeghian, Reza Dinarvand
Abstract:
This paper is going to discuss two issues encountered in using PLAXIS. Both issues were monitored during application of PLAXIS to estimate the excavation-induced displacement. Column Soil Mixing (CSM) was applied to stabilise the excavation. It was understood that the estimated excavation induced deformation at the top of the CSM blocks highly depends on the material type defining pavement material adjacent to the CSM blocks. Cohesive material for pavement will result in the unrealistic connection between pavement and CSM even by defining an interface element. To find the most realistic approach, the interface defined in three different manners (1) no interface elements were applied (2) a non-cohesive soil layer was defined between pavement and CSM block to represent the friction between these materials (3) built-in interface elements in PLAXIS was used to define the boundary between the pavement and the CSM block. The result showed that the option 2 would result in more realistic results. The second issue was in the modelling of the contact line between the CSM block and an inclined layer underneath. The analysis result showed that the excavation-induced deformation highly depends on how the PLAXIS user defines the contact area. It was understood that if the contact area had defined as a point in which CSM block had intersected the layer underneath the estimated lateral displacement of CSM block would be unrealistically lower than the model in which the contact area was defined as a line.
Keywords: PLAXIS, FEM, CSM, excavation-induced deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 636100 Analysis of Brain Activities due to Differences in Running Shoe Properties
Authors: K. Okubo, Y. Kurihara, T. Kaburagi, K. Watanabe
Abstract:
Many of the ever-growing elderly population require exercise, such as running, for health management. One important element of a runner’s training is the choice of shoes for exercise; shoes are important because they provide the interface between the feet and road. When we purchase shoes, we may instinctively choose a pair after trying on many different pairs of shoes. Selecting the shoes instinctively may work, but it does not guarantee a suitable fit for running activities. Therefore, if we could select suitable shoes for each runner from the viewpoint of brain activities, it would be helpful for validating shoe selection. In this paper, we describe how brain activities show different characteristics during particular task, corresponding to different properties of shoes. Using five subjects, we performed a verification experiment, applying weight, softness, and flexibility as shoe properties. In order to affect the shoe property’s differences to the brain, subjects run for 10 min. Before and after running, subjects conducted a paced auditory serial addition task (PASAT) as the particular task; and the subjects’ brain activities during the PASAT are evaluated based on oxyhemoglobin and deoxyhemoglobin relative concentration changes, measured by near-infrared spectroscopy (NIRS). When the brain works actively, oxihemoglobin and deoxyhemoglobin concentration drastically changes; therefore, we calculate the maximum values of concentration changes. In order to normalize relative concentration changes after running, the maximum value are divided by before running maximum value as evaluation parameters. The classification of the groups of shoes is expressed on a self-organizing map (SOM). As a result, deoxyhemoglobin can make clusters for two of the three types of shoes.
Keywords: Brain activities, NIRS, PASAT, running shoes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231399 Effect of Utilization of Geosynthetic on Reducing the Required Thickness of Subbase Layer of a Two Layered Soil
Authors: R. Ziaie Moayed, M. Nazari
Abstract:
This paper tries to study the effect of geosynthetic inclusion on the improvement of the load-settlement characters of two layered soil. In addition, the effect of geogrid and geotextile in reduction of the required thickness of subbase layer in unpaved roads is studied. Considering the vast application of bearing ratio tests in road construction projects, this test is used in present investigation. Bearing ratio tests were performed on two layered soil including a granular soil layer at the top (as the subbase layer) and a weak clayey soil placed at the bottom (as the subgrade layer). These tests were performed for different conditions including unreinforced and reinforced by geogrid and geotextile and three thicknesses for top layer soil (subbase layer). In the reinforced condition the reinforcing element was placed on the interface of the top granular layer and the beneath clayey layer to study the separation effect of geosynthetics. In all tests the soils (both granular and clayey soil layers) were compacted according to optimum water content. At the end, the diagrams were plotted and were compared with each other. Furthermore, a comparison between geogrids and geotextiles behaviors on two layer soil is done in this paper. The results show an increase in compression strength of reinforced specimen in comparison with unreinforced soil sample. The effect of geosynthetic inclusion reduces by increasing the subbase thickness. In addition it was found that geogrids have more desirable behavior rather than geotextiles due to interlocking with the subbase layer aggregates.
Keywords: Bearing ratio, Subgrade, Subbase, Sand layer thickness, Geosynthetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 326798 Systematic Examination of Methods Supporting the Social Innovation Process
Authors: Mariann Veresne Somosi, Zoltan Nagy, Krisztina Varga
Abstract:
Innovation is the key element of economic development and a key factor in social processes. Technical innovations can be identified as prerequisites and causes of social change and cannot be created without the renewal of society. The study of social innovation can be characterised as one of the significant research areas of our day. The study’s aim is to identify the process of social innovation, which can be defined by input, transformation, and output factors. This approach divides the social innovation process into three parts: situation analysis, implementation, follow-up. The methods associated with each stage of the process are illustrated by the chronological line of social innovation. In this study, we have sought to present methodologies that support long- and short-term decision-making that is easy to apply, have different complementary content, and are well visualised for different user groups. When applying the methods, the reference objects are different: county, district, settlement, specific organisation. The solution proposed by the study supports the development of a methodological combination adapted to different situations. Having reviewed metric and conceptualisation issues, we wanted to develop a methodological combination along with a change management logic suitable for structured support to the generation of social innovation in the case of a locality or a specific organisation. In addition to a theoretical summary, in the second part of the study, we want to give a non-exhaustive picture of the two counties located in the north-eastern part of Hungary through specific analyses and case descriptions.
Keywords: Factors of social innovation, methodological combination, social innovation process, supporting decision-making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65597 Dislocation Modelling of the 1997-2009 High-Precision Global Positioning System Displacements in Darjiling- Sikkim Himalaya, India
Authors: Kutubuddin Ansari, Malay Mukul, Sridevi Jade
Abstract:
We used high-precision Global Positioning System (GPS) to geodetically constrain the motion of stations in the Darjiling-Sikkim Himalayan (DSH) wedge and examine the deformation at the Indian-Tibetan plate boundary using IGS (International GPS Service) fiducial stations. High-precision GPS based displacement and velocity field was measured in the DSH between 1997 and 2009. To obtain additional insight north of the Indo-Tibetan border and in the Darjiling-Sikkim-Tibet (DaSiT) wedge, published velocities from four stations J037, XIGA, J029 and YADO were also included in the analysis. India-fixed velocities or the back-slip was computed relative to the pole of rotation of the Indian Plate (Latitude 52.97 ± 0.22º, Longitude - 0.30 ± 3.76º, and Angular Velocity 0.500 ± 0.008º/ Myr) in the DaSiT wedge. Dislocation modelling was carried out with the back-slip to model the best possible solution of a finite rectangular dislocation or the causative fault based on dislocation theory that produced the observed back-slip using a forward modelling approach. To find the best possible solution, three different models were attempted. First, slip along a single thrust fault, then two thrust faults and in finally, three thrust faults were modelled to simulate the back-slip in the DaSiT wedge. The three-fault case bests the measured displacements and is taken as the best possible solution.
Keywords: Global Positioning System, Darjiling-Sikkim Himalaya, Dislocation modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104