Search results for: spreading simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3517

Search results for: spreading simulation

1657 Nearfield UWB Pulse Array Beamformer based on Multirate Filter Bank

Authors: Min Wang , Shuyuan Yang

Abstract:

The paper presents a method of designing ultrawide band (UWB) pulse array beamformer in the case of nearfield. Firstly the principle of space-time processing of UWB pulse array is discussed. The radical beampattern transform based on spherical coordinates is employed to solve the nearfield beamforming of UWB pulse array. The frequency invariant technology is considered for the frequency dependent beampattern of UWB pulse array. We use a multirate bank scheme of to implement the FI beamformer of UWB pulse array. By using multirate filters in each element channel, it can make the response of the UWB array to avoid distortion in the whole band. The simulation resultes are given to prove the efficiency and feasibility of this method.

Keywords: UWB pulse array, frequency invariant, multiratebank, nearfield beamformer, radical transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
1656 An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace

Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel

Abstract:

In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.

Keywords: Fuel cell dynamics, real time simulation, fuel cell, modelling, testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079
1655 The Simulation and Experimental Investigation to Study the Strain Distribution Pattern during the Closed Die Forging Process

Authors: D. B. Gohil

Abstract:

Closed die forging is a very complex process, and measurement of actual forces for real material is difficult and time consuming. Hence, the modelling technique has taken the advantage of carrying out the experimentation with the proper model material which needs lesser forces and relatively low temperature. The results of experiments on the model material then may be correlated with the actual material by using the theory of similarity. There are several methods available to resolve the complexity involved in the closed die forging process. Finite Element Method (FEM) and Finite Difference Method (FDM) are relatively difficult as compared to the slab method. The slab method is very popular and very widely used by the people working on shop floor because it is relatively easy to apply and reasonably accurate for most of the common forging load requirement computations.

Keywords: Experimentation, forging, process modeling, strain distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
1654 Predictive Fuzzy Logic Controller for Agile Micro-Satellite

Authors: A. Bellar, M.K. Fellah, A.M. Si Mohammed, M. Bensaada, L. Boukhris

Abstract:

This paper presents the use of the predictive fuzzy logic controller (PFLC) applied to attitude control system for agile micro-satellite. In order to reduce the effect of unpredictable time delays and large uncertainties, the algorithm employs predictive control to predict the attitude of the satellite. Comparison of the PFLC and conventional fuzzy logic controller (FLC) is presented to evaluate the performance of the control system during attitude maneuver. The two proposed models have been analyzed with the same level of noise and external disturbances. Simulation results demonstrated the feasibility and advantages of the PFLC on the attitude determination and control system (ADCS) of agile satellite.

Keywords: Agile micro-satellite, Attitude control, fuzzy logic, predictive control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
1653 UML Model for Double-Loop Control Self-Adaptive Braking System

Authors: Heung Sun Yoon, Jong Tae Kim

Abstract:

In this paper, we present an activity diagram model for double-loop control self-adaptive braking system. Since activity diagram helps to improve visibility of self-adaption. We can easily find where improvement is needed on double-loop control. Double-loop control is adopted since the design conditions and actual conditions can be different. The system is reconfigured in runtime by using double-loop control. We simulated to verify and validate our model by using MATLAB. We compared single-loop control model with double-loop control model. Simulation results show that double-loop control provides more consistent brake power control than single-loop control.

Keywords: Activity diagram, automotive, braking system, double-loop, Self-adaptive, UML, vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504
1652 Fuzzy Separation Bearing Control for Mobile Robots Formation

Authors: A. Bazoula, H. Maaref

Abstract:

In this article we address the problem of mobile robot formation control. Indeed, the most work, in this domain, have studied extensively classical control for keeping a formation of mobile robots. In this work, we design an FLC (Fuzzy logic Controller) controller for separation and bearing control (SBC). Indeed, the leader mobile robot is controlled to follow an arbitrary reference path, and the follower mobile robot use the FSBC (Fuzzy Separation and Bearing Control) to keep constant relative distance and constant angle to the leader robot. The efficiency and simplicity of this control law has been proven by simulation on different situation.

Keywords: Autonomous mobile robot, Formation control, Fuzzy logic control, Multiple robots, Leader-Follower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
1651 Modeling and Stability Analysis of Viral Propagation in Wireless Mesh Networking

Authors: Haowei Chen, Kaiqi Xiong

Abstract:

We have developed a better model for understanding the dynamics of malware spread in WMNs in this paper. The suggested model provides an insight into how viral propagation with energy exhaustion and various dispersed node densities might function. Based on a theoretical examination of the suggested model, we conclude that the threshold parameter could be used to identify the dynamics of viral spread globally. When the threshold is less than 1, the virus may be contained, but if it is greater than 1, a pandemic may result. Lastly, we discuss the various viral propagation strategies in relation to the distributed node densities and communication radii in WMNs. The aforementioned numerical simulation findings could serve as a guarantee of the theoretical analyses’ correctness.

Keywords: Bluetooth Security, Malware Propagation, Wireless Mesh Networks, Stability Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 401
1650 Optimized Detection in Multi-Antenna System using Particle Swarm Algorithm

Authors: A. A. Khan, M. Naeem, S. Bashir, S. I. Shah

Abstract:

In this paper we propose a Particle Swarm heuristic optimized Multi-Antenna (MA) system. Efficient MA systems detection is performed using a robust stochastic evolutionary computation algorithm based on movement and intelligence of swarms. This iterative particle swarm optimized (PSO) detector significantly reduces the computational complexity of conventional Maximum Likelihood (ML) detection technique. The simulation results achieved with this proposed MA-PSO detection algorithm show near optimal performance when compared with ML-MA receiver. The performance of proposed detector is convincingly better for higher order modulation schemes and large number of antennas where conventional ML detector becomes non-practical.

Keywords: Multi Antenna (MA), Multi-input Multi-output(MIMO), Particle Swarm Optimization (PSO), ML detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
1649 Calibration of Parallel Multi-View Cameras

Authors: M. Ali-Bey, N. Manamanni, S. Moughamir

Abstract:

This paper focuses on the calibration problem of a multi-view shooting system designed for the production of 3D content for auto-stereoscopic visualization. The considered multiview camera is characterized by coplanar and decentered image sensors regarding to the corresponding optical axis. Based on the Faugéras and Toscani-s calibration approach, a calibration method is herein proposed for the case of multi-view camera with parallel and decentered image sensors. At first, the geometrical model of the shooting system is recalled and some industrial prototypes with some shooting simulations are presented. Next, the development of the proposed calibration method is detailed. Finally, some simulation results are presented before ending with some conclusions about this work.

Keywords: Auto-stereoscopic display, camera calibration, multi-view cameras, visual servoing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
1648 Fractional Order Feedback Control of a Ball and Beam System

Authors: Santosh Kr. Choudhary

Abstract:

In this paper, fractional order feedback control of a ball beam model is investigated. The ball beam model is a particular example of the double Integrator system having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. Most of the work in fractional order control systems are in theoretical nature and controller design and its implementation in practice is very small. In this work, a successful attempt has been made to design a fractional order PIλDμcontroller for a benchmark laboratory ball and beam model. Better performance can be achieved using a fractional order PID controller and it is demonstrated through simulations results with a comparison to the classic PID controller.

Keywords: Fractional order calculus, fractional order controller, fractional order system, ball and beam system, PIλDμ controller, modelling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554
1647 Design Channel Non-Persistent CSMA MAC Protocol Model for Complex Wireless Systems Based on SoC

Authors: Ibrahim A. Aref, Tarek El-Mihoub, Khadiga Ben Musa

Abstract:

This paper presents Carrier Sense Multiple Access (CSMA) communication models based on SoC design methodology. Such a model can be used to support the modeling of the complex wireless communication systems. Therefore, the use of such communication model is an important technique in the construction of high-performance communication. SystemC has been chosen because it provides a homogeneous design flow for complex designs (i.e. SoC and IP-based design). We use a swarm system to validate CSMA designed model and to show how advantages of incorporating communication early in the design process. The wireless communication created through the modeling of CSMA protocol that can be used to achieve communication between all the agents and to coordinate access to the shared medium (channel).

Keywords: SystemC, modeling, simulation, CSMA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
1646 Adaptive Neural Network Control of Autonomous Underwater Vehicles

Authors: Ahmad Forouzantabar, Babak Gholami, Mohammad Azadi

Abstract:

An adaptive neural network controller for autonomous underwater vehicles (AUVs) is presented in this paper. The AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. In this regards, a nonlinear neural network is used to approximate the nonlinear uncertainties of AUV dynamics, thus overcoming some limitations of conventional controllers and ensure good performance. The uniform ultimate boundedness of AUV tracking errors and the stability of the proposed control system are guaranteed based on Lyapunov theory. Numerical simulation studies for motion control of an AUV are performed to demonstrate the effectiveness of the proposed controller.

Keywords: Autonomous Underwater Vehicle (AUV), Neural Network Controller, Composite Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527
1645 Simulation Study of Lateral Trench Gate Power MOSFET on 4H-SiC

Authors: Yashvir Singh, Mayank Joshi

Abstract:

A lateral trench-gate power metal-oxide-semiconductor on 4H-SiC is proposed. The device consists of two separate trenches in which two gates are placed on both sides of P-body region resulting two parallel channels. Enhanced current conduction and reduced-surface-field effect in the structure provide substantial improvement in the device performance. Using two dimensional simulations, the performance of proposed device is evaluated and compare of with that of the conventional device for same cell pitch. It is demonstrated that the proposed structure provides two times higher output current, 11% decrease in threshold voltage, 70% improvement in transconductance, 70% reduction in specific ON-resistance, 52% increase in breakdown voltage, and nearly eight time improvement in figure-of-merit over the conventional device.

Keywords: 4H-SiC, lateral, trench-gate, power MOSFET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
1644 Sloshing Control in Tilting Phases of the Pouring Process

Authors: Maria P. Tzamtzi, Fotis N. Koumboulis

Abstract:

We propose a control design scheme that aims to prevent undesirable liquid outpouring and suppress sloshing during the forward and backward tilting phases of the pouring process, for the case of liquid containers carried by manipulators. The proposed scheme combines a partial inverse dynamics controller with a PID controller, tuned with the use of a “metaheuristic" search algorithm. The “metaheuristic" search algorithm tunes the PID controller based on simulation results of the plant-s linearization around the operating point corresponding to the critical tilting angle, where outpouring initiates. Liquid motion is modeled using the well-known pendulumtype model. However, the proposed controller does not require measurements of the liquid-s motion within the tank.

Keywords: Robotic systems, Controller design, Sloshingsuppression, Metaheuristic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
1643 A Computer Model of Quantum Field Theory

Authors: Hans H. Diel

Abstract:

This paper describes a computer model of Quantum Field Theory (QFT), referred to in this paper as QTModel. After specifying the initial configuration for a QFT process (e.g. scattering) the model generates the possible applicable processes in terms of Feynman diagrams, the equations for the scattering matrix, and evaluates probability amplitudes for the scattering matrix and cross sections. The computations of probability amplitudes are performed numerically. The equations generated by QTModel are provided for demonstration purposes only. They are not directly used as the base for the computations of probability amplitudes. The computer model supports two modes for the computation of the probability amplitudes: (1) computation according to standard QFT, and (2) computation according to a proposed functional interpretation of quantum theory.

Keywords: Computational Modeling, Simulation of Quantum Theory, Quantum Field Theory, Quantum Electrodynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
1642 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designed the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
1641 A FEM Study of Explosive Welding of Double Layer Tubes

Authors: R. Alipour, F.Najarian

Abstract:

Explosive welding is a process which uses explosive detonation to move the flyer plate material into the base material to produce a solid state joint. Experimental tests have been carried out by other researchers; have been considered to explosively welded aluminium 7039 and steel 4340 tubes in one step. The tests have been done using various stand-off distances and explosive ratios. Various interface geometries have been obtained from these experiments. In this paper, all the experiments carried out were simulated using the finite element method. The flyer plate and collision velocities obtained from the analysis were validated by the pin-measurement experiments. The numerical results showed that very high localized plastic deformation produced at the bond interface. The Ls_dyna_971 FEM has been used for all simulation process.

Keywords: Explosive Welding, Johnson-Cook Equation, Finite Element, JWL Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
1640 Aerodynamic Study of Vehicle Wind Tunnel and Water Tunnel for Analysis of Bodies

Authors: E. T. L. Cöuras Ford, V. A. C. Vale, J. U. L. Mendes

Abstract:

The simulation in wind tunnel is used thoroughly to model real situations of drainages of air. Besides the automotive industry, a great number of applications can be numbered: dispersion of pollutant, studies of pedestrians’ comfort, and dispersion of particles. This work had the objective of visualizing the characteristics aerodynamics of two automobiles in different ways. To accomplish that drainage of air a fan that generated a speed exists (measured with anemometer of hot thread) of 4,1m/s and 4,95m/s. To visualize the path of the air through the cars, in the wind tunnel, smoke was used, obtained with it burns of vegetable oil. For “to do smoke” vegetable oil was used, that was burned for a tension of 20V generated by a thread of 2,5mm. The cars were placed inside of the wind tunnel with the drainage of “air-smoke” and photographed, registering like this the path lines around them, in the 3 different speeds.

Keywords: Aerodynamics, Vehicle Drag, Wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
1639 Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach

Authors: A. Pajaziti, H. Cana

Abstract:

In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.

Keywords: Robotic Arm, Neural Network, Genetic Algorithm, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3594
1638 Photonic Crystals for Novel Applications in Integrated-Optic Communication Systems and Devices

Authors: Vijay Janyani, Neetu Joshi, Jigyasa Pagaria, Parul Pathak

Abstract:

Photonic Crystal (PhC) based devices are being increasingly used in multifunctional, compact devices in integrated optical communication systems. They provide excellent controllability of light, yet maintaining the small size required for miniaturization. In this paper, the band gap properties of PhCs and their typical applications in optical waveguiding are considered. Novel PhC based applications such as nonlinear switching and tapers are considered and simulation results are shown using the accurate time-domain numerical method based on Finite Difference Time Domain (FDTD) scheme. The suitability of these devices for novel applications is discussed and evaluated.

Keywords: Band gap engineering, Nonlinear switching, Photonic crystals, PhC tapers, waveguides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
1637 Resonant-Based Capacitive Pressure Sensor Read-Out Oscillating at 1.67 GHz in 0.18

Authors: Yong Wang, Wang Ling Goh, Jung Hyup Lee, Kevin T. C. Chai, Minkyu Je

Abstract:

This paper presents a resonant-based read-out circuit for capacitive pressure sensors. The proposed read-out circuit consists of an LC oscillator and a counter. The circuit detects the capacitance changes of a capacitive pressure sensor by means of frequency shifts from its nominal operation frequency. The proposed circuit is designed in 0.18m CMOS with an estimated power consumption of 43.1mW. Simulation results show that the circuit has a capacitive resolution of 8.06kHz/fF, which enables it for high resolution pressure detection.

Keywords: Capacitance-to-frequency converter, Capacitive pressure sensor, Digital counter, LC oscillator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2983
1636 Optimal Speed Controller Design of the Two-Inertia Stabilization System

Authors: Byoung-Uk Nam, Hag-Seong Kim, Ho-Jung Lee, Dong-Hyun Kim

Abstract:

This paper focuses on systematic analysis and controller design of the two-inertia STABILIZATION system, considering the angular motion on a base body. This approach is essential to the stabilization system to aim at a target under three or six degrees of freedom base motion. Four controllers, such as conventional PDF(Pseudo-Derivative Feedback) controller with motor speed feedback, PDF controller with load speed feedback, modified PDF controller with motor-load speed feedback and feedforward controller added to modified PDF controller, are suggested to improve reference tracking and disturbance rejection performance. Characteristics and performance of each controller are analyzed and validated by simulation in the case of the modified PDF controller with and without a feedforward controller.

Keywords: Two-Inertia stabilization System, ITAE criterion, Speed Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
1635 Vortex Wake Formation and Its Effects on Thrust and Propulsive Efficiency of an Oscillating Airfoil

Authors: Ahmet Selim Durna, Bayram Celik, Aydin Misirlioglu

Abstract:

Flows over a harmonically oscillating NACA 0012 airfoil are simulated here using a two-dimensional, unsteady, incompressibleNavier-Stokes solver.Both pure-plunging and pitching-plunging combined oscillations are considered at a Reynolds number of 5000. Special attention is paid to the vortex shedding and interaction mechanism of the motions. For all the simulations presented here, the reduced frequency (k) is fixed at a value of 2.5 and plunging amplitude (h) is selected to be in the range of 0.2-0.5. The simulation results show that the interaction mechanism between the leading and trailing edge vortices has a decisive effect on the values of the resulting thrust and propulsive efficiency.

Keywords: pithing and plunging airfoil, leading edge vortex, trailing edge vortex, vortex interaction, wake structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
1634 Dispenser Longitudinal Movement ControlDesign Based on Auto - Disturbances –Rejection - Controller

Authors: Qiaozhen Song

Abstract:

Based on the feature of model disturbances and uncertainty being compensated dynamically in auto – disturbances-rejection-controller (ADRC), a new method using ADRC is proposed for the decoupling control of dispenser longitudinal movement in big flight envelope. Developed from nonlinear model directly, ADRC is especially suitable for dynamic model that has big disturbances. Furthermore, without changing the structure and parameters of the controller in big flight envelope, this scheme can simplify the design of flight control system. The simulation results in big flight envelope show that the system achieves high dynamic performance, steady state performance and the controller has strong robustness.

Keywords: ADRC, ESO, nonlinear system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
1633 An Alternative Method for Generating Almost Infinite Sequence of Gaussian Variables

Authors: Nyah C. Temaneh, F. A. Phiri, E. Ruhunga

Abstract:

Most of the well known methods for generating Gaussian variables require at least one standard uniform distributed value, for each Gaussian variable generated. The length of the random number generator therefore, limits the number of independent Gaussian distributed variables that can be generated meanwhile the statistical solution of complex systems requires a large number of random numbers for their statistical analysis. We propose an alternative simple method of generating almost infinite number of Gaussian distributed variables using a limited number of standard uniform distributed random numbers.

Keywords: Gaussian variable, statistical analysis, simulation ofCommunication Network, Random numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
1632 Numerical Evaluation of the Contribution of Inertial and Aerodynamic Forces on VAWT Blade Loading

Authors: Marco Raciti Castelli, Stefano De Betta, Ernesto Benini

Abstract:

A two-dimensional numerical simulation of the contribution of both inertial and aerodynamic forces on the blade loads of a Vertical-Axis Wind Turbine (VAWT) is presented. After describing the computational model and the relative validation procedure, a complete campaign of simulations - based on full RANS unsteady calculations - is proposed for a three-bladed rotor architecture characterized by a NACA 0021 airfoil. For each analyzed angular velocity, the combined effect of pressure and viscous forces acting on every rotor blade are compared to the corresponding centrifugal forces, due to the revolution of the turbine, thus achieving a preliminary estimation of the correlation between overall rotor efficiency and structural blade loads.

Keywords: CFD, VAWT, NACA 0021, aerodynamic forces, inertial loadings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
1631 Induction Motor Analysis Using LabVIEW

Authors: E. Ramprasath, P. Manojkumar, P. Veena

Abstract:

Proposed paper dealt with the modelling and analysis of induction motor based on the mathematical expression using the graphical programming environment of Laboratory Virtual Instrument Engineering Workbench (LabVIEW). Induction motor modelling with the mathematical expression enables the motor to be simulated with the various required parameters. Owing to the invention of variable speed drives study about the induction motor characteristics became complex. In this simulation motor internal parameter such as stator resistance and reactance, rotor resistance and reactance, phase voltage, frequency and losses will be given as input. By varying the speed of motor corresponding parameters can be obtained they are input power, output power, efficiency, torque induced, slip and current.

Keywords: Induction motor, LabVIEW software, modelling and analysis, electrical and mechanical characteristics of motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3591
1630 Performance Variation of the TEES According to the Changes in Cold-Side Storage Temperature

Authors: Young-Jin Baik, Minsung Kim, Junhyun Cho, Ho-Sang Ra, Young-Soo Lee, Ki-Chang Chang

Abstract:

Surplus electricity can be converted into potential energy via pumped hydroelectric storage for future usage. Similarly, thermo-electric energy storage (TEES) uses heat pumps equipped with thermal storage to convert electrical energy into thermal energy; the stored energy is then converted back into electrical energy when necessary using a heat engine. The greatest advantage of this method is that, unlike pumped hydroelectric storage and compressed air energy storage, TEES is not restricted by geographical constraints. In this study, performance variation of the TEES according to the changes in cold-side storage temperature was investigated by simulation method.

Keywords: Energy Storage System, Heat Pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
1629 Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach

Authors: A. Zanj, F. He

Abstract:

In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain.

Keywords: Multi-physical domain, conduction model, port-based modeling, dynamic interaction, physical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
1628 Design of an Augmented Automatic Choosing Control by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the gradient optimization automatic choosing functions for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by expanding a stable region in the sense of Lyapunov with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503