Search results for: linear prediction analysis
8765 Application of Multi-Dimensional Principal Component Analysis to Medical Data
Authors: Naoki Yamamoto, Jun Murakami, Chiharu Okuma, Yutaro Shigeto, Satoko Saito, Takashi Izumi, Nozomi Hayashida
Abstract:
Multi-dimensional principal component analysis (PCA) is the extension of the PCA, which is used widely as the dimensionality reduction technique in multivariate data analysis, to handle multi-dimensional data. To calculate the PCA the singular value decomposition (SVD) is commonly employed by the reason of its numerical stability. The multi-dimensional PCA can be calculated by using the higher-order SVD (HOSVD), which is proposed by Lathauwer et al., similarly with the case of ordinary PCA. In this paper, we apply the multi-dimensional PCA to the multi-dimensional medical data including the functional independence measure (FIM) score, and describe the results of experimental analysis.Keywords: multi-dimensional principal component analysis, higher-order SVD (HOSVD), functional independence measure (FIM), medical data, tensor decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25148764 The Application of an Ensemble of Boosted Elman Networks to Time Series Prediction: A Benchmark Study
Authors: Chee Peng Lim, Wei Yee Goh
Abstract:
In this paper, the application of multiple Elman neural networks to time series data regression problems is studied. An ensemble of Elman networks is formed by boosting to enhance the performance of the individual networks. A modified version of the AdaBoost algorithm is employed to integrate the predictions from multiple networks. Two benchmark time series data sets, i.e., the Sunspot and Box-Jenkins gas furnace problems, are used to assess the effectiveness of the proposed system. The simulation results reveal that an ensemble of boosted Elman networks can achieve a higher degree of generalization as well as performance than that of the individual networks. The results are compared with those from other learning systems, and implications of the performance are discussed.
Keywords: AdaBoost, Elman network, neural network ensemble, time series regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17008763 Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity
Authors: N. P. Yadav, Deepti Verma
Abstract:
This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mold cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process is analyzed by including the effect of pouring velocity as well as natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process.Keywords: Buoyancy driven flow, natural convection driven flow, residual flow, secondary flow, volume of fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23248762 Prediction of Overall Efficiency in Multistage Gear Trains
Authors: James Kuria, John Kihiu
Abstract:
A mathematical model for determining the overall efficiency of a multistage tractor gearbox including all gear, lubricant, surface finish related parameters and operating conditions is presented. Sliding friction, rolling friction and windage losses were considered as the main sources of power loss in the gearing system. A computer code in FORTRAN was developed to simulate the model. Sliding friction contributes about 98% of the total power loss for gear trains operating at relatively low speeds (less than 2000 rpm input speed). Rolling frictional losses decrease with increased load while windage losses are only significant for gears running at very high speeds (greater than 3000 rpm). The results also showed that the overall efficiency varies over the path of contact of the gear meshes ranging between 94% to 99.5%.Keywords: Efficiency, multistage gear train, rolling friction, slidingfriction, windage losses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36788761 Extended Least Squares LS–SVM
Authors: József Valyon, Gábor Horváth
Abstract:
Among neural models the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they eliminate certain crucial questions involved by neural network construction. The main drawback of standard SVM is its high computational complexity, therefore recently a new technique, the Least Squares SVM (LS–SVM) has been introduced. In this paper we present an extended view of the Least Squares Support Vector Regression (LS–SVR), which enables us to develop new formulations and algorithms to this regression technique. Based on manipulating the linear equation set -which embodies all information about the regression in the learning process- some new methods are introduced to simplify the formulations, speed up the calculations and/or provide better results.Keywords: Function estimation, Least–Squares Support VectorMachines, Regression, System Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20228760 Comparative Analysis of the Public Funding for Greek Universities: An Ordinal DEA/MCDM Approach
Authors: Yiannis Smirlis, Dimitris K. Despotis
Abstract:
This study performs a comparative analysis of the 21 Greek Universities in terms of their public funding, awarded for covering their operating expenditure. First it introduces a DEA/MCDM model that allocates the fund into four expenditure factors in the most favorable way for each university. Then, it presents a common, consensual assessment model to reallocate the amounts, remaining in the same level of total public budget. From the analysis it derives that a number of universities cannot justify the public funding in terms of their size and operational workload. For them, the sufficient reduction of their public funding amount is estimated as a future target. Due to the lack of precise data for a number of expenditure criteria, the analysis is based on a mixed crisp-ordinal data set.Keywords: Data envelopment analysis, Greek universities, operating expenditures, ordinal data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17778759 Model Predictive Fuzzy Control of Air-ratio for Automotive Engines
Authors: Hang-cheong Wong, Pak-kin Wong, Chi-man Vong, Zhengchao Xie, Shaojia Huang
Abstract:
Automotive engine air-ratio plays an important role of emissions and fuel consumption reduction while maintains satisfactory engine power among all of the engine control variables. In order to effectively control the air-ratio, this paper presents a model predictive fuzzy control algorithm based on online least-squares support vector machines prediction model and fuzzy logic optimizer. The proposed control algorithm was also implemented on a real car for testing and the results are highly satisfactory. Experimental results show that the proposed control algorithm can regulate the engine air-ratio to the stoichiometric value, 1.0, under external disturbance with less than 5% tolerance.Keywords: Air-ratio, Fuzzy logic, online least-squares support vector machine, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18188758 A New Self-stabilizing Algorithm for Maximal 2-packing
Authors: Zhengnan Shi
Abstract:
In the self-stabilizing algorithmic paradigm, each node has a local view of the system, in a finite amount of time the system converges to a global state with desired property. In a graph G = (V, E), a subset S C V is a 2-packing if Vi c V: IN[i] n SI <1. In this paper, an ID-based, constant space, self-stabilizing algorithm that stabilizes to a maximal 2-packing in an arbitrary graph is proposed. It is shown that the algorithm stabilizes in 0(n3) moves under any scheduler (daemon). Specifically, it is shown that the algorithm stabilizes in linear time-steps under a synchronous daemon where every privileged node moves at each time-step.Keywords: self-stabilization, 2-packing, distributed computing, fault tolerance, graph algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16808757 Leader-following Consensus Criterion for Multi-agent Systems with Probabilistic Self-delay
Authors: M.J. Park, K.H. Kim, O.M. Kwon
Abstract:
This paper proposes a delay-dependent leader-following consensus condition of multi-agent systems with both communication delay and probabilistic self-delay. The proposed methods employ a suitable piecewise Lyapunov-Krasovskii functional and the average dwell time approach. New consensus criterion for the systems are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Numerical example showed that the proposed method is effective.
Keywords: Multi-agent systems, probabilistic self-delay, consensus, Lyapunov method, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17608756 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network
Authors: Liu Zhiyuan, Sun Zongdi
Abstract:
In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.
Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14188755 Dynamic Decompression for Text Files
Authors: Ananth Kamath, Ankit Kant, Aravind Srivatsa, Harisha J.A
Abstract:
Compression algorithms reduce the redundancy in data representation to decrease the storage required for that data. Lossless compression researchers have developed highly sophisticated approaches, such as Huffman encoding, arithmetic encoding, the Lempel-Ziv (LZ) family, Dynamic Markov Compression (DMC), Prediction by Partial Matching (PPM), and Burrows-Wheeler Transform (BWT) based algorithms. Decompression is also required to retrieve the original data by lossless means. A compression scheme for text files coupled with the principle of dynamic decompression, which decompresses only the section of the compressed text file required by the user instead of decompressing the entire text file. Dynamic decompressed files offer better disk space utilization due to higher compression ratios compared to most of the currently available text file formats.Keywords: Compression, Dynamic Decompression, Text file format, Portable Document Format, Compression Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17698754 Extended Minimal Controller Synthesis for Voltage-Fed Induction Motor Based on the Hyperstability Theory
Authors: A. Ramdane, F.Naceri, S. Ramdane
Abstract:
in this work, we present a new strategy of direct adaptive control denoted: Extended minimal controller synthesis (EMCS). This algorithm is designed for an induction motor, which includes both electrical and mechanical dynamics under the assumptions of linear magnetic circuits. The main motivation of the EMCS control is to enhance the robustness of the MRAC algorithms, i.e. the rejection of bounded effects of rapidly varying external disturbances.
Keywords: Adaptive Control, Simple model reference adaptive control (SMRAC), Extended Minimal Controller synthesis (EMCS), Induction Motor (IM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16498753 Feature Extraction Technique for Prediction the Antigenic Variants of the Influenza Virus
Authors: Majid Forghani, Michael Khachay
Abstract:
In genetics, the impact of neighboring amino acids on a target site is referred as the nearest-neighbor effect or simply neighbor effect. In this paper, a new method called wavelet particle decomposition representing the one-dimensional neighbor effect using wavelet packet decomposition is proposed. The main idea lies in known dependence of wavelet packet sub-bands on location and order of neighboring samples. The method decomposes the value of a signal sample into small values called particles that represent a part of the neighbor effect information. The results have shown that the information obtained from the particle decomposition can be used to create better model variables or features. As an example, the approach has been applied to improve the correlation of test and reference sequence distance with titer in the hemagglutination inhibition assay.Keywords: Antigenic variants, neighbor effect, wavelet packet, wavelet particle decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7978752 Meta-Analysis of the Impact of Positive Psychological Capital on Employees Outcomes: The Moderating Role of Tenure
Authors: Hyeondal Jeong, Yoonjung Baek
Abstract:
This research examines the effects of positive psychological capital (or PsyCap) on employee’s outcomes (satisfaction, commitment, organizational citizenship behavior, innovation behavior and individual creativity). This study conducted a meta-analysis of articles published in the Republic of Korea. As a result, positive psychological capital has a positive effect on the behavior of employees. Heterogeneity was identified among the studies included in the analysis and the context factors were analyzed; the study proposes contextual factors such as team tenure. The moderating effect of team tenure was not statistically significant. The implications were discussed based on the analysis results.
Keywords: Positive psychological capital, satisfaction, commitment, OCB, creativity, meta-analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16988751 Rule Insertion Technique for Dynamic Cell Structure Neural Network
Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin
Abstract:
This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.
Keywords: Neural network, rule extraction, rule insertion, self-organizing map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5458750 Using HABIT to Establish the Chemicals Analysis Methodology for Maanshan Nuclear Power Plant
Authors: J. R. Wang, S. W. Chen, Y. Chiang, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih
Abstract:
In this research, the HABIT analysis methodology was established for Maanshan nuclear power plant (NPP). The Final Safety Analysis Report (FSAR), reports, and other data were used in this study. To evaluate the control room habitability under the CO2 storage burst, the HABIT methodology was used to perform this analysis. The HABIT result was below the R.G. 1.78 failure criteria. This indicates that Maanshan NPP habitability can be maintained. Additionally, the sensitivity study of the parameters (wind speed, atmospheric stability classification, air temperature, and control room intake flow rate) was also performed in this research.
Keywords: PWR, HABIT, habitability, Maanshan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9168749 Prediction of Fatigue Crack Growth of Aeronautical Aluminum Alloy
Authors: M. Benachour, M. Benguediab, A. Hadjoui, N. Benachour
Abstract:
In this paper fatigue crack growth behavior of aeronautical aluminum alloy 2024 T351 was studied. Effects of various loading and geometrical parameters are studied such as stress ratio, amplitude loading, etc. The fatigue crack growth with constant amplitude is studied using the AFGROW code when NASGRO model is used. The effect of the stress ratio is highlighted, where one notices a shift of the curves of crack growth. The comparative study between two orientations L-T and T-L on fatigue behavior are presented and shows the variation on the fatigue life. L-T orientation presents a good fatigue crack growth resistance. Effects of crack closure are shown in Paris domain and that no crack closure phenomenons are present at high stress intensity factor.Keywords: Fatigue crack, orientation effect, crack closure, aluminum alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22118748 Comparison of Fricative Vocal Tract Transfer Functions Derived using Two Different Segmentation Techniques
Authors: K. S. Subari, C. H. Shadle, A. Barney, R. I. Damper
Abstract:
The acoustic and articulatory properties of fricative speech sounds are being studied using magnetic resonance imaging (MRI) and acoustic recordings from a single subject. Area functions were derived from a complete set of axial and coronal MR slices using two different methods: the Mermelstein technique and the Blum transform. Area functions derived from the two techniques were shown to differ significantly in some cases. Such differences will lead to different acoustic predictions and it is important to know which is the more accurate. The vocal tract acoustic transfer function (VTTF) was derived from these area functions for each fricative and compared with measured speech signals for the same fricative and same subject. The VTTFs for /f/ in two vowel contexts and the corresponding acoustic spectra are derived here; the Blum transform appears to show a better match between prediction and measurement than the Mermelstein technique.
Keywords: Area functions, fricatives, vocal tract transferfunction, MRI, speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16568747 Modulational Instability of Electron Plasma Waves in Finite Temperature Quantum Plasma
Authors: Swarniv Chandra, Basudev Ghosh
Abstract:
Using the quantum hydrodynamic (QHD) model for quantum plasma at finite temperature the modulational instability of electron plasma waves is investigated by deriving a nonlinear Schrodinger equation. It was found that the electron degeneracy parameter significantly affects the linear and nonlinear properties of electron plasma waves in quantum plasma.
Keywords: Amplitude Modulation, Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17038746 A Comparative Study into Observer based Fault Detection and Diagnosis in DC Motors: Part-I
Authors: Padmakumar S., Vivek Agarwal, Kallol Roy
Abstract:
A model based fault detection and diagnosis technique for DC motor is proposed in this paper. Fault detection using Kalman filter and its different variants are compared. Only incipient faults are considered for the study. The Kalman Filter iterations and all the related computations required for fault detection and fault confirmation are presented. A second order linear state space model of DC motor is used for this work. A comparative assessment of the estimates computed from four different observers and their relative performance is evaluated.Keywords: DC motor model, Fault detection and diagnosis Kalman Filter, Unscented Kalman Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25028745 RBF modeling of Incipient Motion of Plane Sand Bed Channels
Authors: Gopu Sreenivasulu, Bimlesh Kumar, Achanta Ramakrishna Rao
Abstract:
To define or predict incipient motion in an alluvial channel, most of the investigators use a standard or modified form of Shields- diagram. Shields- diagram does give a process to determine the incipient motion parameters but an iterative one. To design properly (without iteration), one should have another equation for resistance. Absence of a universal resistance equation also magnifies the difficulties in defining the model. Neural network technique, which is particularly useful in modeling a complex processes, is presented as a tool complimentary to modeling incipient motion. Present work develops a neural network model employing the RBF network to predict the average velocity u and water depth y based on the experimental data on incipient condition. Based on the model, design curves have been presented for the field application.Keywords: Incipient motion, Prediction error, Radial-Basisfunction, Sediment transport, Shields' diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15188744 Dynamic Analysis of Transmission Line Towers
Authors: Srikanth L., Neelima Satyam D.
Abstract:
The transmission line towers are one of the important life line structures in the distribution of power from the source to the various places for several purposes. The predominant external loads which act on these towers are wind and earthquake loads. In this present study tower is analyzed using Indian Standards IS: 875:1987(Wind Load), IS: 802:1995(Structural steel), IS:1893:2002 (Earthquake) and dynamic analysis of tower has been performed considering ground motion of 2001 Bhuj Earthquake (India). The dynamic analysis was performed considering a tower system consisting two towers spaced 800m apart and 35m height each. This analysis has been performed using numerical time stepping finite difference method which is central difference method were employed by a developed MATLAB program to get the normalized ground motion parameters includes acceleration, frequency, velocity which are important in designing the tower. The tower is analyzed using response spectrum analysis.
Keywords: Response Spectra, Dynamic Analysis, Central Difference Method, Transmission Tower.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40948743 Efficiency of the Slovak Commercial Banks Applying the DEA Window Analysis
Authors: Iveta Řepková
Abstract:
The aim of this paper is to estimate the efficiency of the Slovak commercial banks employing the Data Envelopment Analysis (DEA) window analysis approach during the period 2003-2012. The research is based on unbalanced panel data of the Slovak commercial banks. Undesirable output was included into analysis of banking efficiency. It was found that most efficient banks were Postovabanka, UniCredit Bank and Istrobanka in CCR model and the most efficient banks were Slovenskasporitelna, Istrobanka and UniCredit Bank in BCC model. On contrary, the lowest efficient banks were found Privatbanka and CitiBank. We found that the largest banks in the Slovak banking market were lower efficient than medium-size and small banks. Results of the paper is that during the period 2003-2008 the average efficiency was increasing and then during the period 2010-2011 the average efficiency decreased as a result of financial crisis.
Keywords: Data Envelopment Analysis, efficiency, Slovak banking sector, window analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26638742 Non-negative Principal Component Analysis for Face Recognition
Abstract:
Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches.Keywords: classification, face recognition, non-negativeprinciple component analysis (NPCA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17018741 Perturbation Based Modelling of Differential Amplifier Circuit
Authors: Rahul Bansal, Sudipta Majumdar
Abstract:
This paper presents the closed form nonlinear expressions of bipolar junction transistor (BJT) differential amplifier (DA) using perturbation method. Circuit equations have been derived using Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL). The perturbation method has been applied to state variables for obtaining the linear and nonlinear terms. The implementation of the proposed method is simple. The closed form nonlinear expressions provide better insights of physical systems. The derived equations can be used for signal processing applications.Keywords: Differential amplifier, perturbation method, Taylor series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10278740 Robust Disturbance Rejection for Left Invertible Singular Systems with Nonlinear Uncertain Structure
Authors: Fotis N. Koumboulis, Michael G. Skarpetis, Maria P. Tzamtzi
Abstract:
The problem of robust disturbance rejection (RDR) using a proportional state feedback controller is studied for the case of Left Invertible MIMO generalized state space linear systems with nonlinear uncertain structure. Sufficient conditions for the problem to have a solution are established. The set of all proportional feedback controllers solving the problem subject to these conditions is analytically determined.
Keywords: System theory, uncertain systems, robust control, singular systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14908739 Input-Output Analysis in Laptop Computer Manufacturing
Authors: H. Z. Ulukan, E. Demircioğlu, M. Erol Genevois
Abstract:
The scope of this paper and the aim of proposed model were to apply monetary Input –Output (I-O) analysis to point out the importance of reusing know-how and other requirements in order to reduce the production costs in a manufacturing process for a laptop computer. I-O approach using the monetary input-output model is employed to demonstrate the impacts of different factors in a manufacturing process. A sensitivity analysis showing the correlation between these different factors is also presented. It is expected that the recommended model would have an advantageous effect in the cost minimization process.
Keywords: Input-Output Analysis, Monetary Input-Output Model, Manufacturing Process, Laptop Computer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46368738 A Methodology to Analyze Technology Convergence: Patent-Citation Based Technology Input-Output Analysis
Authors: Jeeeun Kim, Sungjoo Lee
Abstract:
This research proposes a methodology for patent-citation-based technology input-output analysis by applying the patent information to input-output analysis developed for the dependencies among different industries. For this analysis, a technology relationship matrix and its components, as well as input and technology inducement coefficients, are constructed using patent information. Then, a technology inducement coefficient is calculated by normalizing the degree of citation from certain IPCs to the different IPCs (International patent classification) or to the same IPCs. Finally, we construct a Dependency Structure Matrix (DSM) based on the technology inducement coefficient to suggest a useful application for this methodology.
Keywords: Technology spillover effect, technology relationship, IO table, technology inducement coefficients, patent analysis, patent citation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25848737 Robust Control for Discrete-Time Sector Bounded Systems with Time-Varying Delay
Authors: Ju H. Park, S.M. Lee
Abstract:
In this paper, we propose a robust controller design method for discrete-time systems with sector-bounded nonlinearities and time-varying delay. Based on the Lyapunov theory, delaydependent stabilization criteria are obtained in terms of linear matrix inequalities (LMIs) by constructing the new Lyapunov-Krasovskii functional and using some inequalities. A robust state feedback controller is designed by LMI framework and a reciprocally convex combination technique. The effectiveness of the proposed method is verified throughout a numerical example.
Keywords: Lur'e systems, Time-delay, Stabilization, LMIs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16948736 Parametric and Nonparametric Analysis of Breast Cancer Treatments
Authors: Chunling Cong, Chris.P.Tsokos
Abstract:
The objective of the present research manuscript is to perform parametric, nonparametric, and decision tree analysis to evaluate two treatments that are being used for breast cancer patients. Our study is based on utilizing real data which was initially used in “Tamoxifen with or without breast irradiation in women of 50 years of age or older with early breast cancer" [1], and the data is supplied to us by N.A. Ibrahim “Decision tree for competing risks survival probability in breast cancer study" [2]. We agree upon certain aspects of our findings with the published results. However, in this manuscript, we focus on relapse time of breast cancer patients instead of survival time and parametric analysis instead of semi-parametric decision tree analysis is applied to provide more precise recommendations of effectiveness of the two treatments with respect to reoccurrence of breast cancer.Keywords: decision tree, breast cancer treatments, parametricanalysis, non-parametric analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063